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Abstract

Some recent results on exponential stability of linear continuous time dif-
ference systems with discrete and distributed delay terms are extended to the
case of multiple delays. New sufficient conditions for the exponential stabil-
ity and exponential estimates for the solutions by using Lyapunov-Krasovskii
functionals are derived. Special attention is paid to the case of systems with
commensurate discrete and distributed delays.
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1. Introduction

Recently, motivated from some limitations on the application of existing
Lyapunov approaches [17, 20, 21] to the stability analysis of linear continuous
time systems with discrete and distributed delay terms, a new Lyapunov-
Krasovskii methodology for the exponential stability of such a class of systems
has been introduced in [15] and [16].
In [16] (see also [15]) the following system is considered:

x(t) = Ax(t− h) +

Z 0

−h
G(θ)x(t+ θ)dθ,

where A ∈ Rn×n is a Schur stable matrix (all eigenvalues of the matrix lie in
the open unit disc of the complex plane) and G(θ) is a matrix function with
piecewise continuous bounded elements defined for θ ∈ [−h, 0] .
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This system can be found as delay approximations of the partial differen-
tial equations for describing the propagation phenomena in excitable media
[2], in the stability analysis of additional dynamics introduced by some system
transformations [3, 7, 8, 9], in delay-dependent stability analysis of neutral
type systems [12], and in the stability analysis of some difference operators
in neutral type functional differential equations [4], [11].
For such systems, sufficient delay-dependent conditions for the expo-

nential stability and exponential estimates for the solutions by means of
Lyapunov-Krasovskii functionals are derived in [16].
A natural extension of the results in [16] is to present a Lyapunov-

Krasovskii approach for the exponential stability of linear continuous time
difference systems of the form

x(t) =
mX
j=1

Ajx(t− hj) +

Z 0

−τ
G(θ)x(t+ θ)dθ, (1)

where Aj ∈ Rn×n, j = 1, 2, . . . ,m, delays 0 < h1 < h2 < · · · < hm, 0 < τ, and
matrix function G(θ) has piecewise continuous bounded elements defined in
the interval [−τ , 0].
In this contribution we present such an extension for which, to the best of

our knowledge, no attempt has been made. We follow the same robust stabil-
ity idea used in [16] for the case of systems with a single discrete delay term
that is inspired from previous results on Lyapunov-Krasovskii functionals for
integral delay systems [13], [14].
Thus, by assuming that the continuous time difference system

x(t) =
mX
j=1

Ajx(t− hj), (2)

is delay-independent exponentially stable and interpreting the distributed
delay term as a perturbation we will present Lyapunov-Krasovskii functionals
guaranteeing the exponential stability of the whole system (1).
We start in Section 2 with some preliminaries. Basic facts about so-

lutions and a norm-based condition for the exponential stability of (1) are
given. Lyapunov-Krasovskii type conditions for the exponential stability of
(1) are introduced. A Lyapunov result which allows us to derive exponential
bounds for the solutions is also given. In section 3, the general Lyapunov-
Krasovskii results introduced in section 2 is applied to the particular class
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of (1) with constant matrices and multiple distributed delay terms. Next,
the special cases of commensurate discrete and commensurate discrete and
distributed delays are considered. In all these cases, sufficient conditions for
the exponential stability and exponential estimates for the solutions are ex-
pressed in terms of linear matrix inequalities. Several examples illustrating
the results are given in section 4. Concluding remarks end the paper.
Notation: Throughout this paper, the Euclidean norm for vectors and the

induced matrix norm for matrices are used, both denoted by k·k .We denote
by AT the transpose of A, I and 0 stand for the identity and zero matrices,
while λmin(A) and λmax(A) denote the smallest and largest eigenvalues of
a symmetric matrix A, respectively. For a real symmetric matrix Q, the
standard notation Q > 0 (respectively, Q < 0) is used to denote that Q is
positive (respectively negative) definite.

2. Preliminaries

2.1. Solutions and stability concept
Let r = max {τ , hm} . In order to define a particular solution of (1) an

initial vector function ϕ(θ), θ ∈ [−r, 0) , should be given. We assume that ϕ ∈
C ([−r, 0) ,Rn) , the space of continuous vector functions mapping [−r, 0) to
Rn equipped with the uniform convergence norm kϕkr = supθ∈[−r,0) kϕ(θ)k .
For a given initial function ϕ ∈ C ([−r, 0) ,Rn) , there exists a unique

solution x(t, ϕ) of (1) defined for all t ≥ 0, see [4]. This solution presents jump
discontinuities which distribution on time is very difficult (maybe impossible)
to describe in the general case.
Clearly, at t = 0 the jump discontinuity is explicitly given by

∆x(0) = x(0)− ϕ(−0) =
mX
j=1

Ajϕ(−hj) +
Z 0

−τ
G(θ)ϕ(θ)dθ − ϕ(−0).

