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Abstract

In this paper we present the modification of the Mikhailov stability crite-
rion for linear fractional commensurate order systems. The modification con-
sists in determining the appropriate measure for the total argument change
depending on the highest fractional order αn = nα of the system and not
only on the integer n as stated in the literature. The validity of the result is
illustrated by means of several examples.
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1. Introduction and problem formulation

The use of fractional calculus for modelling physical systems has attracted
increasing attention in last decades [1, 2, 3]. In particular, the application of
fractional calculus in control theory has recently become an active area, where
one of the most fundamental problems is the stability analysis of fractional
order systems, see, for instance, [4, 5, 6, 7].

It is a well-known result, firstly proved by Matignon [8] and then gener-
alized by Bonnet and Partington [9], that a linear fractional order system is
asymptotically stable if and only if all the roots of the characteristic pseudo-
polynomial associated to the system lie in the open left half of the complex
plane. However, the application of such a result demands to determine the
roots distribution of pseudo-polynomials which, in the general case, is a diffi-
cult task. Therefore, it is desirable to have some methods of determining the
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stability without solving the roots of pseudo-polynomials. In this sense, some
classical methods for the stability of linear integer order systems have been
extended to the stability analysis of fractional order systems see, for instance,
[6] for a Nyquist type result and the recent paper [10] for a Routh-Hurwitz
type criterion.

Among other frequency criteria, a Mikhailov type stability criterion for
a class of linear fractional order systems with delays was presented in [11].
Since the class of linear fractional commensurate order systems is a particular
case of the class of delay systems considered in [11] it then appears that the
Mikhailov result presented in [11] can be applied to investigate the stability of
a linear fractional commensurate order system whose characteristic pseudo-
polynomial is of the form

p(s) = ans
αn + an−1s

αn−1 + · · ·+ a1s
α1 + a0,

where ak, k = 1, 2, . . . , n, are real with an 6= 0 and αk = kα, k = 1, 2, . . . , n,
for some α ∈ R+. In fact, note that p(s) is directly obtained from the
quasipolynomial (4) in [11] by making all the delays equal to zero.

For a general description of roots distribution of pseudo-polynomials
within the structure of Riemann surfaces, see the fundamental works of
Matignon [8] and Bonnet and Partington [9]. Based on the results of [8]
and [9], we here adopt the following definition of stability:

Definition 1. The pseudo-polynomial p(s) is said to be stable if all its roots
lie in C−, the open left half of the complex plane.

The main idea behind the classical Mikhailov criterion is to substitute
s = iω in p(s) to get p(iω) = u(ω) + iv(ω) and then measure the total
variation of the argument of the function p(iω) as ω increases from 0 to
∞. The corresponding plot of p(iω) in the complex plane is the so-called
Mikhailov curve. For the pseudo-polynomial p(s) the Mikhailov type result
(see Theorem 2 in [11] and also Theorem 9.3 in [13]) looks like follows:

Theorem 1. [11] The pseudo-polynomial p(s), with 0 < α ≤ 1, is stable if
and only if

∆ arg p(iω)|∞0 = n
(π

2

)
,

which means that the plot of p(iω) with ω increasing from 0 to +∞ runs in
the positive direction by n quadrants of the complex plane, missing the origin
of this plane.
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One immediately observes that the theorem’s condition coincides with
that of the classical Mikhailov condition for integer order systems which,
in principle, is not expected due to the fractional nature of p(s). However,
when one plots the Mikhailov curve of some particular pseudo-polynomials
of the form of p(s) one realizes the following (as it will be shown later in the
examples section of the paper):

1. The condition of the theorem is not correct, and
2. The Mikhailov curve does not always runs in the positive (counter-

clockwise) direction.

