
Este artículo puede ser usado únicamente para uso personal o académico.
Cualquier otro uso requiere permiso del autor.

Make a PI controller on an 8-bit micro

Crescencio Hernandez-Rosales, Ricardo Femat-Flores,

and Griselda Quiroz-Compean

1/4/2006 1:06 PM EST

This article shows you how to implement a classical PI (proportional-integral) controller

on a simple 8-bit microcontroller. To implement the PI controller, we developed specific

libraries that make it possible for the microcontroller to perform arithmetic operations

with 16- and 32-bit precision. Such resolution is necessary to reduce the steady-state error

of the system being controlled. One advantage of this config uration is that it can be

programmed into microcontrollers with less than 128 bytes of RAM and 4KB of ROM on

chip. This design has been used to control a direct current (DC) gear motor but can be

used to control other kind of actuators as well. Experimenta l results show a good

performance of the overall embedded system.

Why would you use a PI (proportional-integral) controller instead of PID (proportional

integral-derivative) controller? The PI controller is commonly used when the reference

signal given to the system are steps (set-points). On the other hand if the reference signals

imposed to the system are ramps or other kinds of time-functions, it's better to use a PID

controller; nevertheless, in practice the derivative term could amplify disturbances i nput

or noise as the PID is not well tuned. This can prompt oscillations or the system can

become unstable.

Why use an 8-bitter?

Currently, several manufacturers make 16- and 32-bit microcontrollers (MCUs) with

features that enable easy control of almost any process of medium complexity. Eight-bit

microcontrollers still dominate the market, however, because of their small size, low cost,

and simple programming. Because of these advantages, 8-bit MCUs are found in process

control, automotive, industrial, and appliance applications, among many others.
1, 2

 Some

of the newer MCUs provide clock speeds from 4 to 40MHz; 64KB of internal flash

memory and 1KB of RAM in some models; on-chip analog-to-digital converters (ADCs),

digital-to-analog converters (DACs), or pulse-width modulator (PWM) outputs; a

watchdog timer; 16-bits timers; and serial or USB ports.

A few examples of these MCUs include:

• The enhanced 8051 from Intel, series 87C51RA/RB/RC

• The W78E858 by Winbond Electronics, which is compatible with the Intel 8052

• The P89V51RD2 chip from Phillips Semiconductors; its main features are the 64KB of

flash and 1KB of RAM on chip; in addition to its PCA block, the P89V51RD2 is

composed of four modules that can be configured as high speed I/O ports,

compare/capture registers, PWMs, or watchdog timers
3

• The DS5000T series from Dallas Semiconductors; its main advantage is the 32KB of

internal SRAM that can be partitioned as the user likes into data or program memory; in

addition, it has a real-time clock on chip making it suitable for data logging applications
4

• The enhanced flash USB microcontroller series PIC18FX455/ X550 from Microchip

incorporates 32KB of internal flash memory, ADCs, EAUSART, and USB V2.0

interfaces, making it, in our opinion, perfect for connectivity applications
5

Although the features of 8-bit MCUs are continually improving, in most cases these new

features are ignored by designers because they're using the chips for the control of states,

which don't require the newer features.
1, 2

 Recently a novel method has been used to

exploit these kinds of MCUs by using them in a closed-loop configuration aided with the

well-known classical control theory. Examples of work on this topic are available in the

literature.
6, 7, 8

 In such applications the authors demonstrated that feedback control

improves the control of some DC motors. It's important to mention that, in the examples,

except in Johnston,
7
 the realization of the PID (proportional-integral-derivative)

controllers were implemented using 16-bit MCUs in Hitex's paper
6
 or, as in Neary,

8

where an integrated data acquisition system particularly the model ADuC845 by Analog

Devices, was used.

Until few years ago, these kind of tasks (micro-positioning or servo control) had been

addressed using digital signal processors (DSPs), mainly because such devices are faster

and have higher precision than the 8-bits MCUs. However, some applications don't

require high precision or the team simply can't justify the cost of a DSP. It's usually

cheaper to use an 8- or 16-bit MCU without diminishing performance.

For both commercial and education reasons, we developed an alternative to control a DC

gear motor in a closed-loop configuration using a standard Atmel AT89C52 device. This

chip is a general-purpose 8-bit MCU without some of the features we mentioned earlier.
3,

4, 5
 However, in this application, we show that a discrete -time control can be implemented

into this simple MCU. Nevertheless a little of knowledge about the closed -loop is needed

to apply this alternative. The following section describes some concepts of the control

theory. Details can be found in the endnotes of this article.
9, 10 , 11, 12

Feedback-control theory

Figure 1 shows the block diagram of a closed-loop system. In this configuration a portion

of the information is fed back from the process and subtracted from the reference signal

in order to calculate the error signal. This error signal is used by the PID to adjust the

control input such that the process output can reach the given reference.

