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Abstract

Performance of four controllers is experimentally compared and evaluated in
context of chaos suppression. Four output-feedback controllers are used in experi-
ments for comparison. First three schemes utilize an adaptive observer to estimate
the states and parameter required for feeding back and with different techniques,
which are: (i) feedback linearization, (ii) backstepping, and (iii) sliding mode. The
fourth scheme is a (low-parameterized) robust adaptive feedback. A simple class
of dynamical systems that exhibit chaotic behavior, called P-class, is considered
as benchmark due to involves distinct chaotic systems. The need of comparison
is motivated to ask: What is the suitable adaptive scheme to suppress chaos in

an specific implementation? Results show a trend on different applications, are
illustrated experimentally by means circuits, and are discussed in terms of control
effort. This comparative study is important to select a feedback scheme in specific
implementations; for example, synchronization of complex networks.
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1 Introduction

Chaos control comprises both problems suppression and synchronization of chaotic sys-

tems and can be potentially exploited to deal with current engineering problems like,

among others, chaos suppression on dc-dc converters; use of multimode laser in surgery of

carbon nanotubes; regulation of fluid dynamics; design of systems for secure communica-

tions via internet; and some problems in biomedical sciences as arrhythmias or epilepsy.

Particularly, chaos suppression problem has been a studied topic to address these prob-

lems (see [1, 2, 3, 4]). Complementarily, synchronization problem has been exploited to

deal with secure communication, synchrony on multimode lasers, biological systems and,

more recently, complex networks (see [5, 6]). Since a wide variety of applications, diverse

schemes have been proposed to understand mechanisms of the chaos control [2] or to

design control devices [4, 7].

Major concern in the study on chaos control is about the possibility of driving a desired

chaotic behavior along time (i.e., to induce a desired behavior on dynamical systems via

feedback interconnection). For instance, several control schemes have been widely studied

in last two decades to induce synchronous behavior (see [4, 6, 8]). As matter of fact, a

practical implementation is often limited by the information available for feeding back.

Then, a practitioner has only partial information available to control; i.e., only measured

states or nominal parameters values. This fact has served as motivation to exploit diverse

adaptive control techniques like, among others, feedback output linearization, backstep-

ping, sliding-mode, and observer-based. These approaches allow diverse schemes that lead

us to the following problem: to select a specific suppression scheme in searching a desired

control performance. This problem is a challenge if we consider the trade off among sim-

plicity in implementation, control effort and convergence rate. This particular problem

takes major relevance in light of recent results; for example, on stabilization of complex

networks [6]. Moreover, due to chaotic dynamic is highly sensitive to initial conditions and

parameter values, chaos control has been oriented on robust feedback approaches [4, 5].

Most of above schemes are robust in face to model uncertainties and to ensure conver-

gence and stability. Thus, selection of a specific technique can depend on: performance

of control, structural simplicity, and closed-loop stability, etcetera.
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The purpose of this paper is to study performance in suppressing chaos by stabilization

via feedback control. In order to reach this purpose, a class of chaotic systems is considered

as benchmark to evaluate the controllers performance. The considered class includes the

most important chaotic systems in the form ẋ = f(x)+g(x)u with x ∈ R
3 and vector fields

f, g : D → R
3 have, at least, first derivative, where D ⊆ R

3 stands for the system domain.

Particularly, the paper is focussed on chaotic systems with vector fields f, g that can be

transformed to the jerky form. The performance study is done as a comparison of four

controllers and is carried out experimentally in electronic circuits for best performance of

each compared controller. That is, control parameters were tuned such that each controller

had the least effort and induced the fastest convergence. The discussion is presented in

terms of the quantitative performance measured by three performance indexes.

Paper is organized as follows. A class of chaotic systems is presented in Section 2.

Section 3 describes three controllers for chaos suppression: state feedback linearization,

backstepping techniques, sliding-mode. These three controllers are based on an adaptive

observer designed to estimate unmeasurable state and unknown parameters. Although

these schemes were reported in [4, 5, 13], in seek of completeness, closed-loop stability

analysis is included. Section 4 shows the fourth scheme, which is a low-order parametrized

controller. In this contribution, the main point is performance comparison for the four

controllers under noise and parametric uncertainties. Such controllers are designed in

Section 5 for the P-class presented in Section 2. The performance comparison is carried

out experimentally on the realization of chaotic system in an electronic circuit. Finally,

Concluding remarks are given in Section 6.