These two main issues motivate us to search for the modified Mikhailov
stability criterion for the pseudo-polynomial p(s).We will show that the right
condition for the Mikhailov stability criterion is αn

(
π
2

)
and not n

(
π
2

)
as

stated in above theorem, a result that to the best of our knowledge has not
been reported in the literature. We here present such a result not only when
0 < α < 1 but also when 1 ≤ α < 2. The result is derived by following the
main ideas of the Mikhailov criterion as viewed by Popov [12] and exploiting
the fact that the stability of p(s) can be determined by means of the root
distribution of the integer order polynomial

p̃(λ) = anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0, (1)

in the region

Mα =
{
λ ∈ C :

απ

2
< arg(λ) ≤ π or − π < arg(λ) < −απ

2

}
,

of the complex λ−plane, as it is stated by the following result:

Lemma 1. [8] The pseudo-polynomial p(s) is stable if and only if 0 < α < 2
and the n roots λj, j = 1, 2, . . . , n, of the polynomial p̃(λ) lie in Mα.

2. Main Results

Before to establish the Mikhailov criterion we present some necessary
conditions for stability of pseudo-polynomials. For integer order polynomials,
it is well-known that a necessary condition for Hurwitz polynomials, i.e.
polynomials with all roots lying in C−, is to have all its coefficients non
zero and of the same sign, either all positive or all negative. Such necessary
condition is known as the Stodola stability criterion for polynomials see [14].
The following Lemma shows that the Stodola criterion holds for p(s) when
1 ≤ α < 2.
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Lemma 2. Let 1 ≤ α < 2. If p(s) is stable then all its coefficients are non
zero and have the same sign.

Proof. If p(s) is stable then all roots of p̃(λ) lie in Mα. Since Mα ⊆ C−,
it then follows that p̃(λ) is a Hurwitz polynomial and, therefore, the result
follows from the Stodola criterion.

Unfortunately, the Stodola criterion does not hold for p(s) when 0 < α <
1 but, however, we are still able to establish a simple necessary condition for
stability.

Lemma 3. Let 0 < α < 1. If p(s) is stable then the coefficients an and a0
are non zero and have the same sign.

Proof. Clearly, an 6= 0. If p(s) is stable then all roots of p̃(λ) lie in Mα. Since
Mα * C−, p̃(λ) may has complex conjugated roots with positive real parts
but, in particular, neither positive real nor zero roots. The no existence of
zero roots of p̃(λ) implies that a0 6= 0; otherwise we can write p̃(λ) = λmq̃(λ),
where m < n and q̃(λ) a certain polynomial of degree n−m with a nonzero
constant coefficient, which, in turn, it will imply the existence of a zero root
of p̃(λ). Let us suppose that an > 0 and a0 < 0. For λ real we have

p̃(0) = a0 < 0 and lim
λ→∞

p̃(λ) = +∞.

Then, the continuity of p̃(λ) w.r.t. λ implies that p̃(λ) has at least one
positive real root which contradicts the stability of p(s). Now, suppose that
an < 0 and a0 > 0. For λ real we have

p̃(0) = a0 > 0 and lim
λ→∞

p̃(λ) = −∞

and, therefore, p̃(λ) has at least one positive real root which again contradicts
the stability of p(s). Thus, we conclude that the coefficients an and a0 are
non zero and have the same sign as desired.

Remark 1. It is important to note that the Lemma 3 is equivalent to Lemma
9.3 in [13] but here derived from a different line of arguments independently
of the Mikhailov criterion.

We now address the Mikhailov stability criterion. Firstly, we observe that
from the Lemmas 2 and 3 one can assume without loss of generality that:
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1) If 1 ≤ α < 2 then all the coefficients of p(s) are positive, and

2) If 0 < α < 1 then the coefficients an and a0 are positive.

Hence, in any case, one has that p(0) = a0 > 0 and, therefore, the
Mikhailov curve always starts on the positive real axis, as occurs in the
polynomial case. Now, consider the polynomials

p̃0(λ) = (λ− λ0) and p̃1(λ) = (λ− ζ1)
(
λ− ζ̄1

)
,

where λ0 ∈ R, λ0 6= 0, ζ1 = ρ1e
φ1i and ζ̄1 = ρ1e

−φ1i, with ρ1 > 0 and φ1 ∈
(0, π) . For 0 < α < 2 and r ∈ [0,∞) let θ0 (r) = arg

(
re

απ
2
i − λ0

)
, θ1 (r) =

arg
(
re

απ
2
i − ρ1eφ1i

)
and θ2 (r) = arg

(
re

απ
2
i − ρ1e−φ1i

)
. Then

θ0 (r) = arg
(
p̃0(re

απ
2
i)
)
,

θ (r) = θ1 (r) + θ2 (r) = arg
(
p̃1(re

απ
2
i)
)
.

