

INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.

POSGRADO BIOLOGÍA MOLECULAR

"IDENTIFICACIÓN DE GENES INDUCIDOS EN LA ETAPA INICIAL DE LA TRANSICIÓN LEVADURA-MICELIO DE Yarrowia Iipolytica POR MEDIO DE HIBRIDACIÓN SUBSTRACTIVA BAJO SUPRESIÓN"

Tesis que presenta

YADIRA DEL CARMEN DÍAZ ARZOLA

Para obtener el grado de

Maestra en Ciencias en Biología Molecular

Directores de Tesis: DR. JUAN FRANCISCO JIMÉNEZ BREMONT DR. LORENZO GUEVARA OLVERA

San Luis Potosí, S.L.P., Enero 2007

Constancia de aprobación de la tesis

La tesis "IDENTIFICACIÓN DE GENES INDUCIDOS EN LA ETAPA INICIAL DE LA TRANSICIÓN LEVADURA-MICELIO DE Yarrowia lipolytica POR MEDIO DE HIBRIDACIÓN SUBSTRACTIVA BAJO SUPRESIÓN" presentada para obtener el Grado de de Maestra en Ciencias en Biología Molecular fue elaborada por Yadira del Carmen Díaz Arzola y aprobada el 26 de enero de 2007 por los suscritos, designados por el Colegio de Profesores de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C.

> Dr. Juan Francisco Jiménez Bremont Director

> > Dr. Lorenzo Guevara Olvera Codirector de la tesis)

Dr. Sergio Casas Flores Asesor de la tesis

Créditos Institucionales

Esta tesis fue elaborada en el Laboratorio de Hongos y Plantas de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Juan Francisco Jiménez Bremont. Una parte de este trabajo se realizó en el Laboratorio de Biología Molecular del Departamento de Ingeniería Bioquímica del Instituto Tecnológico de Celaya, fungiendo como co-director el Dr. Lorenzo Guevara Olvera.

Durante la realización del trabajo el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología y del Instituto Potosino de Investigación Científica y Tecnológica, A. C. (195365)

Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Acta de Examen de Grado

El Secretario Académico del Instituto Potosino de Investigación Científica y Tecnológica, A.C., certifica que en el Acta 032 del Libro Primero de Actas de Exámenes de Grado del Programa de Maestría en Ciencias en Biología Molecular está asentado lo siguiente:

En la ciudad de San Luis Potosí a los 29 días del mes de enero del año 2007, se reunió a las 10:00 horas en las instalaciones del Instituto Potosino de Investigación Científica y Tecnológica, A.C., el Jurado integrado por:

Dr. J. Sergio Casas Flores	Presidente	IPICYT
Dr. Lorenzo Guevara Olvera	Secretario	ITC
Dr. Juan Francisco Jiménez Bremont	Sinodal	IPICYT

a fin de efectuar el examen, que para obtener el Grado de:

MAESTRA EN CIENCIAS EN BIOLOGÍA MOLECULAR

sustentó la C.

Yadira del Carmen Díaz Arzola

sobre la Tesis intitulada:

Identificación de Genes Inducidos en la Etapa Inicial de la Transición Levadura-Micelio de Yarrowia lipolytica por Medio de Hibridación Substractiva Bajo Supresión

que se desarrolló bajo la dirección de

Dr. Juan Francisco Jiménez Bremont Dr. Lorenzo Guevara Olvera (ITC)

El Jurado, después de deliberar, determinó

APROBARLA

Dándose por terminado el acto a las 12:15 horas, procediendo a la firma del Acta los integrantes del Jurado. Dando fé el Secretario Académico del Instituto.

A petición de la interesada y para los fines que a la misma convengan, se extiende el presente documento en la ciudad de San Luis Potosí, S.L.P., México, a los 29 días del mes enero de 2007.

A mis padres, Antonio y Carmen.

Agradecimientos

Agradezco muy especialmente al **Dr. Juan Francisco Jiménez Bremont**, por la constante asesoría durante mi formación como Maestra. Por su apoyo, confianza, tiempo y paciencia; pero sobre todo por la amistad que me ha brindado. *jijMil gracias!!!*

Al Dr. Lorenzo Guevara Olvera por sus sugerencias hechas al presente trabajo.

A los **Doctores J. Sergio Casas Flores** y **José Ruiz Herrera**, por el tiempo dedicado a la revisión de esta tesis.

A mis compañeros y amigos del laboratorio de Hongos y Plantas, **Azucena**, **Claudia**, **Eloisa**, **Erika**, **Margarita**, **Pablo** y **Telma**, por proporcionarme ayuda siempre que lo necesité y por la amistad tan linda que me brindaron, puesto que me han ayudado a seguir creciendo como persona.

Contenido

Constancia de aprobación de la tesis Créditos institucionales Acta de examen Dedicatorias Agradecimientos Resumen Abstract	ii iv v vi viii ix
1. Introducción	3
2. Materiales y métodos	3
2.2. Transición dimórfica de Yarrowia lipolytica	3
 2.3. Crecimiento de las células de Yarrowia lipolytica en medios de cultivo con GlcNAc a un pH 3 o glucosa a pH 6 2.4. Extracción de RNA 	4
2.5. Síntesis, amplificación y purificación de cDNA	4
2.6. Técnica de Hibridación Substractiva bajo Supresión (SSH)	4
Construcción de las genotecas substractivas 2.7. Almacenamiento de la genoteca substractiva	5
2.8. Secuenciación del DNA plasmídico	5
2.9. RT-PCR	5
3. Resultados	7
3.1. Identificación de genes inducidos en Yarrowia lipolytica durante	7
la etapa inicial de la transición levadura-micelio in vitro	
3.2. Análisis de la expresión de genes aislados en la SSH de Yarrowia lipolytica inducidos en la etapa inicial de la transición levadura-micelio <i>in vitro</i> utilizando un medio de cultivo con GlcNAc de pH 6	9
 3.3. Análisis de la expresión de los genes de Yarrowia lipolytica inducidos a las 3 h en medios de cultivo con GlcNAc de pH 3 o Glu de pH 6 	10
4. Discusión	11
5. Referencias	24

Resumen

Identificación de genes inducidos en la etapa inicial de la transición levaduramicelio de *Yarrowia lipolytica* por medio de hibridación substractiva bajo supresión

Varias especies de hongos se caracterizan por exhibir un comportamiento dimórfico, manifestado como la capacidad para crecer en forma de levadura o de micelio dependiendo de las condiciones ambientales. El dimorfismo, se ha propuesto como un mecanismo de respuesta a factores externos y representa un atributo importante para el desarrollo de virulencia de varias especies patógenas. Yarrowia lipolytica es un hongo dimórfico no patógeno, el cual en los últimos años ha sido utilizado como un modelo excelente para el estudio de dimorfismo. Diversos estudios han demostrado que factores ambientales como el pH y la fuente de carbono, participan en la regulación de la transición dimórfica en este hongo. En este sentido, se realizó la construcción de una Genoteca Substractiva (SSH) de Yarrowia lipolytica durante la etapa inicial de la transición levaduramicelio *in vitro* (3 h), empleando el cDNA obtenido de células crecidas en un medio Glu-pH3 como control, y el cDNA de las células crecidas en GlcNAc-pH6 como condición problema. Se aislaron y secuenciaron 133 clonas, y se agruparon en 91 contigs que corresponden a 77 unigenes. En el grupo de genes seleccionados, se identificaron secuencias involucrados en biosíntesis de proteínas, producción de energía, señalización, metabolismo, entre otros. Como ejemplos podemos mencionar una deshidrogenasa, una hexoquinasa, una proteína HSP10, una ATP4 sintasa, una metiltransferasa y Rac. El analísis de RT-PCR confirmó la expresión diferencial de 19 transcritos, los cuales se expresan durante la etapa inicial de la transición levadura-micelio. La participación de algunos de estos genes ha sido reportada durante el proceso de germinación de teliosporas en el hongo fitopatógeno Ustilago maydis, sugiriendo su participación en los procesos de diferenciación celular en hongos. Adicionalmente, identificamos que algunos de los genes obtenidos en la SSH, son inducidos por el cambio de pH o de la fuente de carbono.

