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Synchronization of chaotic systems with different order
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The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this
paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynami-
cal evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-
order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing
equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization
scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense,
i.e., the differencee5x32x18 is close to zero for all timet>t0>0, wheret0 denotes the time of the control
activation.
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I. INTRODUCTION

Chaos synchronization is a very interesting problem t
has been widely studied in recent years. Actually, there
two main directions in the research of the chaos synchr
zation: ~i! synthesis and~ii ! analysis. The problem of syn
chronization synthesis is to design a force for coupling t
chaotic systems. The coupling force can be designed lin
@1,2# or nonlinear@3,4#. The actual challenge in problem o
synchronization synthesis is to achieve and to explain
synchronization between chaotic systems with differ
model @5,6,7#. Synchronization analysis consists in~a! clas-
sification of the synchronization phenomena@8,9# and ~b!
comprehension of the synchronization properties~such as ro-
bustness@10# and/or bifurcation@11#!. An important chal-
lenge in synchronization analysis is to develop genuine in
cators of chaotic synchronization. Such a problem ari
from classical indicators failure. For example, even
Lyapunov table indicates that chaos has been contro
small disturbances can provoke deficiency in such indica
@12#.

This paper addresses the problem of the synchroniza
synthesis. Such a problem can be classified in the follow
research areas:~i! the study of potential applications fo
chaos synchronization and~ii ! development of synchroniza
tion strategies. Concerning the first research area, chaos
chronization has application in several fields as biologi
systems, where the research is focussed in neurons lat
@13,14#, and transmissions of secure message@15,16#. Re-
garding development of synchronization schemes, sev
strategies can be found in literature~for example, linear@2#,
nonlinear@4#, or adaptive@17#!. In particular, a synchroniza
tion strategy is developed in this paper from nonlinear fe
back. Synchronization synthesis is a problem of first gene
tion while applications of synchronization is a problem
second generation. However, there is no full knowled
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about the synchronization synthesis. Thus, for instance,
oretical and experimental results show synchronous beha
in nature. For instance, in Refs.@11,14#, authors have shown
very interesting results about the chaotic synchronizat
phenomenon in neurons. Nevertheless,on the microscopical
scale the mutual interactions are not yet clearly understo:
Indeed, only phenomenon models have been used@12#. In
principle, it is possible that synaptic communication can
yielded between neurons with different dynamic model. F
example, synchronous activity has been observed in thala
and hippocampal neurons networks@18#. An alternative for
understanding synchronous behavior in nature is to deve
synchronization strategies. In particular, a synchronizat
strategy is developed in this paper.

There is one interesting question in this direction: is t
synchronous behavior in nature yielded from a feedback
fed-forward coupling force? There is no definitive answer
above question. As a matter of fact, synchronization is
results of the coupling between dynamical systems. Coup
can be performed via two basic interconnections: fe
forward and feedback. Fed-forward interconnection cons
of the input of a dynamical signal without return. On co
trary, feedback implies that a potion of the system is
turned. Both interconnections have been used for chaos
trol; see Refs.@19,20# for fed-forward and @2–6,8# for
feedback. Indeed, a combination of both interconnecti
can be performed for synchronization of chaotic oscillat
@21#. Since both interconnections achieve chaos synchron
tion, one is unable to confirm that synchronous behavio
nature is only a consequence of feedback coupling. Howe
synthesis of chaos synchronization via feedback allows u
expect promissory results. In this sense, some results s
that synchronization between chaotic systems whose m
is strictly different has been reported@5–7#. Nevertheless,
until our knowledge, there is no previous results about
synchronization between chaotic systems whose order is
ferent. Such a problem is reasonable if, for instance, we th
that order of the thalamic neurons can be different than h
pocampal neurons@18#. One more example is the synchron
zation between heart and lung. One can observe that
circulatory and respiratory systems behave in synchron
way. However, one can expect that model of the circulat
©2002 The American Physical Society26-1
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RICARDO FEMAT AND GUALBERTO SOLÍS-PERALES PHYSICAL REVIEW E65 036226
system is strictly different than respiratory system, which c
involve different order. In addition, the synchronization
strictly-different chaotic systems is interesting by itself.

This paper addresses the synthesis of the chaos syn
nization between oscillator with different model. We prese
a nonlinear approach for synchronizing chaotic syst
whose order is not equal. In particular, we present the ma
ing of the Duffing equation attractor with a projection on
one canonical plane of the Chua circuit~double-scroll oscil-
lator!. In this sense, results show thatreduced-order synchro
nization can be achieved by nonlinear systems. This me
that two chaotic systems can be synchronized in spite
order of the response system is less than order of the d
system. Of course, since order of response oscillato
smaller than master system, the synchronization is only
tained in reduced order. Results are focused on geomet
features of synchronization phenomenon. Chua-Duffing s
chronization is allowed by a nonlinear feedback, whi
yields a smooth and bounded coupling force~i.e., control
command!. The nonlinear feedback is designed from
simple algorithm based on time derivative of system out
along the master/slave vector fields. The text is organize
follows. Chua-Duffing synchronization problem is presen
in Sec. II. Section III contains the proposed feedback a
design details. Numerical simulations and discussion are
sented in Sec. IV. Finally, text is close with some conclud
remarks.

II. PROBLEM STATEMENT

Chua system is an electronic circuit with one nonline
resistive element. The circuit equations can be written a
third-order system that is given by the following dimensio
less form@22#:

ẋ15g1@x12x22 f ~x1!#,

ẋ25x12x21x3 , ~1!

