
Este artículo puede ser usado únicamente para uso personal o académico. 
Cualquier otro uso requiere permiso del autor. 



Make a PI controller on an 8-bit micro 

Crescencio Hernandez-Rosales, Ricardo Femat-Flores, 

and Griselda Quiroz-Compean  

1/4/2006 1:06 PM EST  

This article shows you how to implement a classical PI (proportional-integral) controller 

on a simple 8-bit microcontroller. To implement the PI controller, we developed specific 

libraries that make it possible for the microcontroller to perform arithmetic operations 

with 16- and 32-bit precision. Such resolution is necessary to reduce the steady-state error 

of the system being controlled. One advantage of this config uration is that it can be 

programmed into microcontrollers with less than 128 bytes of RAM and 4KB of ROM on 

chip. This design has been used to control a direct current (DC) gear motor but can be 

used to control other kind of actuators as well. Experimenta l results show a good 

performance of the overall embedded system.  

Why would you use a PI (proportional-integral) controller instead of PID (proportional 

integral-derivative) controller? The PI controller is commonly used when the reference 

signal given to the system are steps (set-points). On the other hand if the reference signals 

imposed to the system are ramps or other kinds of time-functions, it's better to use a PID 

controller; nevertheless, in practice the derivative term could amplify disturbances i nput 

or noise as the PID is not well tuned. This can prompt oscillations or the system can 

become unstable.  

Why use an 8-bitter? 

Currently, several manufacturers make 16- and 32-bit microcontrollers (MCUs) with 

features that enable easy control of almost any process of medium complexity. Eight-bit 

microcontrollers still dominate the market, however, because of their small size, low cost, 

and simple programming. Because of these advantages, 8-bit MCUs are found in process 

control, automotive, industrial, and appliance applications, among many others.
1, 2

 Some 

of the newer MCUs provide clock speeds from 4 to 40MHz; 64KB of internal flash 

memory and 1KB of RAM in some models; on-chip analog-to-digital converters (ADCs), 

digital-to-analog converters (DACs), or pulse-width modulator (PWM) outputs; a 

watchdog timer; 16-bits timers; and serial or USB ports.  

A few examples of these MCUs include:  

• The enhanced 8051 from Intel, series 87C51RA/RB/RC  

• The W78E858 by Winbond Electronics, which is compatible with the  Intel 8052  

• The P89V51RD2 chip from Phillips Semiconductors; its main features are the 64KB of 

flash and 1KB of RAM on chip; in addition to its PCA block, the P89V51RD2 is 



composed of four modules that can be configured as high speed I/O ports, 

compare/capture registers, PWMs, or watchdog timers 
3
  

• The DS5000T series from Dallas Semiconductors; its main advantage is the 32KB of 

internal SRAM that can be partitioned as the user likes into data or program memory; in 

addition, it has a real-time clock on chip making it suitable for data logging applications 
4
  

• The enhanced flash USB microcontroller series PIC18FX455/ X550 from Microchip 

incorporates 32KB of internal flash memory, ADCs, EAUSART, and USB V2.0 

interfaces, making it, in our opinion, perfect for connectivity applications 
5
  

Although the features of 8-bit MCUs are continually improving, in most cases these new 

features are ignored by designers because they're using the chips for the control of states, 

which don't require the newer features.
1, 2

 Recently a novel method has been used to 

exploit these kinds of MCUs by using them in a closed-loop configuration aided with the 

well-known classical control theory. Examples of work on this topic are available in the 

literature.
6, 7, 8

 In such applications the authors demonstrated that feedback control 

improves the control of some DC motors. It's important to mention that, in the examples, 

except in Johnston,
7
 the realization of the PID (proportional-integral-derivative) 

controllers were implemented using 16-bit MCUs in Hitex's paper 
6
 or, as in Neary,

8
 

where an integrated data acquisition system particularly the model ADuC845 by Analog 

Devices, was used.  

Until few years ago, these kind of tasks (micro-positioning or servo control) had been 

addressed using digital signal processors (DSPs), mainly because such devices are faster 

and have higher precision than the 8-bits MCUs. However, some applications don't 

require high precision or the team simply can't justify the cost of a DSP. It's usually 

cheaper to use an 8- or 16-bit MCU without diminishing performance.  

For both commercial and education reasons, we developed an alternative to control a DC 

gear motor in a closed-loop configuration using a standard Atmel AT89C52 device. This 

chip is a general-purpose 8-bit MCU without some of the features we mentioned earlier.
3, 

4, 5
 However, in this application, we show that a discrete -time control can be implemented 

into this simple MCU. Nevertheless a little of knowledge about the closed -loop is needed 

to apply this alternative. The following section describes some concepts of the control 

theory. Details can be found in the endnotes of this article.
9, 10 , 11, 12

  

Feedback-control theory  

Figure 1 shows the block diagram of a closed-loop system. In this configuration a portion 

of the information is fed back from the process and subtracted from the reference signal 

in order to calculate the error signal. This error signal is used by the PID to adjust the 

control input such that the process output can reach the given reference.  



