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Abstract: The insulin producing and releasing pancreatic β-cells play a key role in glucose
homeostasis. The proper function of these cells is characterized by a spiking-bursting activity
in their membrane potential. It is known that these cells are coupled with each other and that
this coupling can induce synchronization. This fact maybe relevant in the mechanisms of blood
glucose regulation. However, not much is known about conditions of synchronization, nor about
the topology of real-world β-cell network. Also about the conditions for the emergence of chaotic
bursting in networks of β-cells not much is known. We investigate these phenomena in terms of
complex network theory as model of β-cells networks, in which synchronization and emergence
of chaotic bursting occurs.
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1. INTRODUCTION

The spiking-busting activation of pancreatic β-cells is as-
sociated with their insulin secreting and the overall glucose
homeostasis. In isolation, a single β-cell can be on an acti-
vated state, in which busting periodically occurs. Alterna-
tively, the isolated β-cell can be inhibited with no spiking-
busting behavior. Both activated and inhibited β-cells are
naturally electrically-coupled via gap junction channels
within the pancreatic islets of Langerhans, studies avail-
able in the literature have related the periodic busting of
the entire ensemble of β-cells to the synchronization of the
network of β-cells [Smolen et al. (1993)]. In other studies,
the synchronization of electrical bursting and metabolic
oscillations have been mainly associated with electrical
coupling between the cells [Pedersen et al. (2005)]. How-
ever, there is not much known about the topology and
coupling strengths between β-cells, nor about conditions
for chaotic behavior on β-cell networks. So we ask, Can
the coupling between β-cells induce chaos, and when is
such network in synchrony? Using knowledge of complex
networks might help to get a deeper comprehension on
these phenomena.
In this paper we are interested in conditions for which β-
cells synchronize or produce chaotic behavior. Our partic-
ular interests lie in numerical and experimental modeling
of these cells.
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2. A SINGLE β-CELL

The model that is used in this research to simulate the
bursting behavior of β-cells was designed by Pernarowski.
The equations for this model are [Pernarowski (1998)]

du

dt
= f(u) − w − k(c)

dw

dt
=

1

τ̄
(w∞(u) − w)

dc

dt
= ε(h(u) − c).

(1)

In equation 1, u refers to the membrane potential, w
refers to an ionic activation and c refers to the glucose
concentration of the cell. The terms f(u), k(c), h(u) and
w∞ that are used in above formulas are defined as

f(u) = f3u
3 + f2u

2 + f1u

f3 = −
a

3
f2 = aû

f1 =
1

τ̄
− a(û2 − η2)

h(u) = β(u − uβ)

k(c) = τ̄ c

w∞(u) = w3u
3 + w2u

2 + w1u + w0

w3 = τ̄ −
a

3
w2 = aû

w1 =
1

τ̄
− a(û2 − η2) − 3τ̄

w0 = −3τ̄

(2)
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Fig. 1. States u,w and c of a bursting β-cell.

with parameters

a =
1

4
, η =

3

4
, û =

3

2
, β = 4,

uβ = −0.954, ε = 0.0025, τ̄ = 1.
(3)

The trajectories of single β-cell model are shown in Fig. 1.
A measure for chaotic behavior of a cell in isolation
is the Lyapunov exponent. It describes the long-term
development of a direction in the phase space of a system,
where a positive exponent represents expansion and a
negative exponent represents contraction. When there
exists at least one positive Lyapunov exponent, the system
can be considered as chaotic, with the magnitude of the
exponent reflecting the time scale on which the system
dynamics become unpredictable [Wolf et al. (1985)]. The
Lyapunov exponents are calculated by

hi = lim
t→∞

1

t
|J(t, x0)ui|, i = 1, 2, 3 (4)

where hi is the ith Lyapunov exponent of the isolated
cell along the direction ui; J(t, x0) is the Jacobian matrix
of equations (1) evaluated at a randomly selected initial
condition x0 and {u1, u2, u3} is a set of orthonormal
vectors in the tangent space of the system. hi is ordered
as

h1 ≥ h2 ≥ h3. (5)