The following two Lemmas characterize the total change in θ0 (r) , θ1 (r) , θ2 (r)
and θ (r) as r varies from 0 to ∞, and it will be essential for deriving the
Mikhailov stability result.

Lemma 4. For θ0 (r) the following hold:

1. If λ0 < 0 then θ0 (r) is an increasing function of r in the interval [0,∞)
and

∆θ0 (r)|∞0 =
απ

2
. (2)

2. If λ0 > 0 then θ0 (r) is a decreasing function of r in the interval [0,∞)
and

∆θ0 (r)|∞0 =
απ

2
− π. (3)

Proof. For the sake of brevity we will prove the statement for the case when
0 < α < 1, see Figure 1. The proof of the case 1 ≤ α < 2 follows the same
line of arguments.

1. λ0 < 0. We have θ0 (0) = arg(−λ0) = 0. It is geometrically clear
that θ0 (r) is an increasing function (the vector v = re

απ
2
i − λ0 rotates

counter-clockwise) of r in the interval [0,∞) and θ0 (r) → απ
2

when
r →∞, which leads to (2).
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Figure 1: Negative and positive real roots when 0 < α < 1.

2. λ0 > 0. We have θ0 (0) = arg(−λ0) = π. It is geometrically clear
that θ0 (r) is a decreasing function (the vector v = re

απ
2
i − λ0 rotates

clockwise) of r in the interval [0,∞) and θ0 (r) → απ
2

when r → ∞,
which leads to (3).

Lemma 5. For θ1 (r) , θ2 (r) and θ (r) the following hold:

1. If απ
2
< φ1 < π then θ1 (r) is an increasing function and θ2 (r) is a

decreasing function when 0 < α < 1, while that θ1 (r) and θ2 (r) are
both increasing functions of r in the interval [0,∞) when 1 ≤ α < 2,
and

∆θ1 (r)|∞0 =
απ

2
− (−π + φ1) , ∆θ2 (r)|∞0 =

απ

2
− (π − φ1) , (4)

which implies

∆θ (r)|∞0 = 2
(απ

2

)
. (5)
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2. If 0 < φ1 <
απ
2

then θ1 (r) and θ2 (r) are both decreasing functions
when 0 < α < 1 while that θ1 (r) is a decreasing function and θ2 (r) is
an increasing function of r in the interval [0,∞) when 1 ≤ α < 2, and

∆θ1 (r)|∞0 =
απ

2
− (π + φ1) , ∆θ2 (r)|∞0 =

απ

2
− (π − φ1) , (6)

which implies

∆θ (r)|∞0 = 2
(απ

2
− π

)
. (7)

Proof. We prove the result by considering the following four cases:

1a) απ
2
< φ1 < π and 0 < α < 1, see Figure 2. In this case, we have

θ1 (0) = arg
(
−ρ1eφ1i

)
= −π + φ1. It is geometrically clear that θ1 (r)

increases (the vector v1 = re
απ
2
i−ρ1eφ1i rotates counter-clockwise) as r

increases and θ1 (r)→ απ
2

as r →∞, which leads to (4). On the other
hand, we have θ2 (0) = arg

(
−ρ1e−φ1i

)
= π − φ1 and θ2 (r) decreases

(the vector v2 = re
απ
2
i − ρ1e−φ1i rotates clockwise) as r increases and

θ2 (r)→ απ
2

when r →∞, that yields at the expression in (4). Hence,
the total change of θ (r) when r varies from 0 to ∞ is given by (5).