PALABRAS CLAVE. Dimorfismo, Transición levadura-micelio, Yarrowia lipolytica, SSH

viii

Abstract

Several fungal species exhibit a dimorphic transition, expressed as the capacity to grow in a yeast like form or in a micelial form depending on the environmental conditions. Dimorphism, has been proposed as a response mechanism to external factors, and represents an important attribute for the development of virulence by a number of pathogenic fungal species. Yarrowia lipolytica is a dimorphic non pathogenic fungi, which has been used as an excellent model for the study of fungal dimorphism. It has been demonstrated that environmental factors such as pH of the media and carbon source are inductors of the yeast to hypha transition of Y. lipolytica. We constructed a substractive library (SSH) of Y. lipolytica during the initial stage (3 h) of the *in vitro* yeast to hypha transition, using the cDNA of cells grown un a media with Glu-pH3 as control, and the cDNA of cells grown in GlcNAc-pH6 as the problem condition. We isolated and sequenced 133 clones, which were grouped into 91 contigs corresponding to 77 unigenes. The isolated sequences encode genes involved in protein biosynthesis, energy production, signaling, metabolism, binned others, including a dehydrogenase, an hexoquinase, a heat shock protein HSP10, an ATP4 synthase, a methyltransferase and a Rac protein. Our analysis confirmed the differential expression of 19 of these genes during the initial stage of the yeast to hypha transition. Some of these genes have been reported to participate during teliospore germination in the pathogenic fungus Ustilago maydis, suggesting a role for these genes in processes of cellular differentiation in fungi. In addition, we observed that some of the genes isolated by SSH were induced by changes in pH or carbon source.

KEY WORDS. Dimophism, Transition yeast-micelium, Yarrowia lipolytica, SSH

1. INTRODUCCIÓN

La importancia del estudio del dimorfismo en los hongos ha ido en aumento debido a su implicación en la patogénesis y su potencial como un modelo experimental sencillo de la diferenciación celular en organismos eucariotes. Hasta el momento, solamente las especies de hongos como *Candida albicans, Yarrowia lipolytica* y *Ustilago maydis* han sido estudiadas para entender los mecanismos moleculares del dimorfismo.

El dimorfismo se define como la capacidad que tienen ciertas especies de hongos para crecer como levadura o en forma de micelio, dependiendo de las condiciones ambientales (Ruiz-Herrera y Sentandreu, 2002). Esta propiedad es independiente de su clasificación taxonómica, siendo compartida por organismos representativos de los zigomicetos, basidiomicetos, ascomicetos y deuteromicetos (hongos imperfectos) (Guevara-Olvera *et al.*, 1993). De manera interesante, algunas especies de hongos patógenos de humanos y plantas son dimórficos, adquiriendo diferente morfología en su estado saprofítico a la que presentan en la fase virulenta o infectiva (Szanizslo, 1985; Vanden Bosshche *et al.*, 1993). En *Candida albicans, Paracoccidioides brasiliensis* e *Histoplasma capsulatum*, se ha observado que el dimorfismo presenta una relación muy estrecha con la virulencia (Soll, 1985; Odds, 1988; Felipe *et al.*, 2005; Maresca y Kobayashi 1989).

Yarrowia lipolytica es un hongo dimórfico no patógeno que posee la capacidad de crecer como levadura o micelio en condiciones naturales, y en medios de cultivo líquido o sólido (Rodríguez y Domínguez, 1984). *Y. lipolytica* ha sido objeto de numerosos estudios destinados a detectar cambios fisiológicos durante la transición levadura-micelio. Diversos estudios han demostrado que factores ambientales como el pH y fuente de carbono en el medio, participan el la regulación de la transición dimórfica de este hongo (Rodríguez y Domínguez, 1984; Guevara-Olvera *et al.*, 1993), los cuales indican que cuando se emplea N-acetilglucosamina (GlcNAc) como fuente de carbono, el desarrollo de las células es preferentemente micelial, mientras que en presencia de glucosa permanece como levadura. *Yarrowia lipolytica* ha mostrado ser un modelo muy atractivo para el estudio del dimorfismo en hongos, ya que ha sido objeto de estudios tanto bioquímicos como genéticos (Gaillardin *et al.*, 1973; Ogrydiziak *et al.*, 1978).

Además, es un organismo en el cual puede llevarse a cabo estudios de ingeniería genética, ya que existen sistemas de transformación con plásmidos de replicación autónoma y replicativa (Gaillardin *et al.*, 1985). Por otro lado, la respuesta de *Y. lipolytica* a la formación de micelio bajo condiciones de inducción, es altamente reproducible en el laboratorio. Adicionalmente, el genoma de esta levadura se ha secuenciado en su totalidad y ésta secuencia se encuentra disponible en la base de datos del GenBank (http://www.ncbi.nlm.nih.gov). Por todo lo anterior, *Y. lipolytica* es un excelente modelo para el aislamiento, identificación y estudio de genes implicados en el dimorfismo.

Con respecto a los genes involucrados durante la transición levadura micelio, existen pocos reportes en *Y. lipolytica*, por ejemplo el gen *HOYI*, el cual codifica para un factor de transcripción tipo dedo de Zinc (C₂H₂), el gen *MHYI* que codifica para una proteína que presenta un homeodominio y el gen *YIRAC1* que codifica para una proteína G de la familia Rho. La expresión de éstos últimos genes, presenta un aumento en su expresión entre las 3 y 10 h de la transición dimórfica (Torres-Guzmán y Domínguez, 1997; Hurtado y Rachubinski, 1999; Hurtado *et al.,* 2000). Sin embargo, aún se desconocen los mecanismos que regulan el dimorfismo de esta levadura.

El objetivo del presente trabajo fue identificar y aislar genes de *Y. lipolytica* que se durante en la primera etapa de la transición levadura-micelio. Esta meta se logró mediante la construcción de un banco substractivo (SSH), mediante el cual identificamos genes que se expresan diferencialmente a las primeras 3 h de la inducción de la formación de micelio. Adicionalmente, identificamos que algunos de estos genes, obtenidos en la SSH, eran inducidos por el cambio de pH o de la fuente de carbono.

2. MATERIALES Y MÉTODOS

2.1. Cepa y condiciones de crecimiento

Se empleo la cepa PO1a (*leu2-270, ura3-302*) de *Yarrowia lipolytica*, donada por C. Gaillardin (INRA, Paris-Grignon, France). La cepa se conserva a -80°C en medio YPD (extracto de levadura, 5 g; peptona, 20 g; glucosa, 10 g; agua destilada, 1 L) conteniendo 50% de glicerol. Cuando fue necesario, las células se sembraron en medio YPD sólido a 28°C, o en medio YPD líquido, y se incubaron con una agitación de 250 rpm a 28°C. El medio mínimo de cultivo empleado para la transición dimórfica era una mezcla de YNB (yeast extract/nitrogen base) con o sin aminoácidos (Difco), adicionado con 1% de glucosa, y los requerimientos correspondientes (uracilo 20mM y leucina 100 mM). Los cultivos se incubaron con agitación toda la noche. Se prepararon dos reguladores cítrico-citrato 1 M (50 mL/L), uno a pH 3 y otro a pH 6. El regulador pH 6 fue añadido cuando la fuente de carbono era glucosa.

2.2. Transición dimórfica de Yarrowia lipolytica

La transición dimórfica se realizó por el método descrito por Guevara-Olvera, *et al.* (1993). *Y. lipolytica* fue incubada durante toda la noche con agitación (250 rpm) a 28°C en medio mínimo YNB con o sin aminoácidos (Difco), más glucosa y los requerimientos necesarios. Las células fueron separadas por centrifugación, y se resuspendieron en un mismo volumen de agua destilada estéril, se incubaron a 28°C con agitación a 250 rpm durante 3 h, con la finalidad de sincronizarlas (en la fase G0). Se centrifugaron para concentrarlas y fueron lavadas con agua destilada estéril. La concentración de células fue determinada midiendo la absorbancia a 600 nm (A₆₀₀). Estas células fueron empleadas como inóculo para los experimentos de transición dimórfica. Se inoculó medio YNB con GlcNAc a pH 6 o YNB con glucosa (Glu) a pH 3, con el volumen calculado del inóculo para obtener una concentración inicial de 0.3 de Absorbancia. Las células fueron incubadas a 28°C con agitación a 250 rpm, y a las 3 h se recolectó la mayor parte del cultivo

para la extracción del RNA y el resto del cultivo se continuó incubando hasta 12 h para verificar la formación del micelio.

2.3. Crecimiento de las células de *Yarrowia lipolytica* en medios de cultivo con GlcNAc a un pH 3 o glucosa a pH 6

Se realizaron cultivos de *Y. lipolytica* en medio mínimo YNB con glucosa a pH 6, utilizando un regulador de cítrico-citrato 50 mM, con una concentración de levaduras correspondiente a una A_{600} inicial de 0.3. Un segundo experimento se realizó cambiando las condiciones en el medio de cultivo, YNB GlcNAc a pH 3, utilizando la misma concentración inicial de células.

2.4. Extracción de RNA

El RNA total de levaduras provenientes de ambas condiciones fue extraído de acuerdo al protocolo del manual RNeasy kit (Qiagen). Para verificar la integridad del RNA se realizó una electroforesis en un gel de agarosa desnaturalizante al 1%.