View the full-size image

In this diagram, the process block refers to the physical system to be controlled. The

controller block is an electronic device (a microcontroller) that calculates the necessary

energy to modify the process such that the control objective can be reached. Usually, in a

control scheme the controller precedes an actuator (for instance, a motor, turbine, valve,

resistance, and so forth) so that the process can be manipulated. Finally, to close the loop,

a measurement block is needed, which is often a sensor or transducer that provides a

signal to automatically compare the actual state of the system variables with the desired

objective.

Some of the motivation for using this configuration was to diminish the effects of

parameter variations coming into the system, reduce the effects of disturbance inp uts,

improve the time transient responses of the process output, and to compensate for the

steady-state error.
9
 Another advantage of this approach is that the effects of the "dead

zone" in the motors can be reduced.

The control problem

Our goal is to control the angular velocity of a DC gear motor by using a classical

discrete-time PI-like controller. Figure 2 provides a block diagram of the sample data

system. In the figure, r(kT) denotes the reference signal, u(t) is the control voltage applied

to the motor, x(t) stands for the system output, y(kT) represents the discrete signal

generated by the sensor (angular displacement), V(kT) is the output signal of the Velocity

Sensor (VS), e(kT) is the error defined by the difference r(kT)–V(kT), d(t) and n(t) are,

respectively, the disturbance input to the plant and the noise in the sensor.
10

 Here (kT) is

used to represent a discrete signal with a sample-time given by T.

View the full-size image

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales01XXL.gif
http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales02XXL.gif

The control algorithm works like this. First, a reference signal is given to the MCU via a

serial port. At this point the MCU enables the VS to count the pulses per revolution

provided by the motor's optical encoder. A few milliseconds later, the MCU computes the

V(kT), which is directly proportional to the motor's velocity. Using this signal, the MCU

then calculates the error signal e(kT) and the voltage u(kT) by means of the PI-like

controller, which is the control input in discrete-time. Such a signal is then converted into

analog form, u(t), by means of the DAC.
13

 The control input u(t) is current-amplified by

the power stage and applied to the motor. This loop is repeated as many times as

necessary until that the error signal e(kT) is near to zero. As the control objective is

reached, the loop is terminated and the MCU waits for a new reference.

Figure 3a shows the schematic diagram of the sample-data system from Figure 2. This

design incorporates an LCD module where it's possible to display some data, such as the

motor velocity. Figure 3b shows the printed circuit boards designed to control the DC

gear motor. The board on the left contains the AT89C52-based control unit, while the

board on the right holds the power supplies. Together these boards provide the output

stage to directly control the motor.

View the full-size image

Microcontroller-based control stage

This block contains the control unit and represents the brain of the electronic stage

because it controls the other blocks. The AT89C52 includes 8KB of flash memory and

256 bytes of RAM, 32 I/O pins, three 16-bit counter/timers, and a UART. Programmed

into the on-chip memory are the control algorithm (PI) and the velocity sensor routines.

Digital-to-analog stage

In this stage a Maxim MAX508 chip performs the digital-to-analog conversion with 12

bits of resolution. Through on-chip resistors, the DAC can be configured for one of the

three output voltage ranges, from 0V to +5V, 0V to +10V, or 0V to ±5V, wit h a ±15V

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales03XXL.gif

dual power supply. Digital data u(kT) is loaded into the input registers of the DAC in a

right-justified (8+4) format. This allows an easy interface with the AT89C52 MCU. The

resolution voltage is given by u(t) = VREF[(u(kT))/2
11

)], where VREF is the internal voltage

reference equal to +5V, u(kT), the input code (calculated by the PI algorithm), and u(t)

the analog voltage supplied to the motor.
13

 In this application the operation range is from

0 to ±10V.

Power stage

The power stage is implemented using a TIP-41C (NPN power transistor) in a "booster"

current-amplifier configuration with an operation range from 0 to +10V. In this stage the

DAC output current is amplified from 10mA to 6A to provide the current required by the

motor. This stage also includes auxiliary circuitry to supply to the motor a negative

voltage of -10.47V to return it to its home position. This circuitry is implemented by

using a PNP power transistor TIP-42.