To check if a β-cell produces chaotic behavior, the Lya-
punov exponents can be determined for the inhibited cell,
i.e. when the cell doesn’t produce bursting. For the β-cell
system this is the case when the parameter uβ = −1.3.
The three exponents, representing the directions of u,
w and c, are plotted in Fig. 2 over 10,000 seconds to
attain the final values h1 = −0.0277, h2 = −0.3621 and
h3 = −1.1233. All exponents are negative, meaning that a
β-cell is not chaotic.
System (1) was implemented on an electronic circuit to get
more realistic results, in this case all cells are different due
to uncertainties in the electronics.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Dynamics of Lyapunov exponents

Time [s]

Ly
ap

un
ov

 e
xp

on
en

ts

h
1

h
2

h
3

Fig. 2. Lyapunov exponents for a β-cell

3. COMPLEX NETWORKS AND THE
SYNCHRONIZATION CRITERION

The N node networks that will be discussed are diffusively
coupled only in their first state variable (u), i.e. the
coupling between a pair of cells is dependent on the
difference in output voltage of these cells. Then, the entire
network can be written as [Wang and Chen (2002)]

ẋi = f(xi) + c
N

∑

j=1

aijΓxj , i = 1, 2, . . . , N (6)

where xi = (ui, wi, ci) are the state variables of node i,
the constant c > 0 represents the coupling strength, and
the internal coupling matrix equals Γ = diag(1, 0, 0) in our
situation. If there is a connection between node i and node
j (i 6= j), then aij = aji = 1; otherwise, aij = aji = 0.
aii can be defined using the degree ki of node i, which is
the total number of connections of node i :

aii = −ki = −
N

∑

j=1,j 6=i

aij , i = 1, 2, . . . , N. (7)

A coupling matrix A = (aij) ∈ R
N×N can be created,

which represents the coupling configuration of the net-
work. There are no isolated clusters considered inside
the network, meaning that A is a symmetric, irreducible
matrix having a zero eigenvalue with multiplicity 1 and all
other eigenvalues strictly negative:

0 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN . (8)

3.1 Synchronization

According to [Wu and Chua (1995)], a network will syn-
chronize if the largest non-zero eigenvalue λ2 of A is
negative enough, i.e.

λ2 ≤ −
T

c
. (9)

where c > 0 is the coupling strength of the network
and T > 0 is a positive constant such that zero is an
exponentially stable point of the n-dimensional system.



3.2 Chaotic behavior

Lyapunov exponents are used to characterize chaotic be-
havior of a single cell, while eigenvalues of the coupling
matrix are used to say something about synchronization
of the network. These can be combined in transverse Lya-
punov exponents (tLes) to determine chaotic behavior of
a network [Barajas-Ramı́rez and Femat (2008)]:

µi(λk) =hi + cλk

i = 1, 2, 3; k = 1, 2, . . . , N.

(10)

with µi(λk) the tLe of the ith Lyapunov exponent of a
single cell hi and the kth eigenvalue λk of the coupling
matrix A. The coupling strength c < 0, because instead of
synchronization, chaos is wanted. The tLes are sorted as

µ1(λk) ≥ µ2(λk) ≥ µ3(λk)

µi(λN ) ≥ µi(λN−1) ≥ . . . ≥ µi(λ2) ≥ µi(λ1)
(11)

so µ1(λN ) is the largest tLe and µ3(λ1) is the smallest tLe.
Considering only inhibited β-cell, every cell in the network
will go to the same stable equilibrium point if the largest
tLe is negative, which means in our case (h1 < 0) that

h1

λN
> |c|. (12)

Extra conditions are presented in [Barajas-Ramı́rez and
Femat (2008)] to make distinction between chaotic and
unbounded solutions. Bounded chaotic solutions can be
expected when the largest tLe is positive, i.e.

h1

λN
<|c| <

hτ

λT
,

τ = 2, 3; T = 1, 2, . . . , N − 1.