2.5. Síntesis, amplificación y purificación de cDNA

Se empleó 1 µg de RNA total de cada condición como molde para sintetizar el cDNA utilizando la enzima Superscript II Reverse Transcriptase (Life Technologies) y el kit de síntesis SMARTTM PCR cDNA synthesis kit (Clontech). Para purificar la población de cDNAs se emplearon columnas de CROMA-SPIN 1000TM.

2.6. Técnica de Hibridación Substractiva bajo Supresión (SSH)

Construcción de las genotecas substractivas

La SSH se realizó de acuerdo al protocolo de CLONTECH PCR-SelectTM cDNA subtraction kit (Clontech), empleando las levaduras que se colectaron a las 3 h de haberse iniciado la inducción a la miceliación (GlcNAc-pH 6). El cDNA de la condición Glu-pH 3 fue empleada como control, y el cDNA de las levaduras crecidas en GlcNAc-pH 6 se empleó como condición problema. Ambos cDNAs fueron digeridos con la enzima de restricción *Rsa*l, y al cDNA problema se le ligaron los adaptadores 1 y 2R (Diatchenko *et al.*, 1996). Para normalizar y

enriquecer los cDNAs expresados diferencialmente se realizaron dos rondas de hibridación y amplificación por PCR. Los productos del segundo PCR fueron clonados en el vector de clonación TOPO PCR 4 (Invitrogen) y los productos de ligación fueron utilizados para transformar células competentes de *Escherichia coli* TOP 10F' (Invitrogen). Las células transformadas fueron sembradas en cajas de Petri con LB/kanamicina y se incubaron toda la noche a 37°C. Las colonias transformantes fueron cultivadas individualmente en medio LB/ampicilina/kanamicina a 37°C toda la noche. Los plásmidos fueron analizados y seleccionados de acuerdo a la presencia de insertos usando la enzima de restricción *Eco*RI.

2.7. Almacenamiento de la genoteca substractiva

Las colonias recombinantes seleccionadas fueron inoculadas por separado en 3 mL de medio LB/ampicilina/kanamicina y fueron cultivadas en agitación a 37° C toda la noche. Posteriormente, 500 µL de cada cultivo fueron añadidos a un vial criogénico de 2 mL (Corning) conteniendo 50% glicerol y se almacenaron a -80°C.

2.8. Secuenciación del DNA plasmídico

Se realizó siguiendo la técnica descrita por Sanger *et al*, (1977). Como DNA molde se utilizó cada plásmido y como oligonucleótidos se emplearon el iniciador universal de M13 y el reverso.

2.9. RT-PCR

Para corroborar la expresión diferencial de algunos de los genes aislados, se extrajo RNA total de todas las condiciones experimentales, mismo que se usó para sintetizar cDNA como se describió anteriormente. La secuencia de los oligonucleótidos empleados para las amplificaciones por RT-PCR de los genes obtenidos en la SSH de *Y. lipolytica* durante la formación del micelio, se muestra en la Tabla 1. Se empleó como un control interno un gen constitutivo que codifica la primera enzima que participa en la biosíntesis de la histidina (*His1YI*) de *Y. lipolytica*. Se realizaron las amplificaciones por 20-25 ciclos de PCR con una temperatura de alineamiento dependiente de cada juego de oligonucleótidos. Los

productos de PCR fueron analizados por electroforesis en geles de agarosa al 0.8% teñidos con bromuro de etidio y documentados usando el software de Doc-it (UVP, Inc.). Los archivos fueron importados en formato TIFF, y evaluados para la expresión diferencial. Las intensidades de las señales de las amplificaciones fueron cuantificadas empleando el mismo software.

3. RESULTADOS

3.1. Identificación de genes inducidos en *Yarrowia lipolytica* durante la etapa inicial de la transición levadura-micelio *in vitro*

Para identificar los genes inducidos en la primera etapa de la transición levaduramicelio de *Yarrowia lipolytica*, se construyó una genoteca sustractiva (SSH) a las 3 h de crecimiento de la levadura en un medio inductor de la formación de micelio, que contiene GlcNAc y citrato a un pH 6, que corresponde a la condición problema y como condición control se utilizó un medio de cultivo con glucosa a un pH 3, en donde *Y. lipolytica* se desarrolla como levadura. Es importante señalar que una fracción de estos cultivos se continuó creciendo después de las 3 h, hasta llegar a las 12 h, tiempo en donde se observaron al microscopio, para verificar la formación del micelio en el medio inductor (GlcNAc-pH 6), o de levadura en la condición control (Glu-pH 3).

Posteriormente, se clonaron los fragmentos amplificados de la SSH y se descartaron insertos menores de 100 pb identificados por análisis de restricción con la endonucleasa *Eco*RI, y se seleccionaron fragmentos en un rango aproximado de 200 a 1000 pb. A continuación se secuenciaron un total de 133 clonas por el primer Universal.

El siguiente paso fue ensamblar todas las secuencias utilizando el programa SeqmanII (DNAstar Inc.) obteniendo un total de 91 agrupamientos "contigs" (Tabla 2). Estos agrupamientos se analizaron utilizando como herramienta el programa "Blast *Yarrowia lipolytica Sequences*" del NCBI (http://www.ncbi.nlm.nih.gov/ genome/seq/BlastGen/BlastGen.cgi?taxid=4952), contra el genoma de *Y. lipolytica*. Como resultado se obtuvieron un total de 77 unigenes, los cuales en algunos casos están conformados por uno o varios contigs, que a su vez están constituidos por varias secuencias y por último secuencias únicas (ver Tabla 2). Como se puede observar en la Tabla 2, las secuencias únicas y agrupadas están entre un rango de 141 pb hasta 1136 pb, y presentan una identidad mayor al 90% con respecto a la base de *Y. lipolytica* (esto puede deberse a ambigüedades generadas durante la secuenciación). De estos agrupamientos, el 68% está formado por una sola secuencia, el 12% se conforma de un solo contig, que a su vez esta formado de hasta 4 secuencias y el resto se conforma de 2 a 4 contigs. La siguiente estrategia fue obtener los marcos de lectura abiertos (ORFs) a partir del NCBI correspondiente a la base de datos de Y. lipolytica, de los 77 fragmentos de unigenes obtenidos en la SSH. Para determinar la función potencial y así poder clasificar estos ORFs, se utilizó el algoritmo BLASTX (Altschul et al., 1990) para proteínas del GenBank, revelando que las secuencias encontradas presentan una gran homología principalmente a levaduras como Saccharomyces cerevisie, Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, entre otras (Tabla 3). De acuerdo a los resultados de la búsqueda en el GenBank, los 77 unigenes fueron clasificados dentro de 7 categorías funcionales, incluyendo una donde se clasificaron las proteínas hipotéticas o de función desconocida (Fig. 1). Dentro de las clasificaciones formadas, en la categoría de biosíntesis de proteínas se encuentran genes que codifican para los factores de iniciación y elongación de la traducción (EFT-1α, EF-3, EFB1, eIF-5a), proteínas ribosomales (L17, L20, S10, S27) y una proteína de choque térmico "Heat shock" HSP10. En la categoría de producción y conversión de energía se clasificaron, la subunidad 4 de la ATP sintasa (ATP4), la ATP sintasa alfa y la subunidad VI de la citocromo-C-oxidasa (COX6). En la categoría de proteínas de unión a ácidos nucleicos, las histonas H3 y H4.2. En el grupo de proteínas del metabolismo, se identificaron una β glucanasa, una hexoquinasa, una NADH-ubiquinona oxidoreductasa de 39 kDa, una monooxigenasa (MOXY) y la delta-9-desaturasa, entre otros. También fueron identificados transcritos cuyas secuencias corresponden a proteínas hipotéticas de función desconocida en Y. lipolytica.

3.2. Análisis de la expresión de genes aislados en la SSH de *Yarrowia lipolytica* inducidos en la etapa inicial de la transición levadura-micelio *in vitro* utilizando un medio de cultivo con GlcNAc de pH6

Para confirmar la expresión diferencial de los transcritos aislados, se analizó un grupo de genes, utilizando las mismas células obtenidas para la SSH, las cuales fueron crecidas tanto en el medio inductor de la miceliación (GlcNAc-pH 6) como medio de crecimiento levaduriforme (Glu-pH 3) por 3 h, período en el cual se construyó la genoteca. De los 77 unigenes, seleccionamos al azar 19 unigenes para examinar la expresión de estos transcritos mediante experimentos de RT-PCR. Por lo menos dos experimentos independientes fueron llevados a cabo para realizar los estudios de expresión génica. Las condiciones de las reacciones de PCR fueron optimizadas para no producir una saturación en la acumulación de los productos de PCR, manteniendo una relación lineal con los niveles originales del transcrito en todas muestras.

Para todos los genes analizados, las intensidades de las señales fueron cuantificadas y los valores obtenidos fueron estandarizados con el gen *His1* (Fig. 2), utilizando un número igual de ciclos de PCR (20-25, dependiendo de cada gen; datos no mostrados). Todos los unigenes analizados mostraron un incremento en la condición problema (GlcNAc-pH 6) en comparación con la condición control (Glu-pH 3).