2 Chaotic Systems of P-Class

A class of systems is introduced in this section. This class contains dissipative chaotic

terms and can be transformed into the equation
...
x= JP (x, ẋ, ẍ), which is defined by

a polynomial jerk function (for details see [9]). Furthermore, jerk equation may exhibit

chaotic behavior for a set of parameter values. Jerk equation represents different nature or

man-made systems and is a sub-class of Lur’e systems when bursting in velocity is involved

(see [10] and references therein). Without control, jerk equation has the homogeneous
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form
...
x +αẍ+ x− φQ(x, ẋ) = 0 (1)

where φQ(x, ẋ) includes quadratic terms in state and its derivatives; e.g., φQ(x, ẋ) = ẋ2

or φQ(x, ẋ) = xẋ.

In what follows, by defining a coordinates change as x1 = x, x2 = ẋ, and x3 = ẍ, the

equation (1) represents the state space form: ẋ1 = x2, ẋ2 = x3, ẋ3 = −x1 − αx3 +

φQ(x1, x2). Thus, equation (1) constitutes a family of systems with five monomials on its

right-hand side, four coefficients can be ±1 by re-scaling state variables and time, and a

unique parameter related to damping α > 0. Then, among many others, the following

collection of dynamical systems is included in this family [9]:

Σ1 :



















ẋ1 = x2

ẋ2 = x3

ẋ3 = −αx3 − x1 + x2
2

Σ2 :



















ẋ1 = x2

ẋ2 = x3

ẋ3 = −αx3 − x1 + x1x2

Σ3 :



















ẋ1 = x2 + 1

ẋ2 = −αx2 + x3

ẋ3 = x1x2

Σ4 :



















ẋ1 = x3

ẋ2 = x1 + 1

ẋ3 = −αx3 + x1x2

(2)

Σ5 :



















ẋ1 = x2

ẋ2 = −αx2 + x3

ẋ3 = −x1 + x2
2

Σ6 :



















ẋ1 = x2

ẋ2 = −αx2 + x3

ẋ3 = −x1 + x1x2

All systems in collection (2) is grouped in a class by using Ck-equivalence of vector fields

[9, 11].

Noted that the P-class can be found for a large variety of systems (see Appendix).

As matter of fact, for example, there exists conditions such that the Rössler, Lorenz, and

Chen systems can be written as the form (2). Additionally, dynamical properties can be

studied through transformations of systems; as, for example, its stability can be analyzed

via preservation [12].

3 Observer adaptive control schemes

Among diverse techniques used to control, we can mention state feedback linearization,

backstepping and sliding-mode methods (see details in [13]). However, physical imple-
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mentation can be limited because of only partial or imprecise information is available from

measurement of state and parameter values. Hence, in order to overcome this difficulty,

estimation of state and identification of parameter values is needed. An alternative is use

of adaptive observer-based schemes. An adaptive observer can be interpreted as a virtual

(software) sensor for simultaneous estimation and identification. In this section, three dif-

ferent control techniques are shown which are based on an unique adaptive observer. In

seek of completeness and simplicity in presentation, convergence and closed-loop stability

proofs are sketched. More details can be found the original contributions [15, 16].

3.1 The control approaches

State Feedback Linearization: This technique exploits differential geometry tools

and has been one of the most popular in control practice since 80’s. Then, firstly P-class

chaotic systems is written in the following control affine form:






ẇ = fl(w;α) + gl(w;α)uL

yc = hl(w)
(3)

where w ∈ R
3, uL ∈ R, yc ∈ R are state vector, control input and output, respectively.

Functions fl and gl are smooth vector fields. For a given continuous function hl : R
3 → R,

Lie derivative is given by Lfl
hl(w) = ∂hl

∂w
fl(w;α). Then, state feedback control

uL(w;α) =
(−Lp

fl
hl(w) + vL)

Lgl
L

p−1
fl

hl(w)
(4)

induces a linear behavior, where vL = (−k1yc − k2y
(1)
c − ...− kpy

(p−1)
c ). The constants ki

(i = {1, 2, ..., p}) are such that sp + kps
p−1 + ...+ k2s+ k1 is a Hurwitz polynomial.

Backstepping Control : This technique is based on solving a sequence of first-order

systems succeeding is backward configuration. The method starts by writing the P-class

system at the form:

˙̟ = f̟(̟;α) + g̟(̟;α)ς (5)

ς̇ = fς(̟, ς;α) + gς(̟, ς;α)uB (6)

where (̟, ς) ∈ R
2 × R is state vector and uB ∈ R stands for control. Functions f̟ : D →

R
2 and g̟ : D → R

2 are smooth in D ⊂ R
2 that contains ̟ = 0 and f̟(0;α) = 0.
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System (5)-(6) is a cascade connection of two components. First component (5) with ς

as the virtual control. Second component is the integrator (6). Assuming that (5) can

be stabilized by a smooth state feedback control ς = φB(̟), with φB(0) = 0, the origin

of ˙̟ = f̟(̟;α) + g̟(̟;α)φB(̟) is asymptotically stable [13]. Thus, by means of the

change of variables zB = ς − φB(̟), it follows that system






˙̟ = [f̟(̟;α) + g̟(̟;α)φB(̟)] + g̟(̟;α)zB

żB = uB − φ̇B

(7)

can be derived. Hence, by computing φ̇B, and using the Lyapunov function VB(̟), the

state feedback control law can be derived

uB(̟, ς;α) =
∂φB

∂̟
[f̟(̟;α) + g̟(̟;α)ς] −

∂VB

∂̟
g̟(̟;α) − k[ς − φB(̟)] (8)

where k is a positive real constant.