Plant (gearmotor)

The motor in this application is a 12W DC gear motor by Faulhaber MicroMo, model

2342S012CR, with a nominal voltage of 12V. The motor provides 637 oz/in of torque at

normal load with a gear-reduction ratio 159:1. Speed at load is 5.3RPM at 12V, with

maximum current consumption at load of 75mA. The control input is a DC voltage and

the feedback output is the angular velocity V(t) in RPMs.
14

Optical encoder measurement stage

In this stage the motor velocity is measured by means of the VS and an optical encoder (a

HEDS5540G from Hewlett-Packard) that provides 360 pulses per revolution (PPR) in

channels A and B, and 1 PPR in a third channel called Index. The VS (programmed into

MCU) works as follows: the A channel of the optical encoder is connected to the external

counter/timer T0 of the MCU and timer 2 is programmed with a capture time of 2ms,

during which counter/timer 0 is incremented for each digital pulse provided for the

encoder. Thus VS is measured in pulses per millisecond.

Figure 4 shows a comparison between the theoretical and actual motor velocity. The

theoretical velocity comes from the manufacturer's data sheet while the actual velocity

was measured using VS. Note on this graph there is an offset between these two signals.

This difference is attributable to the nominal parameters of the motor. To corroborate the

precision of VS, we measured the motor velocity using a high-precision oscilloscope and

obtained results that were similar to VS.

View the full-size image

Communication stage (ADC)

This simple stage handles the communication between the computer and the motor -

control unit by using the microcontroller's built-in serial port. The baud rate chosen was

9,600 bits per seconds, and a standard Maxim MAX232 chip converts the voltage level of

the UART to RS-232 levels.

Mechanical stage (gear box)

This block is composed of two mechanical stages, a planetary gear box assembled with

the motor, and another external gear box formed by a pair of worm gears with reduction

ratios of 159:1 and 625:1. The main function of these stages is to reduce the angular

velocity of the motor and to translate the angular motion to linear mot ion as shown in

Figure 2.

Creating the Motor-Control Model

To apply well-establish classical control theory, it's necessary to designate in advance the

mathematical model of the system to be controlled with the purpose of simulating its

dynamic behavior in open-loop as well as closed-loop modes. Otherwise, the designer

may not have enough experience to tune the parameters of the PID controller, and its

closed-loop performance could be poor or, in the worst case, unstable. Depending on the

mechanical system, this may cause injuries to the system or to the user. For this reason,

we recommend simulating the system's behavior before planning its physical

implementation.

In general terms, a model is a set of differential equations that represents an

approximation of the physical system's dynamics. One classic method to identify the

model of simple systems is to excite it with a known input and measure the response. The

inputs applied and the outputs measured depend on the nature of the system and the

variables that the designer needs to control in the process. In applying these control

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales04XXL.gif

techniques, we characterized our motor by applying voltages of 2.5V, 5V, 7.5V, and

9.47V over sim ilar intervals of time to measure the motor's response to such inputs.

Identifying the Model Input-Output (Cause-Effect)

Figure 5 shows the open-loop motor response when four steps were applied to its

terminals. These signals show the angular velocity reached by the motor with such inputs

and represent the steady-state gain of the system. Note that the motor response is similar

to the sim ple-lag system response when it is excited with a step input; therefore, the

motor model can be represented by Equation 1; see Chapter 4 of Ogata.
12

View the full-size image

Equation 1 represents the general transfer function of a first order (sim ple -lag) system in

the Laplace domain. Here KM is the steady-state gain of the system and TM is known as

the time-constant of the system and is defined as the time at which the system output

reaches the 63.2 % of the steady-state value.

(1)

According to the definition of TM and KM, these values can be obtained from the open-

loop motor response in Figure 5a.

Equation 2 shows the transfer functions obtained for each step applie d.

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales05XXL.gif

(2)

where the values of TM and KM substitued for G1 through G4 are in milliseconds and

RPMs respectively.

However, note that TM and the steady-state gain KM are a little bit different for each step

applied. For this reason, and without losing generality, we can take the arithmetical

average of these parameters to obtain one nominal model that can approach as near as

possible the real motor dynamic. Equation 3 displays the model obtained with this

approximation. For more details on the identification of this model, see our report.
15

Figure 5b shows a comparison between the nominal model response simulated (red line)

and the actual motor response (black line). From this graph we can deduce that the

nominal model is capable of reproducing the motor dynamic and can therefore be safely

used to tune the PI parameters.

It's important to point out that the inputs given to the motor model in sim ulations we re

similar in magnitude and time to the voltage given to the motor in the experimental

identification.

(3)

Once we've derived the nominal model of the motor (Equation 3), we proceed to tune the

parameters of the PI controller.