Los resultados revelaron que 6 de los transcritos analizados se expresan únicamente en la condición problema y corresponden a homólogos de una proteína hipotética de *S. pombe*, un componente del complejo promotor de la anafase (DOC1), una D-lactato deshidrogenasa de *C. albicans*, una hexoquinasa de *C. albicans* (CaNAG5), la subunidad 4 de la ATP sintasa (ATP4) y una proteína de choque térmico "Heat shock" de 10 k Da (HSP10) (Fig. 2). Mientras que una inducción de hasta 3 veces con respecto a la condición control se observó para: una metiltransferasa (MT), una epimerasa, una posible oxidoreductasa y una monooxigenasa (MOXY). El resto de los genes se expresan con una intensidad relativa en un rango de 0.8 y 0.3 veces mayor en la condición de GlcNAc-pH6, respecto al control.

3.3. Análisis de la expresión de los genes de *Yarrowia lipolytica* inducidos a las 3 h en medios de cultivo con GlcNAc de pH 3 o Glu de pH 6

Para evaluar la expresión de algunos de los genes aislados, en condiciones de transición, pero con los pH invertidos (GlcNAc-pH3 y Glu-pH6), se emplearon las células obtenidas en ambas condiciones durante 3 h, período en el cual se construyó la genoteca (SSH). Se analizaron 11 de los 19 unigenes para examinar la expresión de estos transcritos mediante experimentos de RT-PCR.

Para los 11 genes analizados, las intensidades de las señales fueron cuantificadas y los valores obtenidos fueron normalizados con el gen *His1* (Fig. 3), utilizando un número constante de ciclos de PCR (21-32 dependiendo de cada gen; datos no mostrados). Los genes analizados, se clasificaron en tres grupos de acuerdo al comportamiento observado en el patrón de expresión de la siguiente manera: en el Grupo I, se encuentran los genes cuya expresión aumentó a pH 6 independientemente del cambio de la fuente de carbono; en el Grupo II están los genes cuya expresión aumentó en la condición GlcNAc-pH 3, y los genes que no mostraron cambios en los patrones de expresión entre las condiciones analizadas están en el Grupo III. En el Grupo I se encuentra la citocromo-C oxidasa subunidad VI (COX6), la metiltransferasa (MT), una proteína de unión al Poli-A (IPF) y una epimerasa, los cuales muestran una notable inducción en la condición Glu-pH 6, respecto a la condición GlcNAc-pH 3 (Fig. 3). Dentro de los genes que se observan con mayor inducción en la condición GlcNAc-pH3 (Grupo II) están la diftamida metiltransferasa (DPH5), una posible oxidoreductasa, la histona 3 (H3) y la proteína "Heat shock" de 10k Da (HSP10). Por último en el Grupo III, se encuentran la β-Glucanasa, Ubiquinol-citocromo-C-reductasa VIII (QCR8) y una monooxigenasa (MOXY).

4. DISCUSIÓN

Existe una gran variedad de hongos dimórficos en la naturaleza, los cuales poseen la habilidad de cambiar en su modo de crecimiento de levadura a una forma filamentosa (micelio) en respuesta a ciertos factores ambientales.

Sin embargo, hasta ahora, son pocas las especies que han sido estudiadas para entender los mecanismos moleculares del dimorfismo en hongos (*Candida albicans*, *Paracoccidioides brasiliensis* y *Ustilago maydis*).

Yarrowia lipolytica es un hongo dimórfico, no patógeno que posee la capacidad de crecer como levadura y desarrollar micelio en medios de cultivo líquidos o sólidos en respuesta a distintos estímulos ambientales como lo son limitación de nutrientes (ayuno), choque térmico, pH del medio, la fuente de carbón y nitrógeno, entre otras (Ruiz-Herrera y Sentandreu, 2002). Cuando *Y. lipolytica* crece en medio con GlcNAc-pH 6 como fuente de carbono, se favorece el desarrollo como micelio, mientras que en presencia de glucosa a pH3, crece únicamente como levadura (Guevara-Olvera *et al.* 1993; Rodríguez y Domínguez, 1984; Ruiz-Herrera *et al.*, 2002).

Algunos estudios han demostrado que genes como HOYI, MHYI y YIBEM1, los cuales codifican para una posible proteína nuclear, un factor de transcripción tipo dedo de Zinc y una proteína similar a Bem1p de S. cerevisiae (requerida para el crecimiento diferenciación polarizado y celular) respectivamente, son indispensables para la transición dimórfica en Y. lipolytica. Esto se comprobó al mutar cada uno de estos genes y al realizar la inducción a la formación de micelio, se observó que Y. lipolytica pierde por completo la capacidad para diferenciarse a micelio (Torres-Guzmán y Domínguez, 1997; Hurtado y Rachubinski, 1999; Hurtado y Rachubinski, 2002). Lo mismo ocurre con el gen Rac1 de Y. lipolytica, el cual también fué identificado en este trabajo, y se observó que se incrementa considerablemente su expresión mientras crece en medio con GlcNAc (inducción de micelio), en comparación a levaduras crecidas en glucosa (Hurtado et al., 2000).

De manera interesante en un trabajo previo, se identificaron genes que participan durante un proceso de diferenciación celular, específicamente en la germinación de teliosporas (proceso que involucra la formación de un pro-micelio) en el hongo fitopatógeno Ustilago maydis, incluyendo factores de traducción como EF-1a, eIF-5a, EF-1-beta; proteínas "Heat shock" HSP60 y HSP70; al menos 3 ATP sintasas; la subunidad I de la citocromo-C-oxidasa; las histonas H1, H2A, H3, H4; una hexoguinasa; varias NADH-ubiguinona oxidoreductasas y la delta-12-desaturasa (Sacadura et al., 2003). En nuestro trabajo identificamos algunos de los genes reportados por Sacadura et al (2003) durante la transición levadura-micelio de Y. lipolytica. En un proceso de diferenciación, las células deben tener la capacidad de soportar ciertos procesos moleculares como la maduración de RNAm y el plegamiento correcto de proteínas, para poder adaptarse a la nueva forma de crecimiento (Maresca y Kobayashi, 1994). Esto puede explicar la identificación del RNAm de la proteína HSP10 dentro de nuestra genoteca substractiva, la cual actúa como una chaperona. Este resultado se apoya con lo reportado en Paracoccidioides brasiliensis donde se observó un incremento en la expresión de la proteína HSP70 durante la transición dimórfica (Da Silva et al., 1999). Felipe et al. (2003), caracterizaron el transcriptoma de P. Recientemente. brasiliensis, y reportan una gran cantidad de genes expresados durante el proceso de diferenciación de este hongo, dentro de los cuales se encuentra la proteína ribosomal como L24 y una monooxigenasa (Felipe et al., 2003). Se ha sugerido, que durante una transición dimórfica existe un aumento en la síntesis de partículas ribosomales, las cuales afectan la velocidad de síntesis de nuevas proteínas (Nunes et al., 2005). Por otro lado, se ha descrito que el metabolismo de células miceliales es principalmente aerobio, por lo que la expresión de genes como la hexoquinasa y la citocromo-C-oxidasa favorecen la generación de energía mediante la vía oxidativa de las pentosas y la fosforilación oxidativa (Felipe et al., 2005). En este sentido, la expresión de la ATP sintasa participa en la generación de ATP durante este metabolismo aerobio.

En el presente trabajo se identificaron y aislaron genes expresados diferencialmentes, mediante la generación de una Genoteca Substractiva (SSH) para obtener información relacionada con los cambios en la expresion génica de *Yarrowia lipolytica* durante la etapa inicial (3 h) de la transición levadura micelio. Diversos genes aislados en este trabajo han sido reportados en procesos de

- 12 -

diferenciación celular como la germinación de esporas y el dimorfismo en *U. maydis* y *P. brasiliensis,* respectivamente (Sacadura *et al.,* 2003; Felipe *et a.,* 2003; Da Silva *et al,* 1999); lo cual respalda los resultados obtenidos en esta investigación. Sin embargo, la funcionalidad de la mayoría de los genes de *Y. lipolytica* identificados en el proceso dimórfico es desconocida, por lo que la generación de mutantes por reemplazo del gen o bien sobreexpresantes y antisentido del gen podría generar información valiosa sobre la participación de estos genes en las etapas tempranas de este proceso de diferenciación celular.

Tabla 1. Secuencias de los oligonucleótidos empleados para los experimentos deRT-PCR de la genoteca SSH.