Sliding-mode Control : This technique has been used due to its robustness proper-

ties. An important feature is that control leads system trajectories at finite time towards a

manifold and holds them on it. The manifold is constructed in terms of desired reference.

Then, once the trajectories reach the sliding manifold, they tend to desired reference.

P-class is written in the form to design controller

η̇ = fη(η, ξ;α) + δη(η, ξ;α) (9)

ξ̇ = fξ(η, ξ;α) +Gξ(η, ξ;α)[uS + δξ(η, ξ, uS;α)] (10)

where η ∈ R
2, ξ ∈ R, uS ∈ R and δη and δξ denote uncertainties. Let us consider the

subsystem (9), where ξ is interpreted as a secondary control. By defining ξ = φS(η),

where φS(η) is a smooth function satisfying φS(0) = 0, the origin of (9) is asymptotically

stable. Now, let us take zS = ξ−φS(η). Control u entering into (10) leads zS(t) to zero, in

finite time, holding it along time. Note dynamics of zS is żS = fξ(η, ξ;α)+Gξ(η, ξ;α)[uS+

δξ(η, ξ, u;α)]− ∂φS

∂η
[fη(η, ξ;α) + δη(η, ξ;α)]. Hence, the controller becomes

uS(η, ξ;α) = ueq(η, ξ;α) +G−1
ξ (η, ξ;α)v(η, ξ) (11)

where ueq(η, ξ;α) = G−1
ξ (η, ξ;α)[−fξ(η, ξ;α) + ∂φ

∂η
fη(η, ξ;α)] is chosen to cancel terms in

Gξ(η, ξ;α). v(η, ξ) is determined by substituting uS(·) into żS-equation to have

żS = v(η, ξ) + ∆(η, ξ, v;α) (12)
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Assuming ∆ satisfies ‖∆(η, ξ, v;α)‖∞ ≤ ρS(η, ξ;α) + k‖v‖∞, where ρS(η, ξ;α) ≥ 0 and

k ∈ [0, 1) are known. Then, v(η, ξ) is designed such that zS(t) is forced towards the

manifold zS = 0. In particular, v(η, ξ) is chosen to be v(η, ξ) = −β(η,ξ)
1−k

sgn(zS), where

β(η, ξ) ≥ ρS(η, ξ;α) + bo for any constant bo > 0, and sgn(·) is the signum function.

Closed-loop stability of (12) can be ensured by taking the following Lyapunov function

VS = 1
2
z2

S. As chattering is exhibited, as higher order sliding-mode can be designed to

improve robustness and to diminish chattering.

3.2 Adaptive Observer

P-class system has only one unknown parameter and a single output ym ∈ R available for

feedback. Under its features, this P-class can be represented as a state affine system with

unknown parameters as in [14, 15]:







ż = A(u, ym)z + ϕ(u, ym) + Φ(u, ym)θ

ym = Cz
(13)

where entries of A(u, ym), ϕ(u, ym) and Φ(u, ym) are continuous functions depending on

u and ym uniformly bounded and θ is a vector of unknown parameters. The following

assumptions are introduced [16]:

Assumption 1 There exists a bounded time-varying matrix K(t) such that the following
system Λ̇(t) = (A(t) −K(t)C(t))Λ(t) is exponentially stable.

Assumption 2 The solution Λ(t) of Λ̇(t) = [A(t) −K(t)C(t)]Λ(t) + Φ(t) is persistently
exciting in the sense that exist α1, β1, T1 such that

α1I ≤

∫ t+T1

t

Λ(τ)TCT ΣC(τ)Λ(τ)dτ ≤ β1I (14)

for some bounded positive definite matrix Σ.