Tuning the PI Controller Parameters

Currently, many stability-analysis techniques are available, including the well-known

Laplace method, frequency-response, Nyquist criterion, Bode representation, root-locus

method, and others.
9, 10, 12

 In this example, the selection of the PI parameters is based on

root-locus design using the control system toolbox of MatLab. These parameters are

chosen such that the closed-loop system is stable and so the system response can be fast

without any overshoot.

Figure 6 shows the closed-loop configuration of the system in the Laplace domain and

includes the motor and controller-transfer function. The control law used is a classical PI,

where T i is known as the restoration time of the integral action, Kp the proportional gain,

and Kp/T i the integral gain.

View the full-size image

Figure 7a shows the simulated closed-loop motor response for different values of Kp and

using the model given by Equation 3, with a T i = 50ms. In this graph, it's easy see that,

for values greater than 1, the system response is faster than with values of Kp < 1.

However, for Kp > 1 the motor response exhibits undesirable overshoot that can reduce

the useful life of the motor. In this example, the gain selected was Kp = 0.5, although Kp =

0.7 can be selected too. Figure 7b shows the simulated control input computes by the PI

controller, such that the motor can reach the reference specified (6,000 RPM). Note that

these signals are less than or equal to 10V, due to the saturation block included to

simulate the DAC's output range. The following section shows the experimental motor

response with the gains selected.

View the full-size image

Implementation of the PI Controller

PID controllers are widely used in the process-control industry, mainly because of their

effectiveness and simple structure.
16

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales06XXL.gif
http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales07XXL.gif

Equation 4 shows the expression of a PID controller in continuous time, where u(t) is

called the control signal and e(t) is the error signal. Kp, K i, and Kd are the proportional,

integral and differential gains, respectively.

(4)

In this example a PI controller is used, with Kd = 0 and K i = Kp/T i. Taking the derivative

of Equation 4, we obtain:

(5)

where:

and:

.

However, this expression is difficult to implement in a microcontroller, so we can

approximate the derivative by mean of Equation 6, known as the finite -difference

approach, where ΔT is the sample time.

(6)

Substituting Equation 6 in Equation 5, we obtain the discrete -time PI controller.

(7)

Once reducing Equation 7 and substituting the PI parameters selected, Kp = 0.5, T i =

50ms, with a sample time ΔT = 10ms, the discrete-time representation of the PI controller

is obtained and can be implemented in the microcontroller.

(8)

It's important to point out that in this application, the tuning of PI parameters was made in

continuous time. However, the stability in discrete time must be analyzed with the

parameters chosen too, mainly because the PI is implemented in a digital processor. In

this analysis we found that the closed-loop poles are located in the unit circle (according

to Routh's stability criterion for discrete-time systems), which means that the closed-loop

system shown on Figure 6 is stable. In other words, this means the system is feasibly safe.

For more details of this test, read Quiroz-Compen's report.
17

Figure 8a shows the experimental motor response using Equation 8 in closed -loop

configuration. The reference given to the MCU was 6,000 RPM. In practice, th e motor

reaches the reference in 0.01 min (600ms) and without overshoot. Nevertheless, the

close-up in Figure 7a shows that there is a steady-state error, although its magnitude

represents 1.3% of the steady-state value, which is acceptable in practice. Figure 8b

shows the control input computes by the PI and applied to the motor for reach the

reference imposed.

View the full-size image

http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales08XXL.gif

Figure 9 shows the flux diagram of the main program implemented into microcontroller.

The assembly code is not shown to save space in this article, but you can find the code

online at www.embedded.com/code.

View the full-size image

In this article we showed that a feedback-control scheme can be implemented in a simple

8-bit MCU. Moreover, we've shown the use of a classic method to identify a DC motor.

Despite the fact that the MCU is among the simpler ones available, the time it requires to

compute the whole program and bring the motors to their maximum reference speed

(9,100RPM) was only 866ms in the worst case. So we believe that using the newer

MCUs in a closed-loop configuration can improve the control of some electro-

http://www.embedded.com/code
http://i.cmpnet.com/embedded/gifs/2006/0601/0106Rosales09XXL.gif

mechanical actuators such as valves or motors and improve the performance of some

processes with slow dynamic behavior.

Crescencio Hernndez-Rosales is a laboratory technician from Institute of Research of

San Luis Potosi and currently is working on the design and instrumentation of an

electromechanical pump to delivery drugs to patients with Type I diabetes. He is

interested in embedded systems design and the design and control of mechatronic devices.

He has a degree in electrical engineering from the University of San Luis Potosi, Mexico.

He can be reached at heros@titan.ipicyt.edu.mx.

