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The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this
paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynami-
cal evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-
order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing
equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization
scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense,
i.e., the differencee=x3—Xx; is close to zero for all tim&é=t,=0, wheret, denotes the time of the control
activation.
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[. INTRODUCTION about the synchronization synthesis. Thus, for instance, the-
oretical and experimental results show synchronous behavior
Chaos synchronization is a very interesting problem thatn nature. For instance, in Refdl1,14], authors have shown
has been widely studied in recent years. Actually, there argery interesting results about the chaotic synchronization
two main directions in the research of the chaos synchroniphenomenon in neurons. Nevertheless,the microscopical
zation: (i) synthesis andii) analysis. The problem of syn- scale the mutual interactions are not yet clearly understood
chronization synthesis is to design a force for coupling twolndeed, only phenomenon models have been (4&d In
chaotic systems. The coupling force can be designed linegirinciple, it is possible that synaptic communication can be
[1,2] or nonlinear{3,4]. The actual challenge in problem of yielded between neurons with different dynamic model. For
synchronization synthesis is to achieve and to explain thexample, synchronous activity has been observed in thalamic
synchronization between chaotic systems with differentand hippocampal neurons netwoilks8]. An alternative for
model[5,6,7]. Synchronization analysis consists(@ clas-  understanding synchronous behavior in nature is to develop
sification of the synchronization phenomef&9] and (b) synchronization strategies. In particular, a synchronization
comprehension of the synchronization propert®sh as ro-  strategy is developed in this paper.
bustnesqd10] and/or bifurcation[11]). An important chal- There is one interesting question in this direction: is the
lenge in synchronization analysis is to develop genuine indisynchronous behavior in nature yielded from a feedback of a
cators of chaotic synchronization. Such a problem ariseged-forward coupling force? There is no definitive answer for
from classical indicators failure. For example, even ifabove question. As a matter of fact, synchronization is the
Lyapunov table indicates that chaos has been controlledesults of the coupling between dynamical systems. Coupling
small disturbances can provoke deficiency in such indicatorsan be performed via two basic interconnections: fed-
[12]. forward and feedback. Fed-forward interconnection consists
This paper addresses the problem of the synchronizatioof the input of a dynamical signal without return. On con-
synthesis. Such a problem can be classified in the followingrary, feedback implies that a potion of the system is re-
research areadi) the study of potential applications for turned. Both interconnections have been used for chaos con-
chaos synchronization and) development of synchroniza- trol; see Refs.[19,20 for fed-forward and[2-6,9 for
tion strategies. Concerning the first research area, chaos syfeedback. Indeed, a combination of both interconnections
chronization has application in several fields as biologicakan be performed for synchronization of chaotic oscillators
systems, where the research is focussed in neurons latticE®1]. Since both interconnections achieve chaos synchroniza-
[13,14], and transmissions of secure messffe 16. Re-  tion, one is unable to confirm that synchronous behavior in
garding development of synchronization schemes, severaature is only a consequence of feedback coupling. However,
strategies can be found in literatuffer example, lineaf2], synthesis of chaos synchronization via feedback allows us to
nonlinear[4], or adaptivg[17]). In particular, a synchroniza- expect promissory results. In this sense, some results show
tion strategy is developed in this paper from nonlinear feedthat synchronization between chaotic systems whose model
back. Synchronization synthesis is a problem of first generais strictly different has been reporté8—7]. Nevertheless,
tion while applications of synchronization is a problem of until our knowledge, there is no previous results about the
second generation. However, there is no full knowledgesynchronization between chaotic systems whose order is dif-
ferent. Such a problem is reasonable if, for instance, we think
that order of the thalamic neurons can be different than hip-
*FAX: (+52-444 833-5412. pocampal neuronjsl8]. One more example is the synchroni-
Email address: rfemat@ipicyt.edu.mx zation between heart and lung. One can observe that both
"Present address: Facultad de Ingamijetiniversidad Autooma  circulatory and respiratory systems behave in synchronous
de San Luis PotosEmail address: gcp@cactus.iico.uaslp.mx way. However, one can expect that model of the circulatory
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system is strictly different than respiratory system, which can
involve different order. In addition, the synchronization of
strictly-different chaotic systems is interesting by itself.