1b) απ
2
< φ1 < π and 1 ≤ α < 2, see Figure 3. By similar geometry, it can

be seen that the expressions given in (4) and (5) hold, but, however, in
this case both θ1 (r) and θ2 (r) increase (the vectors v1 = re

απ
2
i− ρ1eφ1i

and v2 = re
απ
2
i − ρ1e−φ1i rotate counter-clockwise) as r increases from

0 to ∞.
2a) 0 < φ1 <

απ
2

and 0 < α < 1, see Figure 4. In this case, we have
θ1 (0) = arg

(
−ρ1eφ1i

)
= π + φ1. It is geometrically clear that θ1 (r)

decrease (the vector v1 = re
απ
2
i−ρ1eφ1i rotates clockwise) as r increases

and θ1 (r) → απ
2

when r → ∞, which leads to (6). On the other
hand, we have θ2 (0) = arg

(
−ρ1e−φ1i

)
= π − φ1. Geometrically, it can

be seen that θ2 (r) decreases (the vector v2 = re
απ
2
i − ρ1e−φ1i rotates

clockwise) as r increases and θ2 (r) → απ
2

when r → ∞, that leads to
(6). Therefore, the total change of θ (r) when r varies from 0 to ∞ is
given by (7).

2b) 0 < φ1 <
απ
2

and 1 ≤ α < 2, see Figure 5. Again, by similar geometry,
one can arrive at the expressions in (6) and (7) but, however, in this
case, θ1 (r) decreases (the vector v1 = re

απ
2
i − ρ1eφ1i rotates clockwise)

while θ2 (r) increases (the vector v2 = re
απ
2
i − ρ1e−φ1i rotates counter-

clockwise) as r increases from 0 to ∞.
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Figure 2: Stable complex conjugated roots when 0 < α < 1

Theorem 2. The pseudo-polynomial p(s) is stable if and only if

∆ arg p(iω)|∞0 = αn

(π
2

)
= α

(nπ
2

)
, (8)

where 0 < α < 2.

Proof. We consider only pseudo-polynomials p(s) satisfying the Lemmas
2 and 3 since if the necessary conditions are not satisfied then there is no
significance in investigating their stability. Additionally, as we concern with
stability one can assume without loss of generality that p(s) does not have
any pure imaginary roots.

By virtue of the transformation, λ = sα, a point s = iω = ωe
π
2
i in the

complex s−plane is transformed to the complex λ−plane as λ = ωαe
απ
2
i.

Hence, it holds
p(iω) = p̃

(
ωαe

απ
2
i
)
. (9)
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Figure 3: Stable complex conjugated roots when 1 ≤ α < 2.

From this equality follows that the problem of measuring the total variation
of the argument of p(iω) when ω varies from 0 to ∞ is equivalent to the
problem of measuring the total variation of the argument of p̃

(
re

απ
2
i
)

when
r varies from 0 to∞. The integer order polynomial p̃(λ) has n different roots
in the complex λ−plane and it can be factorized into a product of the form

p̃(λ) = an (λ− λ1) · · · (λ− λm) (λ− ζ1)
(
λ− ζ̄1

)
· · · (λ− ζl)

(
λ− ζ̄l

)
,

where λj, j = 1, . . . ,m are real roots and ζj, ζ̄j, j = 1, . . . , l, are complex
conjugated roots, with n = m+ 2l. Then, we have

arg p̃
(
re

απ
2
i
)

= arg (an) +
m∑
j=1

arg
(
re

απ
2
i − λj

)
+

l∑
j=1

arg
(
re

απ
2
i − ζj

)
+

l∑
j=1

(
re

απ
2
i − ζ̄j

)
. (10)

The necessary conditions assure that p̃(λ) does not have neither zero nor
positive real roots. On the other hand, the assumption that p(s) does not
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Figure 4: Unstable complex conjugated roots when 0 < α < 1.

have any pure imaginary roots implies that p̃(λ) does not have a pair of
complex conjugated roots lying in ∂Mα. Let p be the number of roots of p̃(λ)
lying in (Mα ∪ ∂Mα) \ C. Then, there are n − p roots of p̃(λ) in the region
Mα. From the Lemmas 4 and 5 follow that each root (real or complex) lying
in Mα contributes απ

2
to the total argument change of p̃

(
re

απ
2
i
)

and that any
complex root lying in (Mα ∪ ∂Mα) \ C provides a total argument change in
p̃
(
re

απ
2
i
)

of απ
2
− π. Hence, it follows from (9) and (10) that

∆ arg p(iω)|∞0 = ∆ arg p̃
(
re

απ
2
i
)∣∣∞

0

= (n− p)
(απ

2

)
+ p

(απ
2
− π

)
. (11)

For stability of p(s) is necessary and sufficient that p̃(λ) has all its roots in
Mα, i.e., in the formula (11) we should have p = 0 which leads to (8) and the
proof of the result.