 

View the full-size image  

In this diagram, the process block refers to the physical system to be controlled. The 

controller block is an electronic device (a microcontroller) that calculates the necessary 

energy to modify the process such that the control objective can be reached. Usually, in a 

control scheme the controller precedes an actuator (for instance, a motor, turbine, valve, 

resistance, and so forth) so that the process can be manipulated. Finally, to close the loop, 

a measurement block  is needed, which is often a sensor or transducer that provides a 

signal to automatically compare the actual state of the system variables with the desired 

objective.  

Some of the motivation for using this configuration was to diminish the effects of 

parameter variations coming into the system, reduce the effects of disturbance inp uts, 

improve the time transient responses of the process output, and to compensate for the 

steady-state error.
9
 Another advantage of this approach is that the effects of the "dead 

zone" in the motors can be reduced.  

The control problem  

Our goal is to control the angular velocity of a DC gear motor by using a classical 

discrete-time PI-like controller. Figure 2 provides a block diagram of the sample data 

system. In the figure, r(kT) denotes the reference signal, u(t) is the control voltage applied 

to the motor, x(t) stands for the system output, y(kT) represents the discrete signal 

generated by the sensor (angular displacement), V(kT) is the output signal of the Velocity 

Sensor (VS), e(kT) is the error defined by the difference r(kT)–V(kT), d(t) and n(t) are, 

respectively, the disturbance input to the plant and the noise in the sensor.
10

 Here (kT) is 

used to represent a discrete signal with a sample-time given by T.  

 

View the full-size image  
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The control algorithm works like this. First, a reference signal is given to the MCU via a 

serial port. At this point the MCU enables the VS  to count the pulses per revolution 

provided by the motor's optical encoder. A few milliseconds later, the MCU computes the 

V(kT), which is directly proportional to the motor's velocity. Using this signal, the MCU 

then calculates the error signal e(kT) and the voltage u(kT) by means of the PI-like 

controller, which is the control input in discrete-time. Such a signal is then converted into 

analog form, u(t), by means of the DAC.
13

 The control input u(t) is current-amplified by 

the power stage and applied to the motor. This loop is repeated as many times as 

necessary until that the error signal e(kT) is near to zero. As the control objective is 

reached, the loop is terminated and the MCU waits for a new reference.  

Figure 3a shows the schematic diagram of the  sample-data system from Figure 2. This 

design incorporates an LCD module where it's possible to display some data, such as the 

motor velocity. Figure 3b shows the printed circuit boards designed to control the DC 

gear motor. The board on the left contains the AT89C52-based control unit, while the 

board on the right holds the power supplies. Together these boards provide the output 

stage to directly control the motor.  



 

View the full-size image  

Microcontroller-based control stage  

This block contains the control unit and represents the brain of the electronic stage 

because it controls the other blocks. The AT89C52 includes 8KB of flash memory and 

256 bytes of RAM, 32 I/O pins, three 16-bit counter/timers, and a UART. Programmed 

into the on-chip memory are the control algorithm (PI) and the velocity sensor routines.  

Digital-to-analog stage  

In this stage a Maxim MAX508 chip performs the digital-to-analog conversion with 12 

bits of resolution. Through on-chip resistors, the DAC can be configured for one of the 

three output voltage ranges, from 0V to +5V, 0V to +10V, or 0V to ±5V, wit h a ±15V 
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dual power supply. Digital data u(kT) is loaded into the input registers of the DAC in a 

right-justified (8+4) format. This allows an easy interface with the AT89C52 MCU. The 

resolution voltage is given by u(t) = VREF[(u(kT))/2
11

)], where VREF is the internal voltage 

reference equal to +5V, u(kT), the input code (calculated by the PI algorithm), and u(t) 

the analog voltage supplied to the motor.
13

 In this application the operation range is from 

0 to ±10V.  

Power stage  

The power stage is implemented using a TIP-41C (NPN power transistor) in a "booster" 

current-amplifier configuration with an operation range from 0 to +10V. In this stage the 

DAC output current is amplified from 10mA to 6A to provide the current required by the 

motor. This stage also includes auxiliary circuitry to supply to the motor a negative 

voltage of -10.47V to return it to its home position. This circuitry is implemented by 

using a PNP power transistor TIP-42.  

