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Abstract

The renal vascular development occurs through vasculogenesis and/or angiogenesis.
Particularly, there are two types of vascular angiogenesis: sprouting and splitting.
We show the graphs can generate binary tree structures by incorporating the phys-
iological laws of the arterial branching of kidney. The graph prescribes a topology
where each edge has the dynamics of the physiological phenomena of vascularization.
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As introduction to our problem, we have to say the kidney is a highly vascu-
larized organ [1–4] and consists of three vascular trees: arterial, venous, and
ureter [5]. Vasculogenesis and angiogenesis are responsible of the formation of
the renal vessels [2]. Angiogenesis is defined as the formation of new blood
vessels from pre-existing vessels. Vascular endothelial growth factor (VEGF)
plays an important role in renal vascularization [2]. Here, we are interested in
arterial vascular tree of the kidney (AVTK), which develops by angiogenesis;
i.e., sprouting and splitting. In sprouting, endothelial cells activate branch
out from a existing vessel to produce new vessels while in splitting new vessels
are generated by dividing an existing blood vessel [6]. The AVTK is modeled
using graph theory by including physiological information at edges. We also
incorporate dynamics for development in renal arterial tree on the graph into
edges.

The following definitions are required for completeness:
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Definition 1 GR is an ordered triple (V (GR), E(GR), ψGR
) that consist of a

nonempty set V (GR) of vertices, a set E(GR) of edges which is disjoint from

V (GR), and an incidence function ψGR
: E(GR) → K

V (GR)
≤2 , where K

V (GR)
≤2

is the set of vertices ≤ 2, for each edge is met either of the following two
conditions:

(1) ψGR
associates each edge to a subset of V (GR) of size two; that is, ψGR

(e) =
{u, v}.

(2) ψGR
associates to each edge, a subset of an element of V (GR); that is,

ψGR
(e) = {u}.

Remark. (I) Let GR be a tree, i.e., a connected acyclic graph. GR has vertices
with oriented edges in such form that of each vertex leave two edges and arrive
an edge (the orientation symbolizes blood circulation flow in arteries). Thus,
given any edges on a bifurcation in Fig. 1 (a), these are related as follows:

i = (m−1)
2

if subscript m is odd or i = (m−2)
2

if subscript m is even. (II)
The tree GR has labeled edges, that is, each edge represents a blood vessel
and its labeled ei(j−1)(s, Cgf , l, d, θ) (i, j ∈ N), i.e., a label in a tree GR is a
function f : Rπ

+ ∪ {0} → E(GR), given by π 7→ e, π ∈ Rp
+ where p is a set

of parameters. The edge has the physiological information: the parameter s
has the dynamics (depends the process used in the development of the vessel,
sprouting or splitting angiogenesis), concentration of VEGF (Cgf), length (l),
diameter (d) and angle (θ), see Fig. 1 (b). We define mathematically the
processes of sprouting and splitting angiogenesis.

Fig. 1. (a) In GR the subscript i indicate in order to know that edge generates what
edge. GR has depth j, each j is a segment of the tree. The subscript t (t ∈ N) indicate
the position of the vertex in GR. (b) Representation of an arterial bifurcation in GR

with labeled and oriented edges

Definition 2 Let ab denote a sprouting angiogenesis. s = ab generates a new
blood vessel in the edge ei(j−1), which is formed by k (k ∈ N) endothelial cells
(see Fig. 2 (1)).
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Definition 3 Let ap denote a splitting angiogenesis. s = ap generates two
new blood vessels in the edge ei(j−1) (see Fig. 2 (2)).

Fig. 2. (1) Sprouting: (i) If the new vessel in ei(j−1) is e(m−1)j , formed by ab, then
dm−1 < dm, θm−1 > θm, and dm = di or, equivalently, (ii) if the new vessel in
ei(j−1) is emj , formed by ab, then dm < dm−1, θm > θm−1, and dm−1 = di [7,6]. (2)
Splitting: The vessel ei(j−1) bifurcates in e(m−1)j and emj . Diameters of new vessels

are dm−1 = dm = di

2 and θm−1 + θm = 75◦ [7,6].

We have for each Ne = ei(j−1) ∈ E(GR) a local map fe : SNe → S where
S = {ab, ap}.

fe(ei(j−1)) =











ab if ∃ ec

ap if @ ec

where ec is the migration of endothelial cells. fe generates each bifurcation in
the tree (see Fig. 1 (a)). Here we only consider ei(j−1), because we do not have
experimental data of how it is the dependency with respect to its neighbors
of the blood vessels.

We have three possible structures in the bifurcation when the pre-existing edge
is ab or ap. All bifurcations have the same probability of 1

3
. As a matter of

fact, if ei(j−1) is ab, ⇒ can be generated the bifurcations = abab, abab, or apap,
or if ei(j−1) is ap, ⇒ can be generated the bifurcations = abap, apab, or apap.

Now our results are discussed in context of the development of vascular tree
in the kidney by incorporating physiological information. The parameter s is
defined in fe and (Cgf , l, d, θ) belongs to a experimental range as follows:

(1) Cgf ∈ [Cgf , Cgf ]ng/mL where Cgf ∈ R+ ∪ {0}.

(2) l : [Cgf , Cgf ] → [l, l] where l ∈ R+. Function l assigns the value segment
j in which it is as follows (see Fig. 1): j ∈ [1, 2] l ∈ [0.793, 10.306]mm,
j ∈ [3, 4], l ∈ [0.357, 4.569]mm and j ∈ [5, 9], l ∈ [0.014, 1.217]mm.