Assumption 3 Control u is persistently exciting in the sense that there exist α2, β2,
T2 > 0 and t0 ≥ 0 such that:

α2I ≤

∫ t+T2

t

Ψu(τ, t)
TCT ΣC(τ)Ψu(τ, t)dτ ≤ β2I (15)

∀t ≥ t0, where Ψu denotes the transition matrix for the system ż = A(u, ym)z, ym = Cz,
and Σ some positive definite bounded matrix.
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From (15) and (14) with K = S−1CT and S as solution of Ṡ = −ρS − A(u, ym)TS −

SA(u, ym) + CT ΣC, adaptive observer is given by










































˙̂z = A(u, ym)ẑ + ϕ(u, ym) + Φ(u, ym)θ̂ + {ΛS−1
θ ΛTCT + S−1

z CT}Σ(ym − Cẑ)

˙̂
θ = S−1

θ ΛTCT Σ(ym − Cẑ)

Λ̇ = {A(u, ym) − S−1
z CTC}Λ + Φ(u, ym)

Ṡz = −ρzSz − A(u, ym)TSz − SzA(u, ym) + CT ΣC

Ṡθ = −ρθSθ + ΛTCT ΣCΛ

(16)

where Sz(0) > 0 and Sθ(0) > 0, and ρz and ρθ are positive constants sufficiently large and

Σ some bounded positive definite matrix. Moreover, it is remarkable that if Assumptions

2 and 3 are verified, they ensures that the matrices Sz and Sθ are invertible and symmetric

positive definite. Now, we can establish the following result.

Lemma 1 Let us consider system (13). Suppose 1, 2 and 3 hold. Then, system (16)
is an adaptive observer for system (13). That is, estimation error vector (ez := ẑ − z,
ǫθ := θ̂ − θ) converges exponentially to zero with a rate given by ρ = min(ρz, ρθ).

Sketch of the Proof. Let ez := ẑ − z and ǫθ := θ̂ − θ be the convergence errors for

states and parameter, respectively. Defining ǫz = ez − Λǫθ, it follows that

ǫ̇z = {A(u, ym) − ΛS−1
θ ΛTCT ΣC − S−1

z CT ΣC}ez + Φ(u, ym)ǫθ − Λ̇ǫθ − Λǫ̇θ

Replacing suitable expressions in above equation, we get:






ǫ̇z = {A(u, ym) − S−1
x CT ΣC}ǫz

ǫ̇θ = −S−1
θ ΛTCT ΣC(ǫz + Λǫθ)

We consider V (ǫz , ǫθ) = ǫTz Szǫz + ǫTθ Sθǫθ as a Lyapunov function to prove ob-

server convergence. Then, taking V̇ and replacing appropriated expressions, we

obtain V̇ (ǫz, ǫθ) ≤ −ρzǫ
T
z Szǫz − ρθǫ

T
θ Sθǫθ. Taking ρ = min(ρz, ρθ), we have

V̇ (ǫz, ǫθ) ≤ −ρV (ǫz, ǫθ). Finally, ǫz and ǫθ converge to zero exponentially with a

rate given by ρ. This ends the proof.

Note that the chaotic system (1) can be represented in the following general form

ẋ = f(x;α), ym = Cx (19)

8



where x is state vector, ym is measured output and constant α is a real parameter whose

exact value in unknown. By means of a change of coordinates (z = T (x)), (19) can

be transformed into a state-affine system (13), for which is possible to design adaptive

observer (16).

3.3 Closed-loop stability

Now, closed-loop system is analyzed with the three first controllers (4), (8), and (11)

based on adaptive observer (16). From system (13), we have that by extending the state

vector by parameters vector θ, into Z := (z θ)T , state affine structure is preserved as

follows:






Ż = F (ϑ)Z +G(ϑ)

ym = HZ
(20)

where ϑ := (u ym), H = (C 0), F (ϑ) =





A(ϑ) Φ(ϑ)

0 0



, and G(ϑ) =





ϕ(ϑ)

0



.

Thus, extended system is given by


















Ż = F (ϑ(Ẑ))Z +G(ϑ(Ẑ))

˙̂
Z = F (ϑ(Ẑ))Ẑ +G(ϑ(Ẑ)) + S−1HT (ym −HẐ)

Ṡ = −ρS − F T (ϑ(Ẑ))S − SF (ϑ(Ẑ)) +HTH

(21)

where S =





S1 S2

ST
2 S3



, and Sz, Sθ, Λ of (16) are related to solution S through:



















Sz = S1

Sθ = S3 − ST
2 S

−1
1 S2

Λ = −S−1
1 S2

(22)

Let us define e := Ẑ − Z be the estimation error. Then, the dynamics of resulting

observer-based controller can be rewritten as:


















ė = {F (ϑ(Ẑ)) − S−1HTH}e

Ż = F (ϑ(Ẑ))Z +G(ϑ(Ẑ))