In the particular case when the discrete and distributed delays are both com-
mensurate, i.e., they are multiple of a basic delay, the jump discontinuities of
the solutions are regularly distributed at time instants multiple of the basic
delay.

Definition 1. [4] System (1) is said to be exponentially stable if there exist
α > 0 and µ > 0 such that any solution of (1) satisfies the inequality

kx(t, ϕ)k ≤ µe−αt kϕkr , ∀t ≥ 0.
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Remark 1. In the particular case when G(θ) is continuously differentiable
on [−τ , 0], the solutions of (1) can be related with particular solutions of some
neutral functional differential equations and coupled systems described by re-
tarded functional differential equations and functional difference equations,
see [16] for a detailed proof in the case of a single discrete delay. Neverthe-
less, as it is discussed in [16], the corresponding differential delay systems
are not exponentially stable and, therefore, they cannot be directly analyzed
by existing Lyapunov stability conditions as, for instance, those in [5] and
[6].

2.2. A norm condition

By using frequency domain tools, based on the characteristic function
associated to (1), one can get the following result:

Lemma 1. System (1) is exponentially stable if

mX
j=1

kAjk+ τ

Ã
sup

θ∈[−τ,0]
kG(θ)k

!
< 1. (3)

Although the inequality (3) could be relatively easy to verify for some
particular matrix functions G(θ), it may be pretty conservative. In the next,
we will derive a Lyapunov-Krasovskii functional approach for the exponential
stability of (1) that not only will provide better results than the inequality
(3) but also exponential estimates for the solutions of (1).

2.3. A Lyapunov type theorem

We present here Lyapunov-Krasovskii conditions for the exponential sta-
bility of (1) that generalizes the ones presented in [16] for the case of system
with a single delay.
For a given t ≥ 0, we define the natural state xt(ϕ) = x(t + θ, ϕ), θ ∈

[−r, 0) . When the initial function is irrelevant we simply write x(t) and xt
instead of x(t, ϕ) and xt(ϕ). Based on the discontinuities of the solutions
it results that xt(ϕ) ∈ PC ([−r, 0) ,Rn) , the space of piecewise continuous
bounded functions mapping the interval [−r, 0) to Rn. As a consequence, in
a Lyapunov-Krasovskii functional setting, the functionals should be defined
on PC ([−r, 0) ,Rn) .
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Theorem 2. Consider system (1) and assume that the continuous time dif-
ference system (2) is delay-independent exponentially stable . System (1) is
exponentially stable if there exists a functional v : PC ([−r, 0) ,Rn)→ R such
that t→ v(xt(ϕ)) is differentiable and the following conditions hold:

1. α1
R 0
−r kϕ(θ)k

2 dθ ≤ v(ϕ) ≤ α2
R 0
−r kϕ(θ)k

2 dθ, for some 0 < α1 ≤ α2,

2. d
dt
v(xt(ϕ)) ≤ −β

R 0
−r kx(t, ϕ)k

2 dθ, for some β > 0.

Proof. Given any initial function ϕ ∈ C ([−r, 0) ,Rn) , it follows from the
theorem conditions that for 2σ = βα−12 the following inequality:

d

dt
v (xt(ϕ)) + 2σv (xt(ϕ)) ≤ 0,∀t ≥ 0,

holds. This inequality leads to

v(xt(ϕ)) ≤ v(ϕ)e−2σt,∀t ≥ 0.

Thus, it follows that for t ≥ 0

α1

Z 0

−r
kx(t+ θ, ϕ)k2 dθ ≤ α2e

−2σt
Z 0

−r
kϕ(θ)k2 dθ. (4)

From (1) one gets°°°°°x(t, ϕ)−
mX
j=1

Ajx(t− hj, ϕ)

°°°°°
2

≤
µZ 0

−τ
kG(θ)x(t+ θ, ϕ)k dθ

¶2
(5)

≤ τm2
g

Z 0

−r
kx(t+ θ, ϕ)k2 dθ,

where the last inequality has been obtained by using the Cauchy-Schwarz in-
equality in L2 ([−τ , 0],R) , the fact that τ ≤ r, and mg = supθ∈[−τ,0] kG(θ)k .
Combining the inequalities (4) and (5) one obtains°°°°°x(t, ϕ)−

mX
j=1

Ajx(t− hj, ϕ)

°°°°° ≤
µr

α2
α1

rτ

¶
mg kϕkr e−σt, ∀t ≥ 0.