(13)

but the remaining tLes compensate for this in order to
avoid unbounded solutions, i.e. the sum of tLes for any
node is negative:

m
∑

i=1

µi(λk) < 0, for any k. (14)

Nevertheless, these are not concrete boundaries: bounded
chaotic behavior may also occur when more than one
tLe is positive and the largest sum of tLes is negative.
Furthermore, bounded chaotic behavior may occur even
when only the largest tLes is positive. Nevertheless, the
compensation of the positive tLes plays a major role in
chaotic behavior.
This theory can be used to have a guideline when β-cells
may produce continuous bursting, a behavior which may
lead to exhaustion and failures in the cells.

4. NETWORK TOPOLOGY MODELS

To get an answer on the questions stated in the introduc-
tion, some benchmark network topologies will be studied.

(a) (b)

Fig. 3. Regular networks: a) Nearest neighbor topology:
each cell is connected to its l=6 nearest cells. b)
Globally coupled topology: all cells are connected to
each other. [Wang and Chen (2002)]

These are the regular nearest-neighbor and globally cou-
pled models and the complex small-world and scale-free
models.

4.1 Nearest-neighbor coupled

In the nearest-neighbor coupled model (Fig. 3a), a network
of N cells is arranged in a ring, where each cell is connected
to its l nearest cells, with l > 0 being an even integer.
The largest non-zero eigenvalue of this model is [Wang and
Chen (2002)]

λ2nn = −4

l/2
∑

j=1

sin2

(

jπ

N

)

, (15)

which means that λ2nn goes to zero for large networks such
that the nearest-neighbor network will be very difficult to
synchronize when the number of nodes is large.

4.2 Globally coupled

In the globally coupled model, all cells are directly con-
nected to each other. The coupling matrix for this network
has all non-zero eigenvalues equal to -N, where N is the
total number of cells in the network.
The requirement for synchronization is

λ2gc = −N ≤ −
T

c
(16)

so the network synchronizes easier when the network is
large.

4.3 Small-world

A transition between above regular networks and random
networks is the small-world model designed by Newman
and Watts (Fig. 4a). The starting point for this model is
the nearest-neighbor model. New connections are added
between cells with a probability p with the constraints
that a pair of cells can not be connected more than once
and a cell can not have a connection with itself [Wang and
Chen (2002)].
The largest non-zero eigenvalue of the coupling matrix is



(a) (b)

Fig. 4. Complex networks: a) Small-world topology: Near-
est neighbor topology, but with random extra con-
nections. b) Scale free topology: Each new cell is
connected to m existing cells. [Wang and Chen (2003)]

dependent on both the probability and the number of cells
in the network:

λ2sw(p, N) ≤ −
T

c
. (17)

When p = 0, this model reduces to the nearest-neighbor
network and for p = 1 it becomes a globally coupled
network.

4.4 Scale-free

Another complex network can be found in the scale-free
model of Barabási and Albert (Fig. 4b). The starting point
is a small number of cells m0. At every time step is a
new node introduced and connected to m ≤ m0 already-
existing cells. This happens with preferential attachment:
the probability Πi that a new cell is connected to already-
existing cell i depends on the degree ki of cell i related
to the total number of connections in the network: Πi =
ki/Σjkj [Wang and Chen (2003)].
This network will consist of a few cells having many
connections (“hubs”) and many cells with only a few
connections. There is no analytical formula present for
calculating the eigenvalues, the only thing that can be said
for this network is that the largest non-zero eigenvalue is
dependent on m0 and m:

λ2sf (m0, m) ≤ −
T

c
, (18)

where m is often chosen equal to m0.