Plant (gearmotor)  

The motor in this application is a 12W DC gear motor by Faulhaber MicroMo, model 

2342S012CR, with a nominal voltage of 12V. The motor provides 637 oz/in of torque at 

normal load with a gear-reduction ratio 159:1. Speed at load is 5.3RPM at 12V, with 

maximum current consumption at load of 75mA. The control input is a DC voltage and 

the feedback output is the angular velocity V( t) in RPMs.
14

  

Optical encoder measurement stage  

In this stage the motor velocity is measured by means of the VS and an optical encoder (a 

HEDS5540G from Hewlett-Packard) that provides 360 pulses per revolution (PPR) in 

channels A and B, and 1 PPR in a third channel called Index. The VS (programmed into 

MCU) works as follows: the A channel of the optical encoder is connected to the external 

counter/timer T0 of the MCU and timer 2 is programmed with a capture time of 2ms, 

during which counter/timer 0 is incremented for each digital pulse provided for the 

encoder. Thus VS is measured in pulses per millisecond.  

Figure 4 shows a comparison between the theoretical and actual motor velocity.  The 

theoretical velocity comes from the manufacturer's data sheet while the actual velocity 

was measured using VS. Note on this graph there is an offset between these two signals. 

This difference is attributable to the nominal parameters of the motor. To corroborate the 

precision of VS, we measured the motor velocity using a high-precision oscilloscope and 

obtained results that were similar to VS.  



 

View the full-size image  

Communication stage (ADC) 

This simple stage handles the communication between the computer and the motor -

control unit by using the microcontroller's built-in serial port. The baud rate chosen was 

9,600 bits per seconds, and a standard Maxim MAX232 chip converts the voltage level of 

the UART to RS-232 levels.  

Mechanical stage (gear box)  

This block is composed of two mechanical stages, a planetary gear box assembled with 

the motor, and another external gear box formed by a pair of worm gears with reduction 

ratios of 159:1 and 625:1. The main function of these stages is to reduce the angular 

velocity of the motor and to translate the angular motion to linear mot ion as shown in 

Figure 2.  

Creating the Motor-Control Model  

To apply well-establish classical control theory, it's necessary to designate in advance the 

mathematical model of the system to be controlled with the purpose of simulating its 

dynamic behavior in open-loop as well as closed-loop modes. Otherwise, the designer 

may not have enough experience to tune the parameters of the PID controller, and its 

closed-loop performance could be poor or, in the worst case, unstable. Depending on the 

mechanical system, this may cause injuries to the system or to the user. For this reason, 

we recommend simulating the system's behavior before planning its physical 

implementation.  

In general terms, a model is a set of differential equations that represents an 

approximation of the physical system's dynamics. One classic method to identify the 

model of simple systems is to excite it with a known input and measure the response. The 

inputs applied and the outputs measured depend on the nature of the system and the 

variables that the designer needs to control in the process. In applying these control 
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techniques, we characterized our motor by applying voltages of 2.5V, 5V, 7.5V, and 

9.47V over sim ilar intervals of time to measure the motor's response to such inputs.  

Identifying the Model Input-Output (Cause-Effect) 

Figure 5 shows the open-loop motor response when four steps were applied to its 

terminals. These signals show the angular velocity reached by the motor with such inputs 

and represent the steady-state gain of the system. Note that the motor response is similar 

to the sim ple-lag system response when it is excited with a step input; therefore, the 

motor model can be represented by Equation 1; see Chapter 4 of Ogata.
12

  

 

View the full-size image  

Equation 1 represents the general transfer function of a first order (sim ple -lag) system in 

the Laplace domain. Here KM is the steady-state gain of the system and TM is known as 

the time-constant of the system and is defined as the time at which the system output 

reaches the 63.2 % of the steady-state value.  

 

(1)  

According to the definition of TM and KM, these values can be obtained from the open-

loop motor response in Figure 5a.  

Equation 2 shows the transfer functions obtained for each step applie d.  
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(2)  

where the values of TM and KM substitued for G1 through G4 are in milliseconds and 

RPMs respectively.  

However, note that TM and the steady-state gain KM are a little bit different for each step 

applied. For this reason, and without losing generality, we can take the arithmetical 

average of these parameters to obtain one nominal model that can approach as near as 

possible the real motor dynamic. Equation 3 displays the model obtained with this 

approximation. For more details on the identification of this model, see our report.
15

 

Figure 5b shows a comparison between the nominal model response simulated (red line) 

and the actual motor response (black line). From this graph we can deduce that the 

nominal model is capable of reproducing the motor dynamic and can therefore be safely 

used to tune the PI parameters.  

It's important to point out that the inputs given to the motor model in sim ulations we re 

similar in magnitude and time to the voltage given to the motor in the experimental 

identification.  

 

(3)  

Once we've derived the nominal model of the motor (Equation 3), we proceed to tune the 

parameters of the PI controller.  