This inequality implies that

x(t, ϕ)−
mX
j=1

Ajx(t− hj, ϕ) = f(t), (6)
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where f ∈ C ([0,∞) ,Rn) satisfies

kf(t)k ≤ γ kϕkr e−σt,∀t ≥ 0, (7)

with γ =
³q

α2
α1
rτ
´
mg.

Now since system (2) is assumed to be delay-independent exponentially
stable it then follows from Theorem 3.5 in [4] (see inequality (3.22)) that
there exist constants c (η) > 0 and η > 0 such that the following inequality
holds:

kx(t, ϕ)k ≤ c

∙
kϕkr e−αt + sup

0≤s≤t
kf(s)k

¸
,∀t ≥ 0. (8)

From (7) and (8) we get

kx(t, ϕ)k ≤ c [1 + γ] kϕkr , t ≥ 0.

This inequality implies that kxt(ϕ)kr ≤ c [1 + γ] kϕkr ,∀t ≥ r.When t ∈ [0, r)
we have

kxt(ϕ)k = max

(
sup

ξ∈[t0−r,0)
kϕ (ξ)k , sup

ξ∈[0,t0)
kx(ξ, ϕ)k , k∆x(0)k

)
≤ max {kϕkr , c [1 + γ] kϕkr , k∆x(0)k} .

From the jump discontinuity of the solution at t = 0 we get

k∆x(0)k = kx(0)− ϕ(−0)k ≤ kx(0)k+ kϕ(−0)k ≤ (c [1 + γ] + 1) kϕkr .

It follows that kxt(ϕ)kr ≤ (c [1 + γ] + 1) kϕkr , ∀t ∈ [0, r) , and therefore the
following inequality holds:

kxt(ϕ)kr ≤ (c [1 + γ] + 1) kϕkr ,∀t ≥ 0. (9)

Now since the system (6) is time-invariant then we can apply the reasoning
used in the proof of Theorem 7 in [19] and rewrite the inequality (8) for an
initial instant t0 ≥ 0 to get

kx(t, ϕ)k ≤ c

∙
kxt0kr e−α(t−t0) + sup

t0≤s≤t
kf(s)k

¸
. (10)

Setting t0 = t
2
, substituting kxt0kr with the right-hand side of (9) and using

the inequality (7) in (10) we arrive at

kx(t, ϕ)k ≤ µ kϕkr e−αt, ∀t ≥ 0,
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where
µ = c (c (1 + γ) + 1 + γ) and 2α = min {η, σ} ,

which implies the exponential stability of (1).

Remark 2. Analogously to the Lyapunov-Krasovskii conditions for the sin-
gle discrete delay case introduced in [16], the conditions of Theorem 2 guaran-
tee the exponential stability of (1) by means of continuous and differentiable
functionals in spite of the fact that xt(ϕ) ∈ PC ([−r, 0) ,Rn) .

Note that, in counterpart with Theorem 3 in [16] for the single delay
case, Theorem 2 does not allow us to explicitly compute the exponential
decay rate α and µ-factor involved in the exponential upper bound for the
solutions. The problem is that we do not have a methodology for computing
the positive constants c (η) and η involved in the inequality (8).
By assuming that

λ =
mX
j=1

kAjk < 1, (11)

which assures the delay-independent exponential stability of (2), we are able
to explicitly calculate exponential estimates for the solutions of (1) and accept
the additional conservatism.

Theorem 3. Consider system (1) and assume that the inequality (11) holds.
If there exists a functional v : PC ([−r, 0) ,Rn)→ R satisfying the conditions
1 and 2 of Theorem 2 then any solution x(t, ϕ) of (1) satisfies the inequality

kx(t, ϕ)k ≤ µ kϕkr e−αt, ∀t ≥ 0, (12)

with

µ ≥ max

⎧⎪⎨⎪⎩1,
³q

α2
α1
rτ
´
mg

1− e(α−η)r

⎫⎪⎬⎪⎭ and α < min {σ, η} , (13)

where η = − ln(λ)
r
, σ = 0.5βα−12 and mg = supθ∈[−τ,0] kG(θ)k .

Proof. Follow the same steps in Theorem 2 for arriving at the equation
(6). Now since the inequality (11) holds it then follows from Lemma 3 in [10]
that

kx(t, ϕ)k ≤ K(ϕ)e−αt,∀t ≥ 0,
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for the solutions x(t, ϕ) of (6), where α < min {σ, η} , η = − ln(λ)
r
, and

K(ϕ) ≥ kϕkrmax
½
1,

γ

1− e(α−η)r

¾
.

This implies that solution x(t, ϕ) of (1) satisfies the inequality

kx(t, ϕ)k ≤ µ kϕkr e−αt, ∀t ≥ 0,

with µ and α given by (13) and the result follows.