Ṡ = −θS − F T (ϑ(Ẑ))S − SF (ϑ(Ẑ)) +HTH

(23)

where u(Ẑ) is the controller given by (4), (8), or (11) for each case. Next lemma is stated

to prove closed-loop stability:
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Lemma 2 [16] Assume that ϑ is regularly persistent for (20) and let be

Ṡ(t) = −θS(t) − F T (ϑ(Ẑ))S(t) − S(t)F (ϑ(Ẑ)) +HTH

a Lyapunov differential equation, with S(0) > 0. Then, ∃ θ0 > 0 such that for any
symmetric positive definite matrix S(0); ∀θ ≥ θ0

∃ ᾱ > 0, β̄ > 0, t0 > 0 : ∀t > t0

ᾱI ≤ S(t) ≤ β̄I

Then, the following result can be established:

Theorem 1 Under assumptions that nominal controller is globally asymptotically stable
and that state Z in (21) remains for all t > t0 > 0 in a compact set Ω (containing
equilibrium point of nominal controller) ∀ Z(0) ∈ Ω, extended system (21) is globally
asymptotically stable on Ω × R

n × S+
n (i.e., ∀ Z(0) ∈ Ω, ∀ Ẑ(0) ∈ R

n; ∀ S(0) > 0).

Proof. Since observer (16) is such that estimation error goes to zero, it is bounded

and matrix S is solution of the Lyapunov differential equation in (21), is bounded from

above and from below in set of positive definite matrices, see Lemma 2. Hence, whole

state e = (Ẑ − Z, Ẑ, S) of (21) remains in a compact set along any trajectory.

Let Λ = {(e(t), Ẑ(t), S(t)), t ≥ 0} be a semitrajectory of observer-based controller

given by (21). This semitrajectory, lying in a compact set, has a nonempty ω-limit

set (i.e., ω-limit set of a trajectory is set of its accumulation points). Let [ē, Z̄, S̄] be

an element of ω-limit set of Λ. It is clear that when e→ 0 implies that ē = 0. Let

{(0, Ẑ(t), S(t)), t ≥ 0} be a semitrajectory starting at time t = 0 from [0, Z̄, S̄]. Since the

ω-limit set is positively invariant, it follows that the semitrajectory {(0, Ẑ(t), S(t)), t ≥ 0}

belongs to ω-limit set of Λ. The estimation error is here equal to zero for this semitrajec-

tory, and using our closed-loop stability assumption, Ẑ is globally asymptotically stable,

i.e., Ẑ(t) → Z∗ = ψ(Z∗). So, there are points at which e = 0 and Ẑ = Z∗ in ω-limit set

of Λ, since it is a closed set. Letting [0, Z∗, S̄(t)] be an element of ω-limit set of Λ and

following same reasoning: let {(0, Z∗, S(t)), t ≥ 0} be a semitrajectory starting at t = 0

from [0, Z∗, S̄]. This semitrajectory belongs to ω-limit set of Λ. The dynamics of S(t)

are given by Lyapunov differential equation and using the observability of constant linear

system (F ∗ +G∗, H), that S(t) tends to S∗, unique positive definite solution of Lyapunov

algebraic equation. So, [0, Z∗, S∗] belongs to ω-limit set of Λ. It follows that, under the

assumption of (local) asymptotic stability of (21), Λ enters in a finite time into the basin

of attraction of [0, Z∗, S∗]. Hence (21) is globally asymptotically stable on Ω × R
n × S+

n .
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4 Robust Control with Low-order Parametrization

Above controllers are compared with other adaptive scheme previously reported [5]. This

last adaptive scheme compensates uncertainties in parameters and unmeasured states

with a low order equation. Let us re-write P-class system in the form (1) in the canonical

form: χ̇i = χi+1 with 1 ≤ i ≤ p−1, χ̇p = fp(χ, ν;α)+Γ(χ, ν;α)uA and ν̇ = ζ(χ, ν). Then,

by exploiting Lie algebra of vectors fields, P-class system can be stabilized as p is a integer

constant such that Γ(χ, ν;α) 6= 0 at any point belonging to domain (see details in [5]).

Functions fp(χ, ν;α) and Γ(χ, ν;α) are assumed uncertain and unavailable for feedback.