This paper addresses the synthesis of the chaos synchrc
nization between oscillator with different model. We present
a nonlinear approach for synchronizing chaotic system
whose order is not equal. In particular, we present the match-
ing of the Duffing equation attractor with a projection onto x
one canonical plane of the Chua circ(dbuble-scroll oscil-
lator). In this sense, results show thatluced-order synchro-
nizationcan be achieved by nonlinear systems. This means
that two chaotic systems can be synchronized in spite of
order of the response system is less than order of the drive
system. Of course, since order of response oscillator is
smaller than master system, the synchronization is only at-
tained in reduced order. Results are focused on geometrice
features of synchronization phenomenon. Chua-Duffing syn-
chronization is allowed by a nonlinear feedback, which
yields a smooth and bounded coupling forée., control
commang. The nonlinear feedback is designed from a
simple algorithm based on time derivative of system output
along the master/slave vector fields. The text is organized a:
follows. Chua-Duffing synchronization problem is presented
in Sec. Il. Section Il contains the proposed feedback and
design details. Numerical simulations and discussion are pre
sented in Sec. IV. Finally, text is close with some concluding
remarks.

Il. PROBLEM STATEMENT

Chua system is an electronic circuit with one nonlinear ‘ ‘ ‘
resistive element. The circuit equations can be written as & T
. . . . . . -2 <15 -1 -0.5 0 0.5 1 1.5 2
third-order system that is given by the following dimension- X,
less form[22]:
. FIG. 1. Phase portrait of the Chua circuit and Duffing equation
X1=yi[ X3 =X = f(X1)], without coupling.(a) attractor of the Chua system and its projec-
tions on canonical plane&h) attractor yielded by Duffing equation.

X2:X1_X2+X3, (1)

) evolution. Parameters were chosen&s 0.15,a4=0.3, and

X3= = 72X2, »=1.0. Initial conditions were arbitrarily located at origin.

, Obviously, there is difference between attractors of sys-
where f(x;) = ysXy +0.5(ya= o) [[Xa+ 1= |x1= 1], %S, tems(1) and(2) [see phase portrait in Fig(d) and projec-
i=1,2,3,4,are pos[tlve constant.'Let us assume that systefihns in Fig. 1a)], i.e., both systemg1) and (2) are not

(1) represents the drive system. Figui@lshows the phase gynchronized neither phase nor frequency. Moreover, there is
portrait of system(1) and its projection on the canonical synchronization in any sengsee Refs[8,9] for details
planes. The parameters were chosen as follows:10.0,  concerning definition of synchronization kindhe classi-
y2=—14.87,v;=—0.68, andy,=—1.27. Initial condition  c3| synchronization problem is somewhat distinct than prob-

were arbitrarily located at the poin(0)=(0.1,-0.5,0.2).  |em of synchronizing different chaotic systems. In classical
Now, let us consider the Duffing equation, which is givengynchronization problem, drive and response system has
by similar geometrical and topological properti€23]. Thus
S, master/slave interconnection can be sufficient to attain syn-
X1=X2, chronization[24]. Latter one is understood as adjustment of
master/slave dynamics due to coupling via output of both
xb=x]—x;3— oxy+ 7o(t) + U, (20 systems. Synchronization of different chaotic systems is a