3. Main Results

Consider the following continuous time difference system with multiple
discrete and distributed delays:

x(t) =
mX
j=1

Ajx(t− hj) +
mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ, (14)

where 0 < h1 < h2 < · · · < hm, 0 < τ 1 ≤ τ 2 ≤ · · · ≤ τm, Aj , Gj ∈
Rn, j = 1, 2, . . . ,m. The system (14) is a particular case of (1), where G(θ) =Pm

k=j Gk, θ ∈ [−τ j, τ j−1) , j = 1, 2, . . . ,m, with τ 0 = 0 and τm = τ .
In order to apply Theorem 2 for the system (14) one needs to assure the

delay-independent exponential stability of (2). To this aim, there are some
conditions based on linear matrix inequalities. To the best of our knowledge,
the first time such kind of conditions were reported in the literature is in the
work of Carvalho [1]. It was shown there that the linear matrix inequalities
conditions imply the necessary and sufficient ones given by Silkowski (see
Theorem 6.1 in [4]) and, therefore, they are sufficient for delay-independent
stability of (2).

Theorem 4. [1] Suppose that there exist positive definite matrices Sj, j =
1, 2, . . . ,m such that

S −AT

"
mX
j=1

Sj

#
A < 0, (15)

where S = diag (S1, . . . , Sm) and A =
£
A1 · · · Am

¤
. Then the continuous

time difference system (2) is delay-independent exponentially stable.
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An equivalent condition to (15) has been naturally found in [18] by inves-
tigating the input-to-state stability of coupled delay differential and contin-
uous time difference equations. Similarly, the condition (15) will naturally
arises in our main result given in the next Theorem.

Theorem 5. System (14) is exponentially stable if there exist positive defi-
nite matrices Pj, Qj, j = 1, 2, . . . ,m,R and S such that for j = 1, 2, . . . ,m,

Nj =

"
1

mτj
X Yj

YT
j Qj −mτ jG

T
jMGj

#
> 0, (16)

where

X =

⎡⎢⎢⎢⎣
P1 −AT

1MA1 −AT
1MA2 · · · −AT

1MAm

−AT
2MA1 P2 −AT

2MA2 · · · −AT
2MAm

...
...

. . .
...

−AT
mMA1 −AT

mMA2 · · · Pm −AT
mMAm

⎤⎥⎥⎥⎦ , (17)
YT
j =

£
−GT

jMA1 −GT
jMA2 · · · −GT

jMAm

¤
, (18)

M =
mX
j=1

Pj +
mX
j=1

τ jQj +R+ rS, (19)

with r = max {hm, τm} .

Proof. Consider the following functional candidate:

v(ϕ) =
mX
j=1

Z 0

−hj
ϕT (θ)Pjϕ(θ)dθ +

mX
j=1

Z 0

−τj
ϕT (θ) (θ + τ j)Qjϕ(θ)dθ

+

Z 0

−r
ϕT (θ) [R+ (θ + r)S]ϕ(θ)dθ, (20)

where Pj, Qj, j = 1, 2, . . . ,m,R and S are positive definite matrices.
The functional (20) satisfies the following inequalities:

α1

Z 0

−r
kϕ(θ)k2 dθ ≤ v(ϕ) ≤ α2

Z 0

−r
kϕ(θ)k2 dθ,
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with

α1 = λmin(R), (21)

α2 =
mX
j=1

λmax(Pj) +
mX
j=1

λmax (τ jQj) + λmax(R+ rS). (22)

The time derivative of the functional (20) along solutions of (14) is

dv(xt)

dt
= xT (t)Mx(t)−

mX
j=1

xT (t− hj)Pjx(t− hj)− xT (t− r)Rx(t− r)

−
mX
j=1

Z 0

−τj
xT (t+ θ)Qjx(t+ θ)dθ −

Z 0

−r
xT (t+ θ)Sx(t+ θ)dθ,

whereM is defined by (19).
Substituting the right-hand side of (14) in the term xT (t)Mx(t) we have

xT (t)Mx(t) =

Ã
mX
j=1

Ajx(t− hj)

!T

M
Ã

mX
j=1

Ajx(t− hj)

!

+2

Ã
mX
j=1

Ajx(t− hj)

!T

M
Ã

mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!

+

Ã
mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!T

M
Ã

mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!
.

By using the Jensen inequality, the inequalityÃ
mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!T

M
Ã

mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!

≤ m
mX
j=1

τ j

Z 0

−τj
xT (t+ θ)GT

jMGjx(t+ θ)dθ,

holds.
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Then, we obtain the following upper bound for the derivative:

dv(xt)

dt
≤
Ã

mX
j=1

Ajx(t− hj)

!T

M
Ã

mX
j=1

Ajx(t− hj)

!