The above topologies can also be applied experimentally
with the use of multiple cells on a circuit board and a
computer connecting the cells.

5. RESULTS

5.1 Synchronization

The threshold value of the system is numerically deter-
mined as T = 1.6. Because there are no analytical formulas
present to calculate λ2 for some network topology models,
they are determined numerically and the minimum cou-
pling strength for synchronization is calculated. This is
done 20 times for network sizes of 4 to 100 cells of each
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Fig. 5. Minimum coupling strength needed for dynamical
synchronization of the specific network a)Nearest-
neighbor, b) Globally coupled, c) Small-world and
d)Scale-free network

topology to get a good average.
As expected, the minimum coupling strength to synchro-
nize a nearest-neighbor network increases rapidly when
the network grows (Fig. 5a). For l = 2, this results in a
coupling strength c = 405.4 for a network of 100 cells. The
needed coupling strength is reduced significantly to c = 29
when each cells is connected to its six nearest neighbors,
but is still very large.
From equation (16), it would be expected that the coupling
strength of a globally coupled network is inversely propor-
tional to the number of cells. This is verified by Fig. 5b,
where a network of 4 cells needs c = 0.4 to synchronize
and c = 0.016 is enough for a network of 100 cells.
In general, the small-world topology is showing a decreas-
ing line with respect to the number of cells (Fig. 5c).
Reducing the number of nearest-neighbors in this model
will give a different result mainly in small networks: a
stronger coupling is needed. But when the network is
sufficiently large, it can be noticed that the network with
l = 2 gets close to the network with l = 6 when the
network is sufficiently large. On the other side, reducing
the probability of a new connection significantly increases
the coupling strength needed for synchronization. In Fig.
5c you can see the differences between p = 0.20 and
p = 0.05, where c = 0.12 and c = 0.55 respectively are
needed for synchronziation of a network of 100 cells.
The scale-free network shows an increasing coupling
strength which remains constant for sufficiently large net-
works. This is interpretable because addition of a new cell
doesn’t change the topology of the network significantly
when it is sufficiently large. Increasing the number of
connections per newly added cell from m = 3 to m = 5
decreases the needed coupling strength from 1.05 to 0.5
(Fig. 5d).
It can be concluded that all topologies behave differently.
While the minimum coupling strength for the nearest-
neighbor and the scale-free topologies increases for net-
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Fig. 6. A nine-cell globally coupled network synchronizes
when a coupling of c = 0.18 is introduced after 1000
seconds
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Fig. 7. 1st-, 2nd- and 3rd-largest tLes and the line when the
largest sum of tLes is zero for different topologies of
networks ranging from N = 4 to N = 100. a) Nearest
neighbor (l = 6), b) Globally coupled, c) Small-world
(p = 0.05, l = 6) and d) Scale-free (m0 = m = 3).

work size, the opposite happens for the globally coupled
and small-world topologies.
Fig. 6 is an example of the bursting of a network consisting
of nine cells. Initially, the cells are uncoupled and bursting
is asynchronous. The cells are globally coupled after 1000
seconds with c = 0.18, which is stronger than the minimum
coupling strength of c ≥ − 1.6

−9
= 0.1778. The resulting

bursting behavior is equal to that of a single cell (fig.
1). Interesting is that this happens within two bursting
periods while the coupling strength is only slightly stronger
than necessary for synchronization.

5.2 Chaotic behavior

To have guidelines for chaos in networks of β-cells, the
values of the coupling strength when the largest sum of
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Fig. 8. Trajectories of a globally coupled network of nine
cells for different coupling strengths. a) all cells go to
the equilibrium point for c = −0.03, b) asynchronous
bursting at c = −0.08 (two cells shown) and c)
continuous bursting at c = −0.50 (one cell shown).