UNIGEN	Oligos	Secuencia 5'a 3' Tm		Fragmento	
			(°C)	(pb)	
2	H3-5′	CCGAACAAAGTCTACGTTATTGC	62.50	385	
	H3-3′	GAGCAAGGTGGATATCCTTC	60.10		
5	MOXY 5'	ATATTCCGCGTGCTACCTT	61.00	614	
	MOXY 5'	CCTTCGATTTGAGACCATTA	59.10		
9	ATP4-5'	GACATTACTCCAACCAGGTTGA	60.81	604	
	ATP4-3'	AGCTTCTCAATGTCCTCAACAG	60.81		
10	Hip S.pombe 5'	ATGTCGCTTCATTCCTCCACATCT	68.70	471	
	Hip S.pombe 3'	GCCACCGTTCTCGGTGATGT	69.60		
11	EF1-5′	TCGAGAAGTTCGAGAAGGAGGC	64.54	649	
	EF1- 3'	CGCCGATCTTGTAGACATCCTG	64.54		
16	COX6-5′	TACAGCGCTGCTCACGAGGA	64.50	275	
	COX6-3′	CGAACGTCCTTGAGAGCGTCA	64.52		
17	IPF-5'	AAGAACCAGATGCGACTCCA	60.40	627	
	IPF-3'	TTACTCCTCCTTCTGAGAGTTG	60.81		
19	DOC1-5'	AACTGTTCTGGCAGAGTGAC	60.40	413	
	DOC1-3'	CTATCGAATAACCTGTTCGCTGA	60.99		
21	QCR8-5′	GGAGGCAACGGACACTACAT	64.45	263	
	QCR8-3′	CCGACACGAGCTCGCCAA	64.46		
22	DPH5- 5'	ATACCGACTTGGTGATTCGA	58.35	353	
	DPH5- 3′	CACCTTCTCATCTCGAGATT	58.35		
23	Lact Dehy-5'	AGCATGATGATGCCAAGCTC	62.57	483	
	Lact Dehy-3'	CAGATAGACATTGTCCTCGTC	60.81		
27	HSP10-5'	ATGTCTTCTGCCATCAAGAACG	60.81	309	
	HSP10-3'	GTTGATCTTGGCGAGAATCTCA	60.81		
28	MET16-5'	TTCGAGTCGCGTGCGGAGTT	58.01	292	
	MET16-3'	ACGACGTGCCTTACAACTCCT	58.35		
29	EPIM 5'	GAGATGGCCAAGCGACATCTCAA	64.52	602	
	EPIM 3'	ATGTGTCGTACCTCCTTTCGCAG	64.55		
30	MT-5′	CAGACTATCAAAGTACACCCCA	58.66	696	
	MT-3'	GACTCTGAGCTGTGTCTGTA	58.01		
31	Delta9-5'	TACTGCCGGCTACCACCGAAT	64.52	432	
	Delta9-3'	CAGAATGTCACCTGCTGCACAAAG	64.57		
32	Hexoquinase-5'	AGACCAGCTCAAGAAGACCGA	62.57	585	
	Hexoquinase -3'	TTGGTCGAATGCTACTGTGAA	58.66		
33	OXRED 5'	ATACTACTTACGCTGACGTGG	60.61	626	
	OXRED 3'	ATTTCCAGCGATGTTGCCACT	60.61		
	β -Glucosa 5'	TGCCTCCGAGCAGTTTGCTCT	70.50	520	
37	β -Glucosa 3΄	GAGAGCCTGCATGATGTCATCG	69.20		

UNIGEN	No. de Contig	Tamaño	Mayor homología	Identidad	E-value ^c
	(secuencias que lo conforman)	(pb) ^a	(número de acceso) ^b	(%)	
1	2 (37, 93, 143, 150)	1136	Unknown protein (CR382132.1)	99%	0.0
2	7 (129 , 178)	540	Unnamed protein product (CR382131.1)	99%	0.0
3	13 (128)	226	Unnamed protein product (XM500326.1)	91%	1.00E-55
4	15 (189)	311	Unnamed protein product (CR382132.1)	98%	2.00E-82
5	17 (85)	290	Unnamed protein product (CR382131.1)	99%	1.00E-138
6	19 (134)	430	Unnamed protein product (CR382129.1)	99%	0.0
7	22 (170)	550	Unnamed protein product (CR382132.1)	93%	6.00E-115
8	25 (145)	704	GTP-binding protein Rac1p (rac1) gene (AF176831)	99%	7.00E-115
9	27 (104)	234	Unnamed protein product (CR382132.1)	98%	2.00E-94
10	37 (119, 164)	229	Unnamed protein product (CR382130)	98%	3.00E-99
11	43 (5, 38, 156) 68 (74, 78)	501 660	Translation elongation factor 1-alpha (TEF) mRNA (AF054510)	99%	6.00E-170
	95 (18)	238			
12	45 (75, 130)	555	Unnamed protein product (XM505197)	98%	9.00E-77
13	46 (173)	189	MIS1 C1-tetrahydrofolate synthase (<i>Saccharomyces cerevisiae</i> , XP506064)	96%	2.00E -21
14	53 (135)	195	Similar to SER3 3-phosphoglycerate dehydrogenase (Saccharomyces cerevisiae, XM505228.1)	100%	4.00E-21
15	56 (175)	389	Hypothetical proteín (XM503238.1)	99%	1.00E-130
16	59 (117)	149	Unnamed protein product (CR382131)	99%	5.00E-75
17	61 (70)	252	Unnamed protein product CR382129	98%	8.00E-151
18	41 (3)	213	Elongation factor 3 (AB018537)	93%	8.00E -33
	42 (94)	480			
	94 (13)	107			
19	101 (14)	410	Unnamed protein product (CR382131)	99%	0.0
20	73 (34)	519	EFT1 translation elongation factor Eef2	99%	0.0
	76 (163)	657	(Saccharomycse cerevisiae, XM499612)		
21	96 (39)	346	Hypothetical protein (XM_504875)	96%	1.00E-126
22	97 (90)	249	DPH5 diphthamide methyltransferase. (Saccharomyces cerevisiae, XM505522.1)	99%	2.00E -131
23	82 (65)	141	Hypothetical protein (XM501517)	98%	2.00E-68
24	83 (172)	341	UDP-glucose dehydrogenase Uxs2p (Cryptococcus neoformans, XM_502321.1)	99%	4.00E -161
25	88 (126)	252	COQ1 hexaprenyl pyrophosphate synthetase precursor 100% (Saccharomyces cerevisiae, XM501989.1)		0.0

 Tabla 2. Comparación de las secuencias de SSH con el genoma de Yarrowia

 lipolytica.

UNIGEN	No. de Contig	Tamaño	Mayor homología	Identidad	E-value ^c
	(secuencias que lo conforman)	(pb) ^a	(número de acceso) ^b	(%)	
26	89 (148)	576	ANB1 translation initiation factor eIF5A.2	99%	0.0
_0	· · · ·		(Saccharomyces cerevisiae, XM501535.1)		
27	109 (79)	295	Unnamed protein product (XM500536)	86%	9.00E-66
28	62 (87)	660	Unnamed protein product (CR382128)	99%	0.0
29	90 (101)	144	Unnamed protein product (XM503238)	99%	5.00E-72
30	34 (106)	547	Unnamed protein product (CR382129.1)	99%	0.0
31	35 (108)	269	Hypothetical protein (CR382129.1)	100%	1.00E-110
32	60 (109)	245	Unnamed protein product (CR382131.1)	100%	2.00E-119
33	69 (111)	314	Unknown function (<i>Saccharomyces cerevisiae</i> XM506067.1)	99%	2.00E-156
35	106 (10)	245	FAS1 gene for fatty acid synthesise beta subunit X59690	99%	1.00E-129
36	108 (118)	272	Unnamed protein product (CR382128)	99%	1.00E-144
37	107 (120)	174	Unnamed protein product (XM500465.1)	99%	7.00E-90
38	1 (84, 88, 92, 174)	442	Unknown protein (CR382129)	99%	0.0
39	3 (24, 100, 168)	362	Unnamed protein product (CR382128)	97%	4.00E-142
40	5 (7, 26 , 180)	920	Unnamed protein product (XM503909.1)	99%	0.0
	10 (121)				
41	6 (33 , 167)	627	Unnamed protein product (CR382132)	98%	0.0
42	103 (147)	502 285	University and the transformed (CD202121)	000/	9 00F 175
42	9 (80)	385	Unnamed protein product (CR382131)	99%	8.00E-175
43	12 (188)	308	Unnamed protein product (CR382131.1)	98%	2.00E-147
44	12 (188)	257	Unnamed protein product (CR382132.1)	95%	5.00E-//
45	14 (91)	209	Unnamed protein product (CK382129)	100%	1.00E-117
46	16 (81)	430	Hypothetical protein (XM304138)	99% 1000/	0.00
47	18(132, 144)	258	Unnamed protein product (CR382132.1)	100%	9.00E-127
48	20 (187)	450	Unnamed protein product (CR382129.1)	88%	3.00E-110
49	23 (123)	522	Unnamed protein product (CR382132.1)	100%	2.00E-125
50	24 (23)	222	Hypothetical protein $CK382131$	98%	0.0
51	28 (8, 158)	512	Hypothetical proteina (XMS02182.1)	100%	5.00E108
52	29 (58)	512	Unnamed protein product (CR382131.1)	99%	0.0
53	30 (27)	201	(DQ486711)	9/%	2.00E -84
54	32 (138)	270	Unnamed protein product (XM505665)	99%	0.0
55	36 (110)	290	Hypothetical protein (XP500328)	100%	5.00E -14
56	38 (77)	414	C12 18S ribosomal RNA gene (Fusarium equiseti, AY147368)	92%	6.00E -111
57	39 (73, 139)	856	Unnamed protein product (XM505593.1)	99%	0.0