(3) d : [Cgf , Cgf ] → [d, d] where d ∈ R+. d also depends of dx
i = dx

m−1+d
x
m, the

relationship is known as a Murray’s law [7]. d satisfies the requirements
laid down in Fig. 2.

(4) θ of the vessel formed by ab is larger than θ of the other vessel, and the
sum of these angles ∈ [60◦, 80◦]. When the new vessels are formed by ap,
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we have that θm−1 + θm = 75◦.

We have that Cgf is directly related with length and diameter of the new
vessels, but we do not have enough information to make an approximation in
order to define functions of l and d based on Cgf . Moreover, by definition of
sprouting and splitting angiogenesis, we have that these processes are different
and the most important different is that ab has migration of endothelial cells
whereas ap does not have [6].

Axiom 1 ab 6= ap.

Remark. According to experimental data, the AVTK is structured as follows:
renal artery, segment 0; interlobar arteries, segments 1-2; arcuate arteries,
segments 3-4; interlobular arteries, segments 5-9. Hence, we have that the
depth of GR is j = 9. We have that ab generates only one new vessel while ap

generates two vessels, we can associate on each branching point one vertex vt,
only two vessel are found after each vertex (see Fig. 1).

Theorem 1 If the AVTK is developed through ab and ap, each segment has
an even number of blood vessels (bv).

Proof AVTK development obeys the following steps indistinctly if ab or ap

occur on each vertex: For the segment j = 0, the renal artery is the unique
vessel on the vasculature. For j = 1 ∃ 2 bv. For j = 2 ∃ 4 bv, that is, we have
2 · 2 = 22. Then, inductively, we have that for j = n, n ∈ N, ∃ 2n bv. Hence,
for the n-th segment, 2 ·2n−1 = 2n bv. Therefore, if the AVTK GR is developed
by means of ab and ap, each segment 0 < j ≤ 9 has an even number of bv. 2

Corollary 1 ∀v ∈ V (GR) has degree 3.

Remark. For j = 0 in the GR, there exists the initial configuration c0 = {e00},
which is the renal artery. For j = n ∃ the configuration cn, on which we have
exactly 2n labeled edges by fe. Thus, cn+1 = {fe(cn(e1n), cn(e2n), ..., cn(e2nn))}.
All configuration cj has 2j edges with 2j = r + k (r, k ∈ N), where r and k is
the number of labeled edges by ab and ap, respectively. For each cj ∃ (3r)(3k)
possible configurations for generate the next configuration cj+1.

Proposition 1 If in the configuration cj ∃ labeled edges with ab and ap, it is
possible generate the configuration cj+1 with all labeled edges by ap.

Proof ∃ labeled edges with ab and ap in cn. Then, we have that the bifur-
cation of ab can have labeled edges by ap and the bifurcation of ap can have
labeled edges by ap (see Figure 2). Consequently it is possible generate the
configuration cj+1 will all labeled edges ap. 2

Remark. As we have all labeled edges by ab or ap, then no it is impossible to
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generate the next configuration cj+1 with all labeled edges by ab, due to the
presence of ap in cj.

Proposition 2 If all edges are ab in the configuration cn, the configuration
cj+1 is generated with all labeled edges by ab or ap.

Proof The bifurcation of ab can have labeled edges by ab or ap, and the
bifurcation of ap can have labeled edges by ab or ap as well. Then, it is possible
generate the configuration cn+1 will all labeled edges by ab or ap. 2

The degree of diametral asymmetry on a bifurcation is expressed by the index:
α = dm−1

dm
, where 0 < α ≤ 1 and diameters dm−1 and dm are related to

discussion on the Figure 1. As α = 1, i.e., dm−1 = dm and, oppositely, dm−1 <
dm as α < 1.

Theorem 2 If there exist ab and ap in the developed of AVTK, tree is assym-
metric.

Proof Suposse ∃ ab and ap in GR. If a new vessel is formed by ab, dm−1 < dm

which implies α < 1. If the two new vessels are formed by ap, dm−1 = dm

which implies α = 1. Hence, α is not constant in developing the AVTK. 2

Example 1 Our algorithm was programmed at Mathematica to generate an
AVTK. Items (1) to (4) were included in program with the following parame-
ters: s = 0.5, Cgf ∈ [0, 35] ng/mL. Function l is fitted from experimental data
[8] to have l = 0.00878C3

gf − 0.513C2
gf + 8.521Cgf + 81.12. Figure 3 shows the

AVTK, which agrees with experimental studies [9] and other models (see Table
5 in [1]). For this example we have: average walk 12.7898 ± 0.725 mm.

Fig. 3. (a) AVTK in GR where ab and ap have 50% of probability in the development.
(b) Histogram with wide of kidney for all walks in GR, i.e., the length of the root
until the leaves.
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As a summary, we show a function fe in GR for AVTK. The physiological
parameters Cgf , l, d and θ were found within the ranks studies experimentally.
We also show there exists six possible bifurcations from sprouting and splitting
in the AVTK. The AVTK has a depth until the interlobular arteries, i.e., the
depth of GR is 0 < j ≤ 9 and each segment has an even number of blood
vessels ∀v ∈ V (GR) degGR

(v) = 3. For each configuration cj ∃ 2j = (3r)(3k)
possible configurations for generate the next configuration cj+1. If all edges are
ab in cj, it is possible generate the configuration cj+1 with all edges labeled
by ab or ap, whereas if all edges are ab and ap in cj, it is possible generate the
configuration cj+1 with all labeled edges by ap. We conclude that the tree GR

is assymmetric when the AVTK develops by ab and ap, which is consistent
with experimental data.
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