Tuning the PI Controller Parameters  

Currently, many stability-analysis techniques are available, including the well-known 

Laplace method, frequency-response, Nyquist criterion, Bode representation, root-locus 

method, and others.
9, 10, 12

 In this example, the selection of the PI parameters is based on 

root-locus design using the control system toolbox of MatLab. These parameters are 

chosen such that the closed-loop system is stable and so the system response can be fast 

without any overshoot.  



Figure 6 shows the closed-loop configuration of the system in the Laplace domain and 

includes the motor and controller-transfer function. The control law used is a classical PI, 

where T i is known as the restoration time of the integral action, Kp the proportional gain, 

and Kp/T i the integral gain.  

 

View the full-size image  

Figure 7a shows the simulated closed-loop motor response for different values of Kp and 

using the model given by Equation 3, with a T i = 50ms. In this graph, it's easy see that, 

for values greater than 1, the system response is faster than with values of Kp < 1. 

However, for Kp > 1 the motor response exhibits undesirable overshoot that can reduce 

the useful life of the motor. In this example, the gain selected was Kp = 0.5, although Kp = 

0.7 can be selected too. Figure 7b shows the simulated control input computes by the PI 

controller, such that the motor can reach the reference specified (6,000 RPM). Note that 

these signals are less than or equal to 10V, due to the saturation block included to  

simulate the DAC's output range. The following section shows the experimental motor 

response with the gains selected.  

 

View the full-size image  

Implementation of the PI Controller  

PID controllers are widely used in the process-control industry, mainly because of their 

effectiveness and simple structure.
16
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Equation 4 shows the expression of a PID controller in continuous time, where u(t) is 

called the control signal and e(t) is the error signal. Kp, K i, and Kd are the proportional, 

integral and differential gains, respectively.  

 

(4)  

In this example a PI controller is used, with Kd = 0 and K i = Kp/T i. Taking the derivative 

of Equation 4, we obtain:  

 

(5)  

where:  

 

and:  

.  

However, this expression is difficult to implement in a microcontroller, so we can 

approximate the derivative by mean of Equation 6, known as the finite -difference 

approach, where ΔT is the sample time.  

 

(6)  

Substituting Equation 6 in Equation 5, we obtain the discrete -time PI controller.  

 



(7)  

Once reducing Equation 7 and substituting the PI parameters selected, Kp = 0.5, T i = 

50ms, with a sample time ΔT = 10ms, the discrete-time representation of the PI controller 

is obtained and can be implemented in the microcontroller.  

 

(8)  

It's important to point out that in this application, the tuning of PI parameters was made in 

continuous time. However, the stability in discrete time must be analyzed with the 

parameters chosen too, mainly because the PI is implemented in a digital processor. In 

this analysis we found that the closed-loop poles are located in the unit circle (according 

to Routh's stability criterion for discrete-time systems), which means that the closed-loop 

system shown on Figure 6 is stable. In other words, this means the system is feasibly safe. 

For more details of this test, read Quiroz-Compen's report.
17

  

Figure 8a shows the experimental motor response using Equation 8 in closed -loop 

configuration. The reference given to the MCU was 6,000 RPM. In practice, th e motor 

reaches the reference in 0.01 min (600ms) and without overshoot. Nevertheless, the 

close-up in Figure 7a shows that there is a steady-state error, although its magnitude 

represents 1.3% of the steady-state value, which is acceptable in practice. Figure 8b 

shows the control input computes by the PI and applied to the motor for reach the 

reference imposed.  

 

View the full-size image  
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Figure 9 shows the flux diagram of the main program implemented into microcontroller. 

The assembly code is not shown to save space in this article, but you can find the code 

online at www.embedded.com/code.  

 

View the full-size image  

In this article we showed that a feedback-control scheme can be implemented in a simple 

8-bit MCU. Moreover, we've shown the use of a classic method to identify a DC motor. 

Despite the fact that the MCU is among the simpler ones available, the  time it requires to 

compute the whole program and bring the motors to their maximum reference speed 

(9,100RPM) was only 866ms in the worst case. So we believe that using the newer 

MCUs in a closed-loop configuration can improve the control of some electro-

http://www.embedded.com/code
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mechanical actuators such as valves or motors and improve the performance of some 

processes with slow dynamic behavior.  
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Reader Response  

 

Good article...  

Another 8051 based micro you might consider are the 8051F0xx series from SiLabs. You 

could eliminate a lot of peripheral components (D/A, oscillators, and perhaps even some 

of the amplifier circuitry).  

Although your assembly code is well written and commented nicely, I believe a good 

quality compiler and C would have made the project quicker and easier to maintain and 

adapt for various 8051 derivatives and other motor types.  
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Alternatives to using matlab for PI parameter selections should have been discussed --not 

everyone has MATLAB--and many that have it, don't have specialized toolboxes. For 

those that do have it, your MATLAB files would be helpful as well.  

- Paul Calvert 

Senior engineer 

Radiance Technologies 

Huntsville, AL  

 