Thus, the γ(χ, ν;α) = Γ(χ, ν;α)−Γnom(χ) and Θ(χ, ν, uA;α) = fp(χ, ν;α)+ γ(χ, ν;α)uA

can be defined. After algebraic manipulations, we have:


















χ̇i = χi+1, 1 ≤ i ≤ p− 1

χ̇p = Θ(χ, ν, uA;α) + Γnom(χ)uA

ν̇ = ζ(χ, ν)

(24)

where Θ(χ, ν, uA;α) is a continuous function that lumps the uncertain terms. Lumping

function Θ is seen as an augmented state by defining Θ ≡ Θ(x, ν, uA;α). So, system (24)

can be rewritten in the augmented form






























χ̇i = χi+1, 1 ≤ i ≤ p− 1

χ̇p = Θ + Γnom(χ)uA

Θ̇ = Ξ(x, ν,Θ, uA;α)

ν̇ = ζ(χ, ν)

(25)

where Ξ(x, ν,Θ, uA;α) =
∑p−1

i=1 χi+1∂iΘ(x, ν, uA;α) + [Θ + Γnom(χ)uA]∂pΘ(x, ν, uA;α) +

γ(χ, ν;α)u̇A + ∂tγ(χ, ν;α)uA + ∂νΘ(x, ν, uA;α)ζ(χ, ν).

Controller uA(χ,Θ) = 1
Γnom(χ)

(−Θ−KTχ) can be used to stabilize (25), where K ∈ R
p

is chosen in such way that PK(s) = sp + kps
p−1 + ... + k2s + k1 = 0 is Hurwitz. Now,

problem of estimating (χ,Θ) can be addressed by using a high-gain observer for (25).

Thus, dynamics of χ and Θ is reconstructed from measurements of output ym = χ1 by


















˙̂χi = χ̂i+1 + Liκi(χ1 − χ̂1), 1 ≤ i ≤ p− 1

˙̂χp = Θ̂ + Γnom(χ̂)uA + Lpκp(χ1 − χ̂1)

˙̂
Θ = Lp+1κp+1(χ1 − χ̂1)

(26)

11



where κj , j = 1, 2, ..., p + 1, are such that Pκ(s) = sp+1 + κ1s
p + ... + κps + κp+1 = 0 is

also Hurwitz. Parameter L > 0 stands for estimation rate of uncertainties, being unique

tuning parameter. Finally, control becomes

uA(χ̂, Θ̂) =
1

Γnom(χ̂)
(−Θ̂ −KT χ̂) (27)

5 On experimental implementation

Implementation is realized to compare controllers performance. Let us consider only one

of chaotic systems in collection (Σ2). Only ym = x2 is measured and parameter α is

uncertain, the problem is to lead output yc = x1 (note ym 6= yc) when u is acting on

right-side of (Σ2) as follows



















ẋ1 = x2

ẋ2 = x3

ẋ3 = −αx3 − x1 + x1x2 + u

(28)

5.1 Implemented controllers

State feedback linearizating control :

For (28), we have that fl(w;α) = [x2, x3,−αx3 − x1 + x1x2]
T and gl(w;α) = [0, 0, 1]T .

Then, designed controller is given by

uL(w;α) = αx3 + x1 − x1x2 − k1x1 − k2x2 − k3x3 (29)

Backstepping control :

Let us write the subsystem






ẋ1 = x2

ẋ2 = x3

(30)

which is in form (5), where ¯̟ = x1, ς̄ = x2 and ūB = x3. By proposing x2 = φ̄B( ¯̟ ) =

−µx1, where µ is a positive real constant, and V̄B( ¯̟ ) = 1
2
x2

1 is a Lyapunov function, then

the controller (8) for (30) is given by

ūB( ¯̟ , ς̄) = x3 = −µx2 − x1 − k̄(x2 + µx1) = φB(x1, x2) (31)

12



with k̄ > 0. Now, let us consider the complete system (28) re-written as























ẋ1

ẋ2



 =





x2

0



 +





0

1



x3

ẋ3 = (−αx3 − x1 + x1x2) + uB

(32)

which is in form (5)-(6), where ̟ = ( x1 x2 )T and ς = x3. Taking (31), k > 0, and

VB(̟) = 1
2
x2

1 + 1
2
[x2 + µx1]

2 as Lyapunov function, then controller (8) for system (28) is

given by:



















uB(̟, ς;α) = uBa − (1 + k̄µ)x2 − (µ+ k̄)x3 − (x2 + µx1)

−k[x3 + (1 + k̄µ)x1 + (µ+ k̄)x2]

uBa(̟, ς;α) = αx3 + x1 − x1x2

(33)

Sliding-mode control :

By defining η = ( x1 x2 )T and ξ = x3,(28) can be written as

ẋ1 = x2 + δη1
(34)

ẋ2 = x3 + δη2
(35)

ẋ3 = [−α0x3 − x1 + x1x2] + [uS + δξ] (36)

where δη1
, δη2

and δξ are the uncertainties. Sliding surface is given by

zS = x3 + σ1x1 + σ2x2, and from (36) and controller takes the form



















uS(η, ξ) = ueq(η, ξ) −
β(η,ξ)
(1−k)

sgn(x3 + σ1x1 + σ2x2)

ueq(η, ξ) = [α0x3 + x1 − x1x2 − σ1x2 − σ2x3]