It is very important to note that the Mikhailov curve provides information
of the roots distribution of p(s) with respect to the imaginary axis when the
Mikhailov stability criterion is not satisfied, as occurs in the polynomial case.
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Figure 5: Unstable complex conjugated roots when 1 ≤ α < 2.

Indeed, if p(s) has a pair of pure imaginary roots s = ±iω0 then p(iω0) = 0.
Graphically, this is equivalent to the Mikhailov plot of p(iω) passes through
the origin of coordinates at the point ω = ω0. Therefore, from this and
the formula (11) follow that the Mikhailov curve allows us to determine the
number of roots of p(s) having negative or positive real parts, and also if
there are purely imaginary roots and, if so, their value.

Finally, note that the Theorem 2 does not say anything about the behav-
ior of the Mikhailov curve since in general one cannot determine the direction
(positive or negative) the curve will run for a stable p(s). In fact, it follows
from the Lemma 5 that for stable complex conjugated roots with 0 < α < 1,
θ1 (r) increases but θ2 (r) decreases and, therefore, θ (r) = θ1 (r) + θ2 (r) may
increase and/or decrease as r goes from 0 to ∞. As a consequence, to have
stable complex conjugated roots not necessarily implies that the Mikhailov
curve will run in the positive direction. On the other hand as it is also
established in Lemma 5, when 1 ≤ α < 2, for any pair of stable complex
conjugated roots one has that both θ1 (r) and θ2 (r) increases and, there-
fore, θ (r) = θ1 (r) + θ2 (r) increases when r goes from 0 to ∞. Thus, when
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1 ≤ α < 2, a stable pseudo-polynomial p(s) always has a Mikhailov curve
that runs in the positive direction.

3. Illustrative examples

Example 1. Let us consider the pseudo-polynomial

p(s) = s2/8 − 2s1/8 + 3. (12)

We have that αn = 2
(
1
8

)
, i.e. n = 2 and α = 1

8
. As the necessary condition

in Lemma 3 is satisfied for (12) we then proceed to plot the Mikhailov curve,
see Figure 6, in order to investigate its stability. As it can be seen from the
Figure 6, the Mikhailov curve runs in the negative direction and the total
argument change asymptotically approaches to π

8
that is equal to αn

(
π
2

)
and,

therefore, from Theorem 2 follows that (12) is stable, a result that can be also
verified by means of the roots calculation.

Note that this is in fact a counterexample to the Theorem 1 (Theorem
2 in [11]) since (12) is stable but neither the condition n

(
π
2

)
= π nor the

positive direction of the Mikhailov curve hold.
Indeed, as it can be seen from Figure 6, the argument of p(iω) firstly is

negative and decreasing then increases passing through zero and π
8

to finally
decreases again by asymptotically approaching to π

8
. It is very important to

note that this could never happen if p(s) were a polynomial.

Example 2. Consider the pseudo-polynomial

p(s) = 0.8s2.2 + 0.5s0.9 + 1 (13)

which has been widely studied in the literature, see for instance [15]. We
have that αn = 22

(
1
10

)
= 2.2 and, therefore, n = 22 and α = 1

10
. Firstly, we

observe that the necessary condition in Lemma 3 is satisfied. The Mikhailov
plot of (13) is shown in Figure 7. As it can be seen from the Figure, the total
argument change asymptotically approaches to 11

10
π which is equal to αn

(
π
2

)
.

Hence, from the Theorem 2 one concludes that (13) is stable as it is well-
known by means of roots calculation, see [15]. Note that, in this case, the
curve runs in the positive direction.