hard task if we think that(i) initial conditions of master and
where § is a positive parameter that represents damping coslave systems are different and unknowi),topological and
efficient, 7o(t) = a cos(wt) denotes driving force andis the  geometrical properties of different chaotic systems are quite
coupling force(controllen. Figure Xb) shows the phase por- distinct and(iii) unrelated chaotic systems have strictly dif-
trait of Duffing equation fou=0 for all t=0 (uncontrolled ferent time evolution.
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Systemg1) and(2) have been widely used to study chaoswherer,(x’,t;p) = (1+28)X,+ (1—27y,)X; — a COS(wt) can
synchronization when drive and response system have sanmpe interpreted as a disturbance force acting onto the linear
order. However, we are interested in synchronization of Dufsystem(3), pe R* denotes a parameter set axide R? is a
fing attractor with a projection in a canonical plane, i.e., todisturbance vector. Thus, the synchronization problem be-
lead the attractor of Eq2) to the geometrical properties of a comes to find the control commamidsuch that systern8) is
projection of systentl). To study such a problem, we choose asymptotically stable at origin for any initial condition
X3 as measured state from master sysfé&m. (1)] whereas  e(0) e R?. Note that if control commandis able to stabilize
x; is the measured observable of the slave syqtem (2)]. system(3) at origin, then the synchronization error and its
Thus the chaos control objective tis design a feedback u dynamics can be leaded to zdi®., u induces a steady state
such that the discrepancy error=ex; — x5 tends to zero as e(t)=0 for allt=t,=0, wheret, is the time when control is
t—oo. Note that above goal implies that é—0 ast— oo, activated. That is, dynamic evolution of slave system can be
then x;—x; for all t=t,=0 and any initial discrepancy Mmanipulated toward the master behavior.
e(0)=x1(0)—x5(0). Therefore, at least, the partial synchro-
nization[8,9] of both master and slave systems can be at- A. Reduced-order synchronization under partial knowledge
fcained vi_a feedback coupling. However, t_he (_:ontr_ol objective e propose the following feedback:
is to achieve the reduced order synchronization, i.e., all states
of the response system should be synchronized, in some u=(1+28)x,+(1—27y,)X,— a cog wt) + ke, +Kye,,
sense, with any states of the drive system. (4)

wherek,, k, are constant parameters of the control which
are computed from the following procedure. Equati@
Synchronization of chaotic systems via feedback can b&nder controller(4) action results in the following closed-
addressed from the stabilization of the synchronization sydoop systeme=Ae where the matriA is given by
tem error around origifisee for instancdg]) or as the track-
ing of a target trajectory. First case consists in construction A 0 1
of the dynamical systems of the synchronization error in 1=k, —(yatky)]|
such way that the feedback scheme leads its trajectories to
origin. The interesting problem is to attain the synchroniza-Thenk; andk, are chosen such that matrix has all its eigen-
tion objective(i.e., stabilization around the origiin spite of ~ values at the open left-hand complex pldne., all roots of
the synchronization error system is uncertain. Latter ongolynomial N2+ (y,+k,)A+1—k;=0 have negative real
comprises the leading of the slave trajectories to the mastgrary, which is satisfied for ani,> v, and 0<k;<1.0.
ones[e.g., to leadx;(t) to trajectoryxs(t)]. That is, in sec- Note that controllef4) yields linear behavior into system
ond case the goal is to direct the slave system to the desirdd). That is, integration of syster(8) under controller(4)
trajectory (which is provided by the master systenThis  yieldse(t) =e(0)exp@t), wheree(0) e R? is the initial con-
problem has been recently addresése, for instancg¢23]).  dition of the synchronization error arlis a stable matrix
However, when synchronization is not solved at all when it isfor a givenk,; andk,. Feedback based on E@) has two
addressed as a tracking problem due to tracking cannot badvantages(i) it does not require full knowledge of the sys-
achieved by simple feedbagR4]. On contrary, stabilization tem (1). Indeed, feedbackd4) allows coupling between sys-
of the synchronization error around origin is promissorytem (1) and(2). Such a design is reasonable. For example, in
[2-10Q. As we shall see below, in this paper the synchroni-neural systems, different neurons in one subsystem are al-
zation of systems with different order is addressed as thways driven by output from neurons in higher level. Such
stabilization of the synchronization error at origin. differences can be interpreted as the time series of strictly
Let us assume the followingl) Only x5 is available for  different dynamical systems. Thus differences between sig-
feedback from systenil); (2) x; andx, are available for nals in higher level neurons can be interpreted as the time
feedback from slave syster8) Vector fields of master and Series of strictly different dynamical systems. Hence, syn-
slave systems are smooth. chronization of dynamical systems from such time series
Now, let us consider the differenag(t) =x5(t) — x;(t). plays an essential role in nonlinear processes. Thus, if master