β(η, ξ) = k1|x1||x2| + k2|x1| + k3|x2| + k4|x3| + bo

(37)

5.2 State estimation and parameter identification

Control implementation requires state estimation and parameter identification provided

by adaptive observer given in Section 4. Then, system structure is transformed into



















ż1 = −αz1 + z2

ż2 = −z3 + z1z3 + u

ż3 = z1

(38)

13



By defining θ = α and ym = z1, adaptive observer (16) is derived. Then, states and

parameter are replaced in controllers (29), (33), and (37) becomes










ż1

ż2

ż3











=











0 1 0

0 z1 −1

0 0 0





















z1

z2

z3











+











−z1

0

0











α +











0

u

z1











5.3 Robust Control with Low-order Parametrization

By defining χ = ( x1 x2 x3 )T , Θ = −αx3 − x1 + x1x2 and Γnom(χ) = 1; system (28) is

written as (25) to have:






























ẋ1 = x2

ẋ2 = x3

ẋ3 = Θ + uA

Θ̇ = Ξ(x,Θ, uA;α)

(40)

Hence, (26) and (27) becomes






























˙̂x1 = x̂2 + Lκ1(x1 − x̂1)

˙̂x2 = x̂3 + L2κ2(x1 − x̂1)

˙̂x3 = Θ̂ + uA + L3κ3(x1 − x̂1)

˙̂
Θ = L4κ4(x1 − x̂1)

(41)

uA(χ̂, Θ̂) = −Θ̂ − k1x̂1 − k2x̂2 − k3x̂3 (42)

where L, κj (j = 1, 2, 3, 4) are taken as (26). and ki (i = 1, 2, 3) are as in (27).

5.4 Performance index

Since control objective is to suppress chaotic behavior, control performance can be eval-

uated via a performance index. Next, three indexes are considered:

• The first one is a measure of stabilization error, equivalent to an index

of chaos suppression, during the interval [t0, tf ]. This index is defined by

Js = 1
tf−t0

∫ tf
t0
{x(t)TQ(t)x(t)}dt, where Q(t) is a positive semi-definite symmetric

matrix for all t ∈ [t0, tf ]. Q(t) = I(1− e−λ(t−t0))q was chosen to assign major weight

to steady-state error, where I is the identity matrix, λ > 0, and q is a positive

integer.
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• In second index, control effort is also measured by its overshoot; which is defined

by infinity norm umax =max
[t0,tf ] abs(u(t)).

• Finally, the last index is used to measure average control effort at implementation

interval [t0, tf ]. This index is defined by Jue = 1
tf−t0

∫ tf
t0
{u(t)TQ(t)u(t)}dt.

5.5 Physical implementation and performance comparison

System (28) was electronically realized by means of operational amplifiers TL084CN, an

analog multiplier AD633JN and passive components. A DSpace 1104 acquisition data

board was used to measure control action, capture system state values along implementa-

tion time and estimate states and parameter values from adaptive observer. Figures 1 and

2 show, respectively, a photo of experimental setup and a detail of oscilloscope depicting

time series during experiments. Schematic of used circuit is in Figure 3.

In this way, control schemes were implemented selecting the following parameters:

• State feedback linearization (29): k1 = 27, k2 = 27 and k3 = 9.

• Backstepping (33): µ = 1, k = 1 and k̄ = 1.

• Sliding-mode (37): σ1 = 1, σ2 = 1, k = 0.04, k1 = 0.34, k2 = 0.1, k3 = 0.08,

k4 = 0.3224, bo = 0.01 and α0 = 2.02.

• Adaptive Observer (16): ρz = 50, ρθ = 2, Sz(0) = I, Sθ(0) = I and Λ(0) =

[10, 10, 10]T .

• Robust control with low-order parametrization (41)-(42): k1 = 27, k2 = 27, k3 = 9,

L = 10, κ1 = 4, κ2 = 6, κ3 = 4 and κ4 = 1.

Experimental results are shown in the Figures 4, 5, 6, and 7. Now, a comparative

study is presented for the four controllers. Performance indexes are evaluated. Table 1

shows indexes values from evaluation of each controller.
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Table 1: Performance indexes from experimental implementation.

Control strategy Js umax Jue

Linearization state-feedback 0.026381 43.7965 0.0002980

Backstepping 0.030910 4.0440 0.0000097

Sliding-mode 0.199010 3.9620 7.771480

Adaptive low-parametrized 0.818650 2.9216 0.601240

From Table 1, feedback linearization method shows a small stabilization error, i.e.

a small Js performance index value. Figure 4 shows the fastest response. However,

the control effort shows largest overshoot. On the other hand, robust control with low

parametrization shows lowest overshoot but largest average control effort and a slow

response. Furthermore, lowest average control effort was found for backstepping controller

and showed fast response and small overshoot. Finally, the sliding-mode methodology

allows to have a strategy more robust. However, this scheme demands important average

control effort. Furthermore, sliding-mode control shows chattering effects.