+2

Ã
mX
j=1

Ajx(t− hj)

!T

M
Ã

mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ

!

−
mX
j=1

Z 0

−τj
xT (t+ θ)

£
Qj −mτ jG

T
jMGj

¤
x(t+ θ)dθ

−
mX
j=1

xT (t− hj)Pjx(t− hj)− xT (t− r)Rx(t− r)

−
Z 0

−r
xT (t+ θ)Sx(t+ θ)dθ.

that can be rewritten as

dv(xt)

dt
≤ −

mX
j=1

Z 0

−τj
ξT (θ)Njξ(θ)dθ − xT (t− r)Rx(t− r)

−
Z 0

−r
xT (t+ θ)Sx(t+ θ)dθ,

where the matrices Nj, j = 1, 2, . . . ,m, are defined by (16)-(19) and for
θ ∈ [−τm, 0]

ξT (θ) =
£
xT (t− h1) xT (t− h2) · · · xT (t− hm) xT (t+ θ)

¤
.

Since the matrix X defined by (17) can be rewritten as

X = P −AT

"
mX
j=1

Pj

#
A−AT

"
mX
j=1

τ jQj +R+ rS

#
A,

where P = diag (P1, . . . , Pm) and A =
£
A1 · · · Am

¤
, it then follows that

the inequalities Nj > 0, j = 1, 2, . . . ,m, implies that X > 0 and by Theorem
4 the delay-independent exponential stability of (2).
Clearly, if Nj > 0, j = 1, 2, . . . ,m, then

dv(xt)

dt
≤ −β

Z 0

−r
kx(t+ θ)k2 dθ
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holds with
β = λmin(S), (23)

and, therefore by Theorem 2, the exponential stability of (14) follows.
For exponential estimates of the solutions, we can assume the condition

(11) and apply Theorem 3 to get the following result.

Theorem 6. Let system (14) be given and assume that the inequality (11)
holds. If there exist positive definite matrices Pj, Qj, j = 1, 2, . . . ,m,R and
S such that the inequalities (16) hold, then an exponential estimate for the
solutions of (14) is given by (12), where

µ ≥ max

⎧⎪⎨⎪⎩1,
³q

α2
α1
rτ
´³Pm

j=1 kGjk
´

1− e(σ−η)r

⎫⎪⎬⎪⎭ and α < min

½
β

2α2
, η

¾
. (24)

Here r = max {hm, τm} , η = − ln(λ)r
, α1, α2 and β respectively given by (21),

(22) and (23).

Proof. Given positive definite matrices Pj, Qj, j = 1, 2, . . . ,m,R and S
satisfying that Nj > 0, j = 1, 2, . . . ,m, we calculate the positive constants
α1, α2 and β determined by (21), (22) and (23). Noting that

mg = sup
θ∈[−τm,0]

kG(θ)k ≤
mX
j=1

kGjk

the result follows directly from the proof of Theorem 3.

Remark 3. Notice that although the stability conditions given in Theorem 5
include both discrete and distributed delays, they are actually delay-independent
w.r.t the discrete delays and delay-dependent w.r.t. the distributed delays.
In fact, since the discrete delays are only involved by means of rS, where
r = max {hm, τm}, then by doing the change of variable S̃ = rS the depen-
dence on r can be discarded from the stability conditions to simply arrive at
the above conclusion. On the other hand, as it is expected, the exponential
decay rate α and the µ factor in the exponential estimates for the solutions
given in Theorem 6 depend on both the discrete and distributed delays.
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In the case when the discrete delays are commensurate it is possible to
write the systems as continuous time difference systems with a single discrete
delay for which the main ideas introduced in [15] and [16] can be applied. We
will consider the following two important cases: only commensurate discrete
delays and commensurate discrete and distributed delays.

3.1. Commensurate discrete delays

Consider here the system

x(t) =
mX
j=1

Ajx(t− jh) +
mX
j=1

Gj

Z 0

−τj
x(t+ θ)dθ, (25)

where h > 0 is the basic discrete delay and 0 < τ 1 ≤ τ 2 ≤ · · · ≤ τm ≤ h. By
defining

x̂T (t) =
£
xT (t) xT (t− h) · · · xT (t− (m− 1)h)

¤
, (26)

the system (25) can be written as the following one with a single discrete
delay and several distributed delays:

x̂(t) = Âx̂(t− h) +
mX
j=1

Ĝj

Z 0

−τj
x̂(t+ θ)dθ, (27)

where

Â =

⎡⎢⎢⎢⎣
A1 A2 · · · Am

I 0 · · · 0
...