Tabla 2. (continuación)

UNIGEN	No. de Contig	Tamaño	Mayor homología	Identidad	E-value ^c
	(secuencias que lo conforman)	(pb) ^a	(número de acceso) ^b	(%)	
58	40 (113)	854	Unnamed protein product (CR382131)	99%	0.0
59	44 (89, 181)	175	Complete mitochondrial genome (AJ307410)	99%	2.00E-165
	65 (67, 146, 190)	480			
60	48 (186)	431	Unnamed protein product (XM500817.1)	97%	0.0
61	49 (197)	462	Similar to <i>Saccharomyces cerevisiae</i> RPL9B 60S ribosomal protein L9-B (XM504535.1)	99%	8.00E -160
62	50 (155)	278	Hypothetical protein (XP504400.1)	91%	8.00E -98
63	58 (179)	466	Hypothetical proteína (XM503322.1)	99%	0.0
64	64 (196)	545	Ubiquitin fusion protein (<i>Candida albicans</i> , XM505222.1)	99%	4.00E -60
65	66 (2, 141, 154)	755	Unnamed protein product (CR382128.1)	99%	0.0
66	67 (31, 71, 166)	280	Hypothetical protein (XM505414)	99%	2.00E-134
67	71 (143)	252	Hypothetical protein (XM502642.1)	100%	1.00E -138
68	74 (83)	165	Hypothetical protein (XM505050)	98%	9.00E -80
69	75 (185)	210	Similar to RPL5A 60S large subunit ribosomal protein	96%	6.00E -23
	77 (165)	462	L8.e (Saccharomyces cerevisiae, XM505841.1)		
71	78 (177)	419	Unnamed protein product (XM506094.1)	100%	5.00E -170
72	79 (80)	265	RPS24A ribosomal protein (Saccharomyces cerevisiae, XP502456)	97%	5.00E -38
73	81 (49)	340	hypothetical protein (XM501139)	98%	1.00E-77
74	85 (6)	525	Unnamed protein product (XP503382)	82%	4.00E -68
75	86(149)	410	Yarrowia lipolytica complete mitochondrial genome (YLI307410)	99%	0.0
76	92 (29)	194	60S ribosomal protein L16-A (L13A) (RP22) (Saccharomyces cerevisiae, XM501632. 1)	96%	1.00E -64
77	93 (112)	289	RPL16A ribosomal protein L11 (Saccharomyces cerevisiae XM500914.1)	99%	2.00E -137
78	98 (61)	141	Ubiquitin fusion protein (<i>Candida albicans</i> , XM505222.1)	97%	1.00E -32
79	99 (122)	399	SSM1A ribosomal protein P2.43.f2.1 (<i>Saccharomyces cerevisiae</i> , XM_504660.1)	95%	2.00E -141
80	102 (161)	499	RPL27A 60S large subunit ribosomal protein (Saccharomyces cerevisiae, XP 500549.1)	99%	5.00E -67
81	104 (125)	229	Unnamed protein product (CR382131.1)	100%	2.00E-121
82	4 (50, 107, 160)	305	Yarrowia lipolytica autonomously replicating97%sequence 68 and centromere (M91601)		2.00E-94

Tabla 2. (continuación)

^a Fragmentos de cDNA sustraídos de Y. *lipolytica* debido a que se digirió con *Rsa*I antes de la SSH.

^b Los análisis de homología fueron realizados con el programa BLASTN del NCBI.

^c El E-value fue empleado para indicar la significancia en la homología de la secuencias.

Tabla 3. Genes identificados mediante BlastX de Yarrowia lipolytica PO1a en laSSH.

UNIGEN	Mayor homología	ORF	Identidad	E-value ^b
	(organismo, número de acceso) ^a	(pb)	(%)	
1	EFB1 translation elongation factor eEF1beta (Saccharomyces cerevisiae, XP505218.)	663	98%	8.00E -33
2	Histone H3 (Aspergillus fumigatus, XP752749.1)	421	90%	9.00E -60
3	Inorganic phosphate transporter, (<i>Saccharomyces cerevisiae</i> , BAA14358.1)	1791	63%	0.0
4	C1 tetrahydrofolate synthase, putative (<i>Aspergillus clavatus</i> , XP001270885.1)	2820	68%	0.0
5	MOXY monooxigenase (Aspergillus parasiticus, XP503819)	1983	100%	1.00E-36
6	Histone H4.2 (Coccidioides immitis, XP001245938.1)	312	96%	1.00E-36
7	ATP synthase alpha (Kluyveromyces lactis, XP454248.1)	1647	82%	0.0
8	GTP-binding protein Rac1p (Yarrowia lipolytica, AF1768311)	843	91%	8.00E -98
9	ATP synthase subunit 4, mitochondrial precursor (<i>Kluyveromyces lactis</i> , XP455015.1)	714	57%	3.00E -57
10	Hypothetical 55.8 kDa (Schizosaccharomyces pombe XP502631)	1605	100%	2.00E -21
11	TEF gene for translation elongation factor EF-1alpha (Arxula adeninivorans, AATEFGENE)	1380	86%	0.0
12	FGSC A4 nucleoside diphosphate kinase (Aspergillus nidulans, XM676393.1)	486	86%	4.00E -16
13	C1 tetrahydrofolate synthase, putative (<i>Aspergillus clavatus</i> , XP001270885.1)	2820	68%	0.0
14	Hypothetical protein g similar to and SER3 3-phosphoglycerate dehydrogenase (<i>Debaryomyces hansenii</i> , DEHA0B11198; <i>Saccharomyces cerevisiae</i> , XP_457432.1)	1398	69%	6.00E -176
15	NADH-ubiquinone oxidoreductase 39 k Da subunit, putative (<i>Aspergillus clavatus</i> , XP001268333. 1)	1149	52%	8.00E- 97
16	Cytochrome C oxidase subunit VI Cox6p (Saccharomyces cerevisiae, NP011918.1)	447	80%	2.00E-33
17	IPF (Debaryomyces hansenii, XP501289)	1890	97%	2.00E-39
18	Elongation factor 3 (EF-3) (Candida glabrata, EF3CANGA)	3063	84%	0.0
19	DOC1 component of the anaphase promoting complex (<i>Saccharomyces cerevisiae</i> , XP503653.1)	555	98%	4.00E-14
20	EFT1 translation elongation factor Eef2 (Saccharomyces cerevisiae, XP499612)	2529	99%	5.00E-88
21	QCR8 ubiquinol-cytochrome-c reductase chain VIII (Saccharomyces cerevisiae, XM504875)	282	92%	3.00E-35
22	Diphthine synthase (Diphthamide biosynthesis methyltransferase) (<i>Debaryomyces hansenii</i> , DPH5DEBHA)	999	74%	8.00E-121
23	D-lactate dehydrogenase (Candida albicans XP720128.)	1626	63%	0.0
24	UDP-glucose dehydrogenase (Cryptococcus neoformans, AAS20528.1)	1407	65%	1.00E -170