6 Conclusions

In this paper, a comparative study of control performance has been shown in regard to

chaos suppression. Control strategies, based on an adaptive observer, have been presented

to evaluate them: feedback linearization, backstepping and sliding-mode. Furthermore,

the convergence of the adaptive observer has been shown, where sufficient conditions

have been given. Then, a stability analysis of the closed loop system has been presented.

Additionally, a robust control with low-order parametrization has been also considered in

this comparative study.

The comparative study of these schemes has been done considering three performance

indexes, which have been taken into account to measure stabilization error, control effort,

and average control effort. Experimental results were measured to evaluate the perfor-

mance of each scheme. As a summary, state feedback with adaptive observer yields the

lowest stabilization error but largest overshoot. The lowest average control effort was
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Lorenz system Chen System Lü system

Equations: ẋ1 = a(x2 − x1) ẋ1 = a(x2 − x1) ẋ1 = a(x2 − x1)
ẋ2 = dx1 − x2 − x1x3 ẋ2 = (c− a)x1 + cx2 − x1x3 ẋ2 = cx2 − x1x3

ẋ3 = −bx3 + x1x2 ẋ3 = −bx3 + x1x2 ẋ3 = −bx3 + x1x2

Parameters: (a, b, c, d) = (10, 8
3
,−1, 28) (a, b, c, d) = (35, 3, 28,−7) (a, b, c, d) = (36, 3, 20, 0)

Table 2: Lorenz-type systems

obtained by backstepping strategy. Lowest overshoot was exhibited by robust control

with low-order parametrization, which had the largest stabilization error. It follows that

backstepping method showed best performance.
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A Study cases

In this section we introduce a chaotic system which contains the Lorenz, Chen and Lü

systems. Let be a Lorenz-type system given by

ẋ =











ẋ1

ẋ2

ẋ3











=











−a a 0

d c 0

0 0 −b





















x1

x2

x3











+











0

−x1x3

x1x2











(43)

where a, b, c and d are constants.In Table A, we list mathematical models of these three

systems and corresponding parameter values.

Now, P-class contains the well known above systems. In this case, Lorenz-type system

is chosen as an example to shown that after a change of coordinates it can be transformed
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into jerk equation (1). Let be the Lorenz system represented by

ẋ =











ẋ1

ẋ2

ẋ3











=











−a a 0

d 1 0

0 0 −b





















x1

x2

x3











+











0

−x1x3

x1x2











(44)

Then, by defining output y = x1, we derive a diffeomorphism Φ : ℜ3 → ℜ3 given by

Φ(x) =











x1

a(x2 − x1)

a(dx1 − cx2 − x1x3 − a(x2 − x1))











=











z1

z2

z̄3











= z

such that control affine system can be transformed into normal form:



















ż1 = z2

ż2 = z3

ż3 = α(z) + β(z)u

(45)

We can see that matrix

∂Φ(x)
∂x

=











1 0 0

−a a 0

a(d− a− x3) −a(c + a) −ax1











is singular only at S = x|(x1 = 0, x2, x3). Note that affine system cannot be stabilized at

origin because of it has no well-posed relative degree ρ = 3 for any x ∈ S.

Other system that can be transformed into jerk equation (1) is Rössler, which is in

affine form:


















ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = x3(x1 − b) + a

(46)

or

ẋ =











−x2 − x3

x1 + ax2

x3(x1 − b) + a











+











0

0

g3











u (47)
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where a and b are nonzero constants. Then, by defining y = x2, we can also derive a

diffeomorphism Φ : ℜ3 → ℜ3 given by

Φ(x) =











x2

x1 + ax2

(a2 − 1)x2 − x3 + ax1











=











z1

z2

z̄3











= z

such that affine Rössler system under output y = x2 can be transformed into normal form:



















ż1 = z2

ż2 = z3

ż3 = α(z) + β(z)u

(48)

where

α(z) = −a(2z1 − z3 − az2) + (a2 − 1)(z2 + 2az1) − (z1 − z3 − az2)(z2 + az1 − b) + a

β(z) = −g3

and

x = Φ−1(z) =











z2 + az1

z1

z1 − z3 + az2










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Figure 1: Photo of experimental setup.
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Figure 5: Responses with backsttepping control uB.
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Figure 6: Responses with sliding-mode control uS.
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Figure 7: Responses with adaptive observed-based feedback control with low-order parame-
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