. . . . . .
...

0 · · · I 0

⎤⎥⎥⎥⎦ (28)

and for j = 1, 2, ...,m,

Ĝj =

⎡⎢⎢⎢⎣
Gj 0 · · · 0
0 0 · · · 0
...

. . . . . .
...

0 · · · 0 0

⎤⎥⎥⎥⎦ . (29)
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Proposition 7. Let system (25) be given and assume that Â defined by (28)
is Schur stable. System (25) is exponentially stable if there exist positive
definite matrices Wj, j = 0, 1, . . . ,m, such that for j = 1, 2, . . . ,m,

N̂j =

"
1

mτj
W0 −ÂTPĜj

−ĜT
j PÂ Wj −mτ jĜ

T
j PĜj

#
> 0, (30)

where Ĝj, j = 1, 2, . . . ,m, are defined by (29) and P the unique positive
solution of the Lyapunov inequality

ÂTPÂ− P +

Ã
W0 +

mX
j=1

τ jWj

!
< 0. (31)

Moreover, for any ϕ ∈ C ([−mh, 0) ,Rn) , the solution x(t, ϕ) of (25) satisfies
the inequality

kx(t, ϕ)k ≤ mµ kϕkmh e
−αt, ∀t ≥ 0, (32)

where µ > 0 and α > 0 are given by

µ = η
³
1 + γ +

γ

hεe

´
and α = min

½
σ,

β

2α2

¾
− ε. (33)

Here ε ∈
³
0,min

n
σ, β

2α2

o´
, η > 0 and σ > 0 are such that

°°°Âk
°°° ≤

ηe−σ(kh), k = 0, 1, 2, . . . , γ = h
q

α2
α1

³Pm
j=1

°°°Ĝj

°°°´ , while α1, α2 and β are

given respectively by

α1 = λmin
³
ÂTPÂ+W0

´
, (34)

α2 = λmax
³
ÂTPÂ+W0

´
+

mX
j=1

λmax (τ jWj) , (35)

β = λmin
³
N̂m

´
. (36)

Proof. For a given initial function ϕ ∈ C ([−mh, 0) ,Rn) , let x(t, ϕ) be the
solution of (25). Let ϕ̂ ∈ C ([−h, 0) ,Rnm) be the vector function constructed
from ϕ according to (26) and x̂(t, ϕ̂) be the corresponding solution of the
extended system (27). Since kx(t, ϕ)k ≤ kx̂(t, ϕ̂)k then exponential stability
of the extended system (27) implies that of the original system (25).

14



Consider now the following functional:

v(ϕ̂) =

Z 0

−h
ϕ̂T (θ)

h
ÂTPÂ+W0

i
ϕ̂(θ)dθ +

mX
j=1

Z 0

−τj
ϕ̂T (θ) (θ + τ j)Wjϕ̂(θ)dθ,

where P is the unique positive solution of (31) and Wj, j = 0, 1, . . . ,m, are
positive definite matrices. This functional satisfies the inequalities

α1

Z 0

−h
kϕ̂(θ)k2 dθ ≤ v(ϕ̂) ≤ α2

Z 0

−h
kϕ̂(θ)k2 dθ,

with 0 < α1 ≤ α2 given by (34) and (35). By following a similar line of
arguments of those used in the proof of Proposition 3 in [15], we are able to
prove that if N̂j > 0, j = 1, 2, . . . ,m, where N̂j are defined by (30), then

d

dt
v(x̂t) ≤ −β

Z 0

−h
kx̂(t+ θ)k dθ,

with β given by (36). Then, by Theorem 3 in [16] the exponential stability of
the extended system (27) is assured. Indeed, from the proof of Theorem 3 in
[16], one gets that any solution x̂(t, ϕ̂) of the extended system (27) satisfies
the following exponential upper bound:

kx̂(t, ϕ̂)k ≤ µ kϕ̂kh e−αt, ∀t ≥ 0, (37)

with µ and α determined by (33). Now

sup
θ∈[−h,0)

kϕ̂(θ)k ≤
m−1X
j=0

Ã
sup

θ∈[−h,0)
kϕ (θ − jh)k

!
≤

m−1X
j=0

Ã
sup

θ∈[−mh,0)

kϕ (θ)k
!

implies that kϕ̂kh ≤ m kϕkmh. From this, the inequality (37) and the fact
that kx(t, ϕ)k ≤ kx̂(t, ϕ̂)k ,∀t ≥ 0, we arrive at the result that any solu-
tion x(t, ϕ) of (25) satisfies the inequality (32) and thus the proof of the
Proposition.