Ricardo Femat-Flores is a professor and active researcher at the Institute of Research of

San Luis Potosi. He has published 42 technical papers in international journals and five

in international magazines. His current scientific interests are control and chaos theory

and the regulation of the glucose concentration in diabetic patients. He can be reached at

rfemat@ipicyt.edu.mx.

Griselda Quiroz-Compen has received the Bc. Sc. degree from Technological Institute of

San Luis Potosi and the Ms.Sc. degree from Institute of Research of San Luis Potosi,

Mexico in 2003 and 2005 respectively. She is currently working toward the Sciences

Doctor Degree in control and dynamical systems. Her research interests include control

theory applied to biomedical sciences. She can be reached at gquiroz@ipicyt.edu.mx.

Endnotes:

1. Maurice, B. "ST62 microcontrollers drive home appliance motor technology,

AN885/1196," Application Note, ST Microelectronics, 1998, www.st.com.

2. Katausky, J., I. Horder, and L. Smith. "Analog/Digital Processing with

Microcontrollers," AR-526 Applications Engineers, Intel Corporation, www.intel.com.

3. Data sheet. "W78E858 8-bit microcontroller," Winbond Electronics, Rev. A4, May

2004.

4. Data sheet. "DS5000T Soft microcontroller Module," Dallas Semiconductors,

www.maxim-ic.com.

5. Data sheet. "PIC18F2455/2550/4455/4550, High-Performance, Enhanced Flash USB

Microcontrollers with Nano Watt Technology," Microchip Technology Inc., 2004.

6. Hitex. "Basic DC Motor Speed Control W ith The Infineon C167 Family." Hitex: UK.

www.hitex.co.uk/c166/pidex.html.

7. Johnston, K., S. Narum, G. Bergeson, and S. Bowden. "PID motor control with the

Z8PE003," application note AN003002-0401, Zilog, Inc. 2001: www.Zilog.com.

mailto:heros@titan.ipicyt.edu.mx
mailto:rfemat@ipicyt.edu.mx
mailto:gquiroz@ipicyt.edu.mx
http://www.st.com/
http://www.intel.com/
http://www.maxim-ic.com/
http://www.zilog.com/

8. Neary, E. "Mixed-signal control circuits use microcontroller for flexibility in

implementing PID algorithm s," Analog Dialogue 38-01, January 2004.

www.analog.com/analogdialogue.

9. de Vegte, J. V. Feedback control system, third ed., Prentice -Hall, New Jersey, 1994.

10. Franklin, G. F. and J. D. Powell. Digital Control of Dynamic Systems, second ed.

Addison-Wesley, 1990, USA.

11. Dorf, R. C. and R. H. Bishop. Modern Control Systems, seventh ed. Addison-Wesley,

1995, USA.

12. Ogata, K. Ingenier'a de Control Moderna, 3 Ed. Prentice-Hall, 1998, México.

13. Data sheet. "MAX507/MAX0508, Voltage-Output 12-Bit DACs with Internal

Reference," 19-4338: Rev A: 9/91, Maxim Integrated Products, Sept 1991.

14. Data sheet. "12 Watts DC-Micromotors Graphite commutation, series 2342," CR,

MicroMo Electronics, www.micromo.com.

15. Hernndez-Rosales, C., G. Quiroz, and R. Femat. "Instrumentación de 2 prototipos de

bombas electromecnicas para el suministro de medicamento," Reporte de investigación

IPICYT-DMASC No. 003, San Luis Potos', México, Febrero 2005 (in Spanish).

16. Wang, Q. G. "PID tuning for improved performance," IEEE Transactions on Control

Systems Technology, Vol. 7, No. 4, Jul 1999.

17. Quiroz-Compen. G. "Instrumentación de una bomba para suministro de insulina,"

tesis de licenciatura, Tecnológico de San Luis Potos', México, Septiembre 2003 (in

Spanish).

Reader Response

Good article...

Another 8051 based micro you might consider are the 8051F0xx series from SiLabs. You

could eliminate a lot of peripheral components (D/A, oscillators, and perhaps even some

of the amplifier circuitry).

Although your assembly code is well written and commented nicely, I believe a good

quality compiler and C would have made the project quicker and easier to maintain and

adapt for various 8051 derivatives and other motor types.

http://www.analog.com/analogdialogue
http://www.micromo.com/

Alternatives to using matlab for PI parameter selections should have been discussed --not

everyone has MATLAB--and many that have it, don't have specialized toolboxes. For

those that do have it, your MATLAB files would be helpful as well.

- Paul Calvert

Senior engineer

Radiance Technologies

Huntsville, AL