tLes equals zero and when the tLes are zero, are calculated
for examples of the different topologies.
These values get constant for the nearest-neighbor network
in an early stage of the network growing process (Fig. 7a).
Following the guidelines of subsection 3.2, synchronization
to the equilibrium point would be expected till a very small
coupling strength of c = −.003 for all network sizes of
the 6-nearest-neighbor topology. Bounded chaotic behav-
ior can be expected between c = −0.003 and c = −0.042,
whereupon for smaller values unbounded behavior may
exist. The largest sum of tLes gets positive at c = −0.059.
These values get closer to zero when the number of nearest-
neighbors is increased.
In the globally coupled model, the tLes get more easily
positive for large networks (Fig. 7b). The coupling strength
needed to get the first tLe, the second tLe and the largest
sum of tLes positive, converges to c = −0.004 for a network
of 100 cells. The third tLe gets positive for c = −0.011 in
the same network.
The results for the small-world model (Fig. 7c) look similar



Fig. 9. Example of a real time globally coupled network
of six cells with coupling strength c = 0.6. Four cells
shown due to limited input of the oscilloscope and a
time scaling is applied for viewing purposes

to the previous model. The coupling values when the tLes
become positive are more separated and need a more neg-
ative coupling strength to get chaotic in this example. But
a higher probability for new connections or more nearest-
neighbors in the initial network will result in less negative
tLes and thus are more similar to the globally coupled
network.
Also the scale-free model behaves the same as the previous
two models: when the network is larger, it is easier to get
chaotic behavior (Fig. 7d). When the number of connec-
tions for a newly introduced cell is increased, the tLes will
be less negative.
In overall, it can be concluded that it is easier to attain
chaotic behavior for a large network with many connec-
tions than for a small network with few connections. The
results of all topologies are very close to each other, espe-
cially for large networks. The only exception is the nearest-
neighbor model.
The globally coupled network of nine cells is again men-
tioned to visualize the different kinds of chaotic bursting.
The largest-, second largest- and third largest tLe become
positive at c = −0.003, c = −0.04 and c = −0.125
respectively. The largest sum of tLes is positive for values
below c = −0.058.
It would be expected that all cells go to the equilibrium
point until the largest tLe becomes positive. However, this
behavior is still encountered till c = −0.034 (Fig. 8a). The
oscillatory responses during the first seconds are due to
the choice of the initial values.
Asynchronous bursting is found for c = −0.035 and below
(Fig. 8b). The bursting period and amplitude increase
for more negative values of c till eventually all cells con-
tinuously burst (fig. 8c), but the network stays always
bounded.
This example illustrates that the tLe method can create
certain regions to predict chaos, but it doesn’t give con-
crete boundaries.

5.3 Experimental results

The advantage to use electronic cells is that the coupling
of cells is easier and all cells are different because of

uncertainties in the electronic components. The result
of seven globally coupled cells is shown in Fig. 9 as
illustration. A coupling strength c = 0.6 was used to get a
satisfactory synchronization. This is three times as high as
theory says and the result is a larger bursting period and
no perfect synchronization. This is due to the differences
and uncertainties between the cells.

6. DISCUSSION

In this report we used four different network topologies for
ensembles of β-cell model and investigated conditions for
synchronization and emergence of chaotic behavior. Also
an electronic setup is successfully created to simulate these
networks. This shows potential for explaining biological
processes and especially the electronic setup may help
biologists with experiments on β-cells, because it is much
easier interpret than numerical simulations.
It has been decided to only mention general coupling for
this contribution, i.e. the coupling strength for all connec-
tions is equal and the heterogeneity of a network is only
caused by its topology. For future research, it is possible to
have different coupling strengths for different connections.
Although this might give a more accurate representation
of the real coupling between β-cells, it will also be more
difficult to analyze.
Another remark is that it is possible to have partial
synchronization for certain coupling strengths, smaller
than the coupling strength needed for complete synchro-
nization, where only a part of the network synchronizes.
Knowledge is absent if this is wanted in this specific bio-
logical purpose, but it may be subject for future research.
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