Remark 4. Notice that, similar to that stated in Remark 3, the stability
conditions for (25) given in Proposition 7 are delay-independent w.r.t. the
basic discrete delay and delay-dependent w.r.t. the distributed delays. Of
course, the exponential estimate for the solutions (32) depends on both the
discrete and distributed delays.
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3.2. Commensurate discrete and distributed delays
Consider now the following system:

x(t) =
mX
j=1

Ajx(t− jh) +
mX
j=1

Gj

Z 0

−jh
x(t+ θ)dθ, (38)

where h > 0 is the basic delay. By using the same definition of x̂T (t) given
in (26) the system (38) can be written as the following one with only one
discrete and distributed delay:

x̂(t) = Âx̂(t− h) + Ĝ

Z 0

−h
x̂(t+ θ)dθ,

where Â is defined by (28) and

Ĝ =

⎡⎢⎢⎢⎣
Pm

j=1Gj

Pm
j=2Gj · · · Gm

0 0 · · · 0
...

... · · · ...
0 · · · · · · 0

⎤⎥⎥⎥⎦ . (39)

The following result can be directly obtained from Proposition 7, see also
Remark 6 in [16].

Proposition 8. Let system (38) be given and assume that Â defined by (28)
is Schur stable. System (38) is exponentially stable if there exist positive
definite matrices W0 and W1 such that

N̂ =

"
1
h
W0 −ÂTPĜ

−ĜTPÂ W1 − hĜTPĜ

#
> 0,

where Ĝ is defined by (39) and P is the unique positive solution of the Lya-
punov inequality

ÂTPÂ− P + (W0 + hW1) < 0. (40)

Furthermore, an exponential estimate for the solutions of (38) is given by

(32) with µ, α, σ, η and ε as in Proposition 7 while γ = h
q

α2
α1

³°°°Ĝ°°°´ ,
α1 = λmin

³
ÂTPÂ+W0

´
,

α2 = λmax
³
ÂTPÂ+W0

´
+ λmax (hW1) ,

β = λmin

³
N̂
´
.
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Remark 5. Note here that not only the exponential estimate for the solu-
tions but also the stability conditions given in Proposition 8 depend on the
basic delay h.

4. Illustrative Examples

Example 1. Let consider the scalar system

x(t) = ax(t− h) + g

Z 0

−h
x(t+ θ)dθ, (41)

where a, g are real numbers and h > 0.
In this particular case, by means of the characteristic function associ-

ated to (41), it is possible to obtain the following necessary and sufficient
conditions for exponential stability of (41):
Given h > 0, the system (41) is exponentially stable if, and only if, the

pair of coefficients (a, g) belongs to the stability region Ω(h), plotted in Fig.
1, determined by

Ω(h) = {(a, b) | −1 < a < 1 and a+ gh < 1} .

It can be seen from Fig. 1 that the stability region Ω(h) (dark shad-
owed region) can be decomposed in two regions. The first one is the delay-
independent stability region determined by −1 < a < 1 and g ≤ 0 and the
second one is the delay-dependent stability region determined by a+ gh < 1
with −1 < a < 1 and g > 0.
It is worth noting that the subregion of the delay-independent stability

region determined by −1 < a ≤ 0 and g ≤ 0 was derived in [2].
The corresponding stability region (light shadowed region) provided by

Proposition 6 (or Remark 6 in [16]) is shown in Fig. 1. This region coincides
with the stability region provided by the sufficient condition |a| + h |g| < 1
derived from the inequality (3). Thus, in this case, the obtained Lyapunov
conditions are as conservative as the sufficient conditions based on matrix
norms.
In spite of the conservatism of the Lyapunov conditions in the scalar case

they allow us to derive robust stability conditions against general classes of
perturbations. Thus, for instance, let us consider the following perturbed
system

y(t) = [a+∆a(t)] y(t− h) + [g +∆g(t)]

Z 0

−h
x(t+ θ)dθ, (42)

17



Figure 1: Stability region (dark shadowed region) of (41).

where a = 0.5, g = 0.25, and ∆a(t),∆g(t) are determined by

∆a(t) = 0.1 sin
¡
y2(t− h) + 5t

¢
and ∆g(t) = 0.1

¡
1− e−0.25t

¢
. (43)

The time-varying nonlinear functions ∆a(t),∆g(t) satisfies |∆a(t)| ≤ δ and
|∆g(t)| ≤ ρ,∀t ≥ 0, with δ = ρ = 0.1.
By applying Proposition 5 in our pervious paper [16] we have that the per-

turbed system (42) is exponentially stable for perturbations ∆a(t) and ∆g(t)
given in (43) if delay value is such that 0 < h ≤ 1.296.
Here it is important to note that this result holds not only for the par-

ticular perturbations given in (43) but also for any time-varying nonlinear
perturbations ∆a(t),∆g(t) satisfying |∆a(t)| ≤ 0.1 and |∆g(t)| ≤ 0.1, ∀t ≥ 0,
and for which the existence and uniqueness of solutions is assured.
In Fig. 2, we present a numerical simulation of the perturbed system for

an initial function ϕ(t) = sin (10t) , t ∈ [−h, 0) and delay value of h = 1.29.
It can be seen that the corresponding solution of the perturbed system (42) is
exponentially stable as it is assured by the Lyapunov conditions.