UNIGEN	Mayor homología	ORF	Identidad	E-value ^b	
	(organismo, número de acceso) ^a	(pb)	(%)		
25	Trans-hexaprenyltranstransferase(Candida albicans, XP718635.1)	1533	56%	1.00E-133	
26	eIF-5A (Candida albicans, AAD10697.1)	474	85%	7.00E -52	
27	Heat shock protein mitochondrial 10kDa (HSP10)	312	65%	8.00E -32	
	(Aspergillus terreus, XP001211558.1)				
28	MET16 Phosphoadenosine phosphosulfate reductase (EC 1.8.4.8) (PAPS	768	60%	5.00E -83	
	reductase, thioredoxin dependent) (PAdoPS reductase)				
	(3 - phosphoadenylylsulfate reductase), (Saccharomyces cerevisiae				
	,MET16YEAST)				
29	Predicted nucleoside-diphosphate-sugar epimerases (<i>Podospora</i> anserina, XP503238)	1128	100%	2.00E -18	
30	Methyltransferase MT (Streptomyces hygroscopicus, XP501850)	1890	100%	5.00E -75	
31	Delta 9-fatty acid desaturase (Debaryomyces hansenii, XP460535)	546	53%	4.00E -52	
32	CaNAG5 protein (Candida albicans, XP504178)	1395	100%	2.00E -15	
33	Unknown function (Predicted oxidoreductases (related to aryl-alcohol	993	98%	3.00E -31	
	dehydrogenases) (S. cerevisiae, XP506067)				
35	Fatty acid synthetase beta subunit (Pichia angusta, BAA92930.1)	6183	61%	0.0	
36	Eukaryotic initiation factor 4A (eIF-4A) (eIF4A) ATP-dependent RNA	1188	98%	1.00E -30	
	helicase eIF4A (Eukaryotic initiation factor 4A) (eIF-4A) (Translation				
	Initiation factor (Schizosaccaromyces pombe, XP501158)				
37	Glucan 1,3-beta-glucosidase precursor (EC 3.2.1.58) (Exo-1,3-beta-	942	100%	1.00E -25	
	glucanase) (Candida albicans, XP500465.1)				
38	Ribosomal protein L34 protein, putative (<i>Aspergillus clavatus</i>	342	88%	3.00E-10	
20	XP001272908.1)	510	0.00/	2.005.25	
39	(200 H = 1000 mm m	510	9870	2.00E -55	
40	60S ribosomal protein L7 (Aspergillus fumigatus At293, XP/465/5.1)	/2/	/4%	1.00E -97	
41	Ribosomal protein L1/(<i>Saccharomyces cerevisiae</i> , CAA25841.1)	414	85%	6.00E -63	
42	60S ribosomal protein L20 (<i>Aspergillus terreus</i> , XP001212923.1)	519	76%	5.00E -72	
43	40S ribosomal protein S27 (Neurospora crassa, XM960665. 1)	249	83%	5.00E -31	
44	Member of L31E ribosomal protein family (<i>Saccharomyces cerevisiae</i> , AAB82359 1)	342	76%	1.00E -38	
45	Unnamed protein product (<i>Candida glabrata</i> , XP448025.1)	2427	32%	200E -20	
46	60S ribosomal protein L16 (Aspergillus nidulans XP661806. 1)	609	86%	1.00E -74	
47	RPS26A 40S small subunit ribosomal protein S26e c (Saccharomyces	363	99%	5.00E-61	
7/	cerevisiae. 7XM504158)	505	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.001-01	
48	Ribosomal protein 40S S11 (<i>Neosartorya fischeri</i> , XP001260046.1)	483	79%	2.00E -68	
49	Ribosomal protein RPS31B (Saccharomyces cerevisiae, XP501417.1)	324	71%	3.00E -32	
50	Cytosolic ribosomal protein S1 (<i>Candida albicans</i> , XP721500.1)	771	74%	8.00E-101	
51	RPS3 ribosomal protein S3 (Saccharowness caravisiae, VDS0/221)	7/1	070/	2 00F 60	

Tabla 3. (continuación)

UNIGEN	Mayor homología	ORF	Identidad	E-value ^b
	(organismo, número de acceso) ^a	(pb)	(%)	
52	Hypothetical protein (Coprinopsis cinerea, EAU93115.1)	954	48%	6.00E -14
53	Ribosomal protein S17 (Kluyveromyces lactis, XP451459.1)	471	79%	6.00E -69
54	Hypothetical protein (Yarrowia lipolytica, XP500328)	267	100%	5.00E-14
55	Ribosomal protein 40S S6 (Ribosomal protein S10) (Kluyveromyces marxianus, RS6_KLUMA)	690	72%	9.00E -78
56	ribosomal protein large subunit acidic RPLA3 60S L44 (<i>Saccharomyces cerevisiae</i> , XP501173.1)	324	61%	4.00E -11
57	40S ribosomal protein S16 (Candida glabrata, RS16CANGA)	429	85%	5.00E -52
58	Ribosomal protein L6 (Ashbya gossypii, NP983806.1)	576	74%	1.00E -73
59	Hypothetical protein DEHA0F16368g (Debaryomyces hansenii, XP461016.1)	2001	54%	7.00E -26
60	Cytosolic ribosomal protein L3 (Candida albicans, XP710682.1)	1170	83%	7.00E -176
61	Putative cytosolic ribosomal protein S20 (<i>Candida albicans</i> , XP716215.1)	360	73%	7.00E -41
62	Ribosomal protein S21 (Candida albicans, CAB77635)	264	86%	6.00E -37
63	Unnamed protein product (Kluyveromyces lactis, L6XP455283. 1)	576	73%	2.00E -73
64	Unnamed protein product (Kluyveromyces lactis, XP456254.1)	1167	32%	6.00E -37
65	Hypothetical Ubiquitin fusion protein (Candida albicans, XP462243.1)	456	90%	1.00E -49
66	Hypothetical Sugar phosphate permease (<i>Magnaporthe grisea</i> , XP359850.1)	1491	56%	1.00E -143
67	RPL14A ribosomal protein (Saccharomyces cerevisiae, XP503376)	420	98%	2.00E -47
68	Predicted protein (Aspergillus terreus, XP001213622.1)	333	56%	5.00E -12
69	Hypothetical protein DEHA0B15389g (<i>Debaryomyces hansenii</i> , XP457613.1)	765	90%	2.00E -121
71	RPL37B ribosomal protein L35a.e.c15 (<i>Saccharomyces</i> cerevisiae, XP506094.1)	333	98%	5.00E -52
72	Putative cytosolic ribosomal protein S22 (<i>Candida albicans</i> , XP718852.1)	393	86%	3.00E -61
73	Ubiquitin-ribosomal protein fusion S27a (<i>Candida albicans</i> , XP715467 1)	582	90%	2.00E -49
74	Putative cytosolic ribosomal protein L1 (<i>Candida albicans</i> , XP712535.1)	654	84%	6.00E -88
76	Hypothetical protein (Coccidioides immitis, XP001244411.1)	609	88%	6.00E -76
77	CAGL0K10164g (Candida glabrata, XP503675)	657	100%	4.00E -35
78	RPL32 60S large subunit ribosomal protein L32.e (<i>Saccharomyces cerevisiae</i> ; XP504606.1)	396	100%	3.00E-69
79	40S ribosomal protein S18 (Coccidioides immitis, XP001249043.1)	468	82%	1.00E -52
80	Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl27Bp (<i>Saccharomyces cerevisiae</i> , NP011874.1)	411	70%	9.00E -49

Tabla 3. (continuación)

^aLos análisis de homología fueron realizados con el programa BLASTX del NCBI.

^b El E-value fue empleado para indicar la significancia de la secuencias.

Figura 1. Grafica de distribución de la posible función de los 77 unigenes obtenidos en la SSH. Clasificación de 77 proteínas que corresponden a los unigenes diferenciales obtenidos a las 3 h en la condición GlcNAC-pH6, asignados por categorías de acuerdo a su función, según la clasificación de biosíntesis de proteínas, unión a ácidos nucleicos, producción de energía, señalización, desarrollo celular, metabolismo y proteínas desconocidas.

Gen diferencial	Glu pH3	GlcNAc pH6	Intensidad Relativa de RNAm	Gen diferencial	Glu pH3	GlcNAc pH6	Intensidad Relativa de RNAm
Hypothetical protein		-	C-	Delta 9-fatty acid desaturase (Delta-9)			C-
Component of the anaphase promoting complex (DOC1)			C- P- 0.000.050.100.150.200.250.300.35	Poly(A)-binding protein (IPF)		-	C P. 0.0010203040506070805
D-lactate dehydrogenase		-	C- P-	Cytochrome-c oxidase subunit VI (COX6)			C
Hexokinase (CaNAG5 protein)		_	C- P- 0.00 0.25 0.50 0.75 1.00 1.25	Phosphoadenosine phosphosulfate reductase (MET16)		-	C- P- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ATP synthase subunit 4 (ATP4)			C	Histone 3 (H3)		-	C-
Heat shock protein, mitochondrial chaperonin 10kDa (HSP10)			C-	Diphthamide methyltransferase (DPH5)			C
Monooxigenase (MOXY)			C	Ubiquinol-cytochrome-c reductase chain VIII (QCR8)			C- P- 0.00 0.25 0.50 0.75 1.00
Methyltransferase (MT)			C	Elongation factor 1-alpha (EF-1-alpha)		-	C-
Predicted epimerase			C P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Glucan 1,3-beta - glucosidase precursor			C- P- 0.0 01 0.2 03 0.4 05 06 07 08
Predicted oxidoreductases			C P- e ase is a isa isa isa isa isa isa isa isa is	His1YI		-	
		8	GlcNAc-pH6	Glu-pH3			

Figura 2. Análisis por RT-PCR los genes aislados que se expresan diferencialmente en la SSH en *Yarrowia lipolytica* a las 3 h de crecimiento en medio inductor de micelio (YNB con GlcNAc de pH6, condición problema, **P**). Como condición control (**C**) se utilizó medio YNB con Glucosa de pH3. Los valores de las gráficas fueron calculados basados en la intensidad relativa de las bandas mediante el software Doc-it y normalizados con el gen *His1* de *Y. lipolytica*.