From first time derivative of the difference error one has tha@nd slave systems have distinct properties, it is expected that
8=X3—X,=— y,X,—x} and second time derivative of dif- direct interaction between them cannot necessarily yield syn-

chronization. It is our belief that synchronization in nature is
given by several kinds of interactions by feedback coupling.

d_(ii) It compensates the nonlinear terms and induces a linear
‘behavior. Indeed, this is the main desirable feature of nonlin-
ear control.

IIl. PROPOSED FEEDBACK AND DESIGN DETAILS

©)

ference error one has tha@= — y,X,—X;=— y5(X{— X,
+X3) — X) + X3+ 6x,— a cost) —u. Now, from simple al-
gebraic manipulations, the following equation is obtaine
e—ety,e=(1+28)xy+(1—2y,)X;— a coswt)—u or

equivalently, Nevertheless, the controlléd) has the following draw-
b—e (3.1) _backs:(i) the stability of the syst_erfB) under controller(4_)
1= ' is based on the choice of the eigenvalues of the ma&fjix
_ This procedure is known as pole placement in control theory.
€= €1~ ¥28— Te(X',t;p) — U, (32 pole placement can result in poor control actions &ind
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' ' ' ' ' g ' ' ' words, feedbackd) “must pay the cost” of the synchroniza-
: tion.

B. Reduced-order synchronization with least prior knowledge

As was discussed above, the syst@ncan be, if param-
eters are unknown, an uncertain nonlinear system. The goal
is to design a feedback controller such that the synchroniza-
tion errore,(t) tends to a neighborhoad of the origin for
all t=t,=0 and any initial condition§e;(0),e,(0)] in R2.
Feedback4) yields exponential stability of the synchroniza-

‘ . . e tion error,e(t). However, it is quite complex and requiras
0 10 20 30 40 50 60 70 8 90 100 priori information about slave oscillator. Then, a modifica-
tion is desirable in such manner main features of feedback
15 . . . ; . , . . ; (4) be held.
: Let us definen=y,e,+ 7,(X’,t;p) as a new variable,
which is smooth. Of course, if (X', t;p)=(1+28)x5+ (1
—2y,)X; — @ cos(wt) is uncertain, the statg is not available
for feedback. We propose the following procedure for de-
signing the feedback controller with least prior knowledge.
The uncertain termy can be computed from E@3.2) in the
following way: n=e€,—e;+u. Now, by approaching the
time derivative by means of finite differences at tirhe
€[tk tkr1], one has that(t,) ~ 7(t) = —e1(t) +u(ty-1)
Feedback on +[e(t) —e(ty_q1)]/At, where At denotes the sampling
' ! L rate. Such an approach provides an estimated value of the
uncertain termy at time t, from the measurements of the
Time (s) errore(t,) and the last control input(t,_4). In this way, the
controller (4) becomes

-20 - Feedback off

1 N 1

0 10 20 30 40 50 60 70 80 90 100

FIG. 2. The differencee=x3—x; holds close to zero under

feedback actions. Time evolution &(t) has different amplitude “ Ky
et ¢0 P U(t) == it +kees(t)+ 1o lext) —ex(t )], (©)

controller(4) requires the values of the slave parameters. Theuherek, andk, are chosen such that matri%) has all its
crux is obvious, what happen if the parametéiand y, are  eigenvalue located at open left-hand complex plane. Note
time varying or are not exactly known? Both drawbacks will that proposed controller comprises two patis: the feed-

be discussed in Sec. Il B. However, it is pertinent to illus-pack (6) and (i) the uncertainties estimator given by the
trate that feedbacld) yields the reduced-order synchroniza- finite differences approach. In addition, such a controller
tion. To this end, and in seek of clarity, some numericaldoes not require prior knowledge neither the parameters val-
simulations were performed. Without lost of generality, oneyes nor model of the master system. In principleAas-0