Example 3. Consider the following pseudo-polynomial studied in [5]:

p(s) = s− 2s1/2 + 1.25. (14)
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Figure 6: Mikhailov curve for (12)

We have that αn = 2
(
1
2

)
= 1 and, therefore, n = 2 and α = 1

2
. Clearly, the

necessary condition in Lemma 3 is satisfied. The Mikhailov curve of (14) is
plotted in Figure 8 from which is obtained that the curve runs in the negative
direction and the total argument change asymptotically approaches to −3π

2
.

It follows from Theorem 2 that (14) is unstable.
Now, we illustrate that the Mikhailov curve allows us to determine the

number of unstable roots. Firstly, we observe that (14) has no pure imaginary
roots since the curve does not pass through the origin. Then, from the formula
(11) one directly obtain p = 2 and thus (14) has two complex conjugated roots
with positive real part, a result verified in [5] by means of roots calculation.

Example 4. In this example we illustrate the main results for
pseudo-polynomials with 1 ≤ α < 2. Firstly, we illustrate the potential of
the Stodola type criterion given in Lemma 2. To this aim, consider the fol-
lowing two pseudo-polynomials p1(s) = s

8
3 + 1 and p2(s) = s

8
3 + 2s

4
3 − 1.

Since, in these cases, we have that α = 4
3

and for p1(s) there is a zero co-

efficient (there is not a term of s
4
3 ) while that for p2(s) the coefficients have

not the same sign, it then directly follows from Lemma 2 that p1(s) and p2(s)

13



Figure 7: Mikhailov curve for (13)

are unstable. Of course, in both cases, such conclusions can be verified by
numerical calculation of the roots.

To illustrate the Mikhailov stability criterion let us consider the following
pseudo-polynomial:

p(s) = s2
√
2 + 4s

√
2 + 8. (15)

We have αn = 2
√

2 that leads to n = 2 and 1 ≤ α =
√

2 < 2. For (15) the
necessary conditions given in Lemma 2 hold. The Mikhailov curve of (15)
is plotted in Figure 9 from which one gets that the total argument change
asymptotically approaches to

√
2π being equal to αn

(
π
2

)
and hence (15) is

stable by Theorem 2. Note that the Mikhailov curve runs in the positive
direction as it is established by our results.

4. Conclusions

In this paper, we addressed the Mikhailov stability criterion for general
pseudo-polynomials of commensurate order. Firstly, we derived some nec-
essary conditions for stability of pseudo-polynomials which are the coun-
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Figure 8: Mikhailov curve for (14)

terpart of the well-known Stodola stability criterion for polynomials. As
demonstrated, the Stodola stability criterion remains valid for 1 ≤ α < 2
but not when 0 < α < 1. In this latter case, a necessary condition for
stability in terms of the coefficients an and a0 is obtained. The necessary
conditions are very important since allow us to easily determine unstable
pseudo-polynomials by simple inspection.

The main result of this paper is the modification of the Mikhailov sta-
bility criterion. The modification consists in determining the appropriate
measure for the total argument change of p(iω), when ω varies in the in-
terval [0,∞). Thus, our main result in Theorem 2 established that such a
measure is αn

(
π
2

)
, where αn = nα is the highest fractional degree of the

pseudo-polynomial, and not n
(
π
2

)
as it has been reported in the literature.

Moreover, it is demonstrated that this Theorem is true not only in the case
when 0 < α < 1 but also when 1 ≤ α < 2. Additionally, it is shown that
from the Mikhailov curve the number of roots having negative or positive real
parts as well as the existence of purely imaginary roots can be determined.

Another important result is that the Mikhailov curve need not necessarily
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Figure 9: Mikhailov curve for (15)

always rotate in the positive (counterclockwise) direction for a stable pseudo-
polynomial. In other words, the so-called monotonic phase increase property
for stable integer order polynomials is not satisfied, in general, for stable
pseudo-polynomials. It is only in the case when 1 ≤ α < 2 that such a
property holds for stable pseudo-polynomials.
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