Gen diferencial	GlcNAc pH3	Glu pH6	Intensidad Relativa de RNAm
Grupo I. Genes inducidos en pH6	(Glucosa)		
Cytochrome-c oxidase subunit VI (COX6)			0.000250.500751.001251.50175
Methyltransferase (MT)			
Poly(A)-binding protein (IPF)			0.0010203040500070809
Predicted epimerase			
Grupo II. Genes inducidos en N-a	cetilglucosamina	a (pH3)	
Diphthamide methytransferase (DPH5)			
Predicted oxidoreductases			0.0 0.5 1.0 1.5
Histone 3 (H3)			
Heat shock protein, mitochondrial chaperonin 10kDa (HSP10)			0.0.0.2.3.0.0.0.0.0.0.1.2
Grupo II. Genes no ind	ucidos		L
Glucan 1,3-beta -glucosidase precursor			
Ubiquinol-cytochrome-c reductase chain VIII (QCR8)			0.00 10 20 30 40 50 40 30 10 10
Monooxigenase (MOXY)		-	
His1YI			
Gic	NAc-pH3		Glu-pH6

Figura 3. Análisis por RT-PCR de los genes aislados que se expresan diferencialmente en la SSH en *Yarrowia lipolytica* a las 3 h de crecimiento con las condiciones de pH3-GlcNAc y pH6-Glu. Los valores de las gráficas fueron calculados basados en la intensidad relativa de las bandas mediante el software Doc-it y normalizados con el gen *His1* de *Y. lipolytica*.

5. REFERENCIAS

- Altschul SF, Gish W, Miller W, Myers EW y Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215(3):403-10
- Clontech (2001) Online PCR and Cloning Technologies/BD SMART[™] cDNA Technology/ SMART[™] PCR cDNA Synthesis kit [online]. BD Biosciences Clontech Discovery Labware Immunocytometry Systems Pharmingen. Available from http://www.clontech.com/clontech/ smart/index.shtml [updated 2004; cited 30 June Nov 2005]
- Clontech (2002) Online PCR and Cloning Technologies/BD Clontech PCR-Select[™] cDNA Subtraction/PCR-Select[™] cDNA Subtraction Kit [online]. BD Biosciences Clontech Discovery Labware Immunocytometry Systems Pharmingen. Available from http://www.clontech.com/clontech/ pcrselect/index.shtml [updated 2004; cited 30 June Nov 2005]
- **Corning** (2005) Online corning home/life sciences/latin America/product catalog/ Cryogenic Vials, Plastic/Corning® 2mL External Threaded Polypropylene Cryogenic Vial, Self-Standing with Round Bottom (Item #430659) Corning Incorporated.-Available-from-http://www.corning.com
- Da Silva SP, Borges-Walmsley MI, Almeida Soares CM, Walmsley AR y Felipe
 MS (1999) Differential expression of an hsp70 gene during transition from
 mycelial to the infective yeast form of the humans pathogenic fungus
 Paracoccidioides brasiliensis. Molecular Microbiology. 31 (4); 1039-1050
- Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93(12):6025-6030

- Felipe MS, Andrade RV, Petrofeza SS, Maranhao AQ, Torres FA, Albuquerque P, Arraes FB, Arruda M, Azevedo MO, Baptista AJ, Bataus LA, Borges CL, Campos EG, Cruz MR, Daher BS, Dantas A, Ferreira MA, Ghil GV, Jesuino RS, Kyaw CM, Leitao L, Martins CR, Moraes LM, Neves EO, Nicola AM, Alves ES, Parente JA, Pereira M, Pocas-Fonseca MJ, Resende R, Ribeiro BM, Saldanha RR, Santos SC, Silva-Pereira I, Silva MA, Silveira E, Simoes IC, Soares RB, Souza DP, De-Souza MT, Andrade EV, Xavier MA, Veiga HP, Venancio EJ, Carvalho MJ, Oliveira AG, Inoue MK, Almeida NF, Walter ME, Soares CM, Brigido MM (2003) Transcriptome characterization of the dimorphic and pathogenic fungus *Paracoccidioides brasiliensis* by EST analysis. Yeast. 20(3):263-71
- Felipe MS, Andrade RV, Arreas FB, Nicola AM, Maranhão AQ, Torres F, Silva-Pereira, Poças-Fonseca, Campos E, Moraes L, Andrade P, Tavares A, Silva SS, Kyaw C, Souza DP, PbGenome Network, Pereira M, Jesuíno SA, Andrade EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF, Fachin AL, Cardoso RS, Passos G, Almeida NF, Walter E, Soraes C, Carvalho MJ y Brígido MM (2005) Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. Journal of Biological Chemistry. 280, 24706-24714
- Gaillardin C, Charoy V y Heslot H (1973) A study of copulation, sporulation and meiotic segregation in *Candida lipolytica*. Arch. Microbiol. **92**, 69-83
- **Gaillardin C y Heslot H** (1985) Genetic engineering in *Yarrowia lipoltica*, J. Basic Microbiol. 28, 161-174
- Guevara-Olvera L, Calvo-Mendez C, Ruiz Herrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 193: 485-493

- Hurtado C y Rachubinski R (1999) MHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast *Yarrowia lipolytica*. J Bacterial. 181(10):3051-7
- Hurtado C y Rachubinski R (2002) Isolation and characterization of YLBEM1, a gene required for cell polarization an differentiation in the dimorphic yeast Yarrowia lipolytica. Eukaryotic Cell. 1(4): 526-537
- Hurtado C, Beckerich JM, Gaillardin C, Rachubinski RA (2000) A rac homolog is required for induction of hyphal growth in the dimorphic yeast *Yarrowia lipolytica*. J Bacteriol. 182(9):2376-86
- Invitrogen (2005) Online product information/life science products and services/ TOPO[®] Cloning Technology/ pCR2.1-TOPO cloning vector [online]. Invitrogen. Available-from http://www.invitrogen.com
- Maresca B y GS Kobayashi (1989) Dimorphism in *Histoplasma capsulatum*: a model for the study of cell differentiation in pathogenic fungi Microbiol. Rev. 54:186–209
- Maresca B y GS Kobayashi (1994) Hps70 in parasites: as an inducible protective protein and as an antigen. Experientia. **50**:1067-1074
- Nunes LR, Costa de Oliveira R, Batista D, Schmidt da Silva V, Marques E, da Silva Ferreira E, Duarte Ribeiro, de Souza Bernardes LA, S. Goldman, Puccia R, Travassos LR, Batista WL, No´brega MP, Nóbrega F G, Yang DY, Braganc, a Pereira CA y Goldman GH (2005) Transcriptome Analysis of *Paracoccidioides brasiliensis* Cells Undergoing Mycelium-to-Yeast Transition Eukaryotic Cell. 4 (12): 2115–2128

Odds FC (1988) Candida and Candidosis. London: Bailliere Tyndall.

Ogrydiziak D, Bassel J, Contopoulou R, Mortimer RK (1978) Development of genetic techiniques and the genetic map of the yeast *Saccharomycopsis lipolytica*. Mol. Gen. Genet. **163**. 229-239

Qiagen (1999) QIAEX II Handbook. Qiagen, Germany. Protocol.

Qiagen (2001) RNeasy® Mini Handbook. Qiagen, Germany. Protocol.

Rodríguez C y Domínguez A (1984) The growth and characteristics of *Saccharomycopsis lipolytica*: morphology and induction of mycelium formation. *Canadian Journal of Microbiology* **30**, 605-612

Ruiz-Herrera J y Sentandreu R (2002) Different effectors of dimorphism in *Yarrowia lipolytica*. Arch Microbiol 178:477-483

- **Sacadura NT, Saville BJ** (2003) Gene expression and EST analyses of *Ustilago maydis* germinating teliospores. Fungal Genet Biol. 40(1):47-64
- Sanger F, Nicklen S, Coulson AR (1992) DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology. 24:104-8
- **Soll D R** (1985) *Candida albicans*. In fungal Dimorphism: With Emphasis on Fungi Pathogenic to Humans. Edited by P. J. Szanislo. New York: Plenum 167-195
- **Szanizslo PJ** (1985) Fungal dimorphism with emphasis on fungi pathogenic for humans. Plenum, New York

Torres-Guzmán y Domínguez A (1997) *HOYI*, a homeo gene required for hyphal formation in *Yarrowia lipolytica*. Mol Cell Biol. 17(11): 6283-6293.

Vanden Bosshche A, Odds FC, Kerriedge D (1993) Dimorphic fungi in biology and medicine. Plenum, New York