can consider that parameters and initial conditions have samgs the estimated valu®(t,)— 7(t) for all te[t,,t ,+At)
value than Fig. Isee abovk Figure 2 shows time evolution =t >0, wheret, denotes the time where controller is acti-
of (X2,X3) and (; ,x3) under nonlinear feedback). Eigen-  vated. Hence, a&t—0, the controlle6) will behave as the
values of matrix5) were located at-30. Note that synchro- nonlinear controllef4). This means that ast— 0, nonlinear
nization has been attained. Figuré@)2shows that stateg;  terms of the synchronization systef) can be counteracted
andx; evolve under practical synchronous behavior. Figurepy the controller(6). It should be pointed out that ikt=0,

2(b) shows thatx, and x; do not behave in synchronous then the controller(6) is not physically realizable. This
manner. It seems that partial synchronization has been atmakes sense becaugg=0 means “no sampling rate.”
tained(see Ref[9] for details about partial synchronization However, such a condition implies that noise sensitivity can
However, as we state below, trajectories of duffing systenbe displayed by controllg). Figure 3a) shows the dynam-
tracks the Chua system projection, i.e., reduced-order syries of the synchronization error under control(@) for At
chronization is performed by feedbadK). It should be =2.5Hz. The time evolution of the respective control com-
pointed out that the synchronization achieved by controllemand is shown in Fig.®). Here, same values of the control
(4) is practical[9]; i.e., the trajectories of the synchronization parameterk, =25.0 andk,= 10.0 were chosen for controller
error system(3) converges to a ball centered at origin. This (4) and(6). This implies that all eigenvalues of the mat(®
means that errog(t) does not converges exactly to zero. As are located at-5.0. Note that, in spite of Eq6) requires

a consequence, the time-evolution of the contragrdoes least prior knowledge about the synchronization system, the
not go to zero. This is due to feedba@k absorbs the struc- proposed strategy is able to achieve reduced-order synchro-
tural differences between systeni$) and (2). In other nization for relatively small sampling rates. Indeed, as
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FIG. 3. Time evolution of(a) the synchronization error for the FIG. 4. Reduced-order synchronization under feedi@gk(a)
sampling rateAt=2.5 Hz. As sampling rate increases as the betterDuffing equation yields an attractor which is a mirror reflection of
synchronization(b) the coupling force given by the proposed con- (b) the (x,,x3)-plane projection of the Chua system.
trol command(Eq. 6, (c) Comparison between continuous-time
and discrete-time controllers. x;. That is, inx; direction both attractofFigs. 4a) and

, o . 4(b)] are equalsee Figure @&)] where reflection is in direc-
smaller sampling rate as better synchronization. In addltlontion of x, is chiral. Now, one can expect that power spectrum