18



Figure 2: Numerical simulation of (42) for initial function ϕ(t) = sin (10t) and delay
h = 1.29.

Example 2. Consider the continuous time difference system

x(t) =
2X

j=1

Ajx(t− hj) +
2X

j=1

Gj

Z 0

−τj
x(t+ θ)dθ, (44)

where

A1 =

∙
−0.2 0
0.2 −0.1

¸
, A2 =

∙
0.2 1
−0.1 −0.2

¸
G1 =

∙
0 0.5
−0.2 −3

¸
, G2 =

∙
0.1 0
0.5 0.1

¸
.

In this case, the following simple sufficient condition for the exponential sta-
bility of (44) is derived from the norm condition (3):

2X
j=1

kAjk+
2X

j=1

τ j kGjk < 1. (45)

Since kA1k + kA2k = 1.3345 then the inequality (45) cannot be applied to
investigate the stability of (44). However, by using Theorem 5 we are able
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to provide a solution to the stability problem of (44). Let us consider that
τ 1 = 0.25 and search for a maximum value of τ 2 ≥ τ 1 such that (44) is
exponentially stable.
We found that (44) is exponentially stable for any given 0 < h1 < h2,

τ 1 = 0.25 and τ 2 ∈ [0.25, 0.512] .
Unfortunately, in this case, we are not able to compute exponential esti-

mates for solutions of (44) as it will be done in the following example.

Example 3. Consider again system (44) but now with system matrices

A1 =

∙
0.1 0
0.1 0.1

¸
, A2 =

∙
0.2 0
−0.1 −0.2

¸
,

G1 =

∙
0 1
−1 −2

¸
, G2 =

∙
0.1 0
1 0.1

¸
.

In this case we have that kA1k+ kA2k = 0.4180. Now if we fix τ 1 = 0.25 and
look for τ 2 ≥ τ 1 such that (44) is exponentially stable then we have that the
inequality (45) does not hold for any value of τ 2 > 0 since kA1k + kA2k +
τ 1 kG1k = 1.0215.
By using Theorem 5 we found that (44) is exponentially stable for any

given 0 < h1 < h2, τ 1 = 0.25 and τ 2 ∈ [0.25, 0.66].
Now, since in this case we have that kA1k+ kA2k < 1 then we can apply

Theorem 6 to obtain exponential estimates for the solutions of (44).
Let us select h1 = 1, h2 =

√
5, τ 1 = 0.25 and τ 2 = 0.3. Direct calculations

derived from (21), (22) and (23) yield α1 = 1.0291, α2 = 70.7435 and β =
0.7066. Then the corresponding µ > 0 and α > 0 in Theorem 6 satisfy
µ ≥ 40.2752 and α < 0.0050. By selecting µ = 40.3 and α = 0.0049 we
arrive at the following exponential upper bound for the solutions of (44):

kx(t, ϕ)k ≤ 40.3 kϕk e−0.0049t,∀t ≥ 0,

which holds for any arbitrary initial function ϕ ∈ C
¡£
−
√
5, 0
¢
,R2

¢
.

5. Conclusions

In this paper, Lyapunov-Krasovskii functionals for the exponential stabil-
ity of some linear continuous time difference systems with multiple discrete
and distributed delays are introduced, extending thus previous results in [15]
and [16] for the case of system with a single discrete delay.
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New sufficient conditions for the exponential stability expressed as linear
matrix inequalities are derived. By assuming the condition (11) exponential
estimates for the system solutions are also given. Further investigations are
needed for relaxing the condition (11) to get exponential estimates of the
solutions.
The results have been compared with the necessary and sufficient condi-

tions that can be obtained for the simplest scalar system. It is shown that in
spite of the fact that the Lyapunov conditions are as conservative as the ones
derived from the norm-based inequality (3) they allow us to derive robust
stability conditions against general classes of perturbations.
For the general matrix case the Lyapunov conditions provide solutions

to the exponential stability problem of systems for which the norm-based
inequality (3) does not allow concluding.
Future works will concern to perform robustness analysis of perturbed

systems with multiple discrete and distributed delays and the application of
the results to synthesis problems of continuous time difference systems.
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