E:gcsk' éfg?g%ﬁg;ggﬁi;@ﬁ synchronization under feed- peaks ofx, andx; are equal thax; andx;, respectively.
' Hence reduced-order synchronization of systéinsand (3)
is attained in phase and in a practical sef&86]. Although
IV. DISCUSSION OF THE RESULTS these results are novel, they are a consequence of how the
In this section, we briefly discuss the obtained resultsSynchronization is addressed. Thus, chirality cannot yet be
Figure 4 shows the projection of Chua systEEy. (1)] on clalrr_led as a_kmd of synchronization; however, th|_s feature
(X,,x3) plane and phase portrait of the Duffing oscillator '€duires d_eta!led _study. Unfortuna_tely, such a goal is beyond
under feedback actio&q. (2)]. Here, eigenvalues of matrix ©f the objective in this paper. Figure 5 shows the power
(5) were arbitrarily located at5 and control command was speptrum(PSD 9f X2, X3, Xi andx,. PSD has _been nor-
computed by feedbacté) (including the uncertainties esti- Malized by maximum amplitude peak. Such a picture shows
matop with At~1=2.5 Hz. The controller was activated at that, at least, frequency and phase synchronization is attained
time t,=0. Two features should be notet) chirality and Py feedback®). PSD is an important measure of synchroni-
(b) amplitude oscillations. The following comments are in Zation. Although, PSD is not sufficient to conclude that syn-
regarding to both chirality and amplitude features: chronization exists; however, it is a good evidef8g
(a) Note that Fig. 4b) is a mirror reflection of Fig. ). (b) Concerning the magnitude of the attractors, we can
[Same phenomenon was observed under feed@BtkThat note that, under control actions, the following steady state is
is, while (x,,xs)-plane projection of Chua system rotates Obtained: e(t) —0=|e(t)[|=[xs(t) —x;(t)[[~0 for all t
toward left, Duffing equation under feedba@® rotates to- >t"=0, wheret™ is the time of control activation. Such a
ward right. Note that Duffing attractor under actions of feed-steady state implies that all time derivativesedadre zero for
back(6) is notsuperimposablen the mirror image of Chua all t=0. That is,e=0 for all t=0, which implies that
(X2,X3)-plane projection. Such property is so-caltgrality  [[x5(t)[ = v2lx2(t)[. Therefore, at steady state, an amplifica-
(see Ref[25] for introductory notioi. The chirality notion  tion factory, affects the phase portrait of controlled Duffing
has been burrowed from study of organic molecules. Thusgquation. However, as was stated above, synchronization is
for example, notice that symmetry axis corresponds to statechieved. In order to add evidence, we have plotteds x;
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andx, vs —X, /v, (which can be seen as a modified phase 6
locking diagram, see Fig.)6Sincex, essentially has similar ARE)
dynamic properties tham, (see, for instance, Fig.)5It )
should be pointed out that the dynamics of the synchroniza- 2]
tion error is close to zero. This means that controligr
provides practical reduced-order synchronizatiéh of the w04
drive and response systems.
-2
V. CONCLUDING REMARKS -4 -
This paper has one main contributidhe synchronization 6 ; , . .
of different order systems or reduced-order synchronization 6 -4 2 0 2 4 6
Reduced-order synchronization is the problem of synchro- X,
nizing a slave system with projection of a master system. It 0.8
should be noted that reduced-order synchronization is not 06 ]
partial synchronization. On the one hand, partial synchroni- '
zation is for coupling two chaotic systems whose order is 044
equal. A main feature of the partial synchronization is that, at 0.2
least, one state of the slave system is not synchronous irZ 0.0
some sensésee Refs[9,21], and references thergirOn the ®O
other hand, in reduced-order synchronization, all states of the 021
slave system are synchronous, in some sense. The main fei 0.4
ture of the reduced-order synchronization is that order of the 1
slave system is less than master one. In this sense, the syl os
chr9n|zat|pn of Chua osqllator aqd Duffmg equation is “08 06 04 02 00 02 04 06 o8
achieved in reduced order, i.e., Duffing equation can be syn- X

chronized under feedback actions with a canonical projection

of the Chua system. Of course, the problem of the reduced- FIG. 6. (a) Phase locking diagram of the synchronization error
order synchronization has not been solved yet. Some ques;(t)=x;—x; variables.(b) Modified phase locking diagram for
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tions have been opened) Can the reduced-order synchro- state variable in synchronization.
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nization be achieved from fourth-order and third-orderphenomenon or a casualty? Unfortunately, answer is beyond
systems?ii) Can the reduced-order synchronization be atthe paper goal. But, if mirror reflection is a synchronization
tained from fourth order and second-order driven systemsPh€nomenonghiral synchronizationcan be an interesting

Results in this direction are expected. Nevertheless, we beli@1d relevant discovery. Chiral synchronization should be
that this paper is a timely contribution characterized because the attractor of slave system is, once

) i synchronized, a mirror reflection of the master system attrac-

Now, results show an interesting phenomenon. Th&qr e  Duffing attractor under control actions cannot be
reduced-order Synchronization ylelds a mirror reflection Ofsuperimposed on its mirror image_ In this paper, mirror re-
the drive system. This can be casual; however, one moriection of the synchronization is a consequence of how the
question arises: Is the mirror reflection a synchronizatiorfeedback control is designed.
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