ẋ352g2x2 ,

where f (x1)5g3x110.5(g42g3)@ ux111u2ux121u#, g i8s,
i 51, 2, 3, 4, are positive constant. Let us assume that sys
~1! represents the drive system. Figure 1~a! shows the phase
portrait of system~1! and its projection on the canonica
planes. The parameters were chosen as follows:g1510.0,
g25214.87,g3520.68, andg4521.27. Initial condition
were arbitrarily located at the pointx(0)5(0.1,20.5,0.2).

Now, let us consider the Duffing equation, which is giv
by

ẋ185x28 ,

ẋ285x182x18
32dx281te~ t !1u, ~2!

whered is a positive parameter that represents damping
efficient,te(t)5a cos(vt) denotes driving force andu is the
coupling force~controller!. Figure 1~b! shows the phase por
trait of Duffing equation foru50 for all t>0 ~uncontrolled
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evolution!. Parameters were chosen asd50.15,a50.3, and
v51.0. Initial conditions were arbitrarily located at origin

Obviously, there is difference between attractors of s
tems~1! and ~2! @see phase portrait in Fig. 1~b! and projec-
tions in Fig. 1~a!#, i.e., both systems~1! and ~2! are not
synchronized neither phase nor frequency. Moreover, the
no synchronization in any sense~see Refs.@8,9# for details
concerning definition of synchronization kinds!. The classi-
cal synchronization problem is somewhat distinct than pr
lem of synchronizing different chaotic systems. In classi
synchronization problem, drive and response system
similar geometrical and topological properties@23#. Thus
master/slave interconnection can be sufficient to attain s
chronization@24#. Latter one is understood as adjustment
master/slave dynamics due to coupling via output of b
systems. Synchronization of different chaotic systems i
hard task if we think that:~i! initial conditions of master and
slave systems are different and unknown,~ii ! topological and
geometrical properties of different chaotic systems are q
distinct and~iii ! unrelated chaotic systems have strictly d
ferent time evolution.

FIG. 1. Phase portrait of the Chua circuit and Duffing equat
without coupling.~a! attractor of the Chua system and its proje
tions on canonical planes.~b! attractor yielded by Duffing equation
6-2
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SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH . . . PHYSICAL REVIEW E65 036226
Systems~1! and~2! have been widely used to study cha
synchronization when drive and response system have s
order. However, we are interested in synchronization of D
fing attractor with a projection in a canonical plane, i.e.,
lead the attractor of Eq.~2! to the geometrical properties of
projection of system~1!. To study such a problem, we choo
x3 as measured state from master system@Eq. ~1!# whereas
x18 is the measured observable of the slave system@Eq. ~2!#.
Thus the chaos control objective isto design a feedback u
such that the discrepancy error e5x182x3 tends to zero as
t→`. Note that above goal implies that ife→0 as t→`,
then x18→x3 for all t>t0>0 and any initial discrepancy
e(0)5x18(0)2x3(0). Therefore, at least, the partial synchr
nization @8,9# of both master and slave systems can be
tained via feedback coupling. However, the control object
is to achieve the reduced order synchronization, i.e., all st
of the response system should be synchronized, in s
sense, with any states of the drive system.

III. PROPOSED FEEDBACK AND DESIGN DETAILS

Synchronization of chaotic systems via feedback can
addressed from the stabilization of the synchronization s
tem error around origin~see for instance,@6#! or as the track-
ing of a target trajectory. First case consists in construc
of the dynamical systems of the synchronization error
such way that the feedback scheme leads its trajectorie
origin. The interesting problem is to attain the synchroni
tion objective~i.e., stabilization around the origin! in spite of
the synchronization error system is uncertain. Latter o
comprises the leading of the slave trajectories to the ma
ones@e.g., to leadx18(t) to trajectoryx3(t)#. That is, in sec-
ond case the goal is to direct the slave system to the des
trajectory ~which is provided by the master system!. This
problem has been recently addressed~see, for instance,@23#!.
However, when synchronization is not solved at all when i
addressed as a tracking problem due to tracking canno
achieved by simple feedback@24#. On contrary, stabilization
of the synchronization error around origin is promisso
@2–10#. As we shall see below, in this paper the synchro
zation of systems with different order is addressed as
stabilization of the synchronization error at origin.

Let us assume the following.~1! Only x3 is available for
feedback from system~1!; ~2! x18 and x28 are available for
feedback from slave system;~3! Vector fields of master and
slave systems are smooth.

Now, let us consider the differencee(t)5x3(t)2x18(t).
From first time derivative of the difference error one has t
ė5 ẋ32 ẋ18[2g2x22x28 and second time derivative of dif
ference error one has thatë52g2ẋ22 ẋ28[2g2(x12x2

1x3)2x181x18
31dx282a cos(vt)2u. Now, from simple al-

gebraic manipulations, the following equation is obtaine
ë2ė1g2e5(112d)x281(122g2)x182a cos(vt)2u or
equivalently,

ė15e2 , ~3.1!

ė25e12g2e22te8~x8,t;p!2u, ~3.2!
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wherete8(x8,t;p)5(112d)x281(122g2)x182a cos(vt) can
be interpreted as a disturbance force acting onto the lin
system~3!, pPR4 denotes a parameter set andx8PR2 is a
disturbance vector. Thus, the synchronization problem
comes to find the control commandu such that system~3! is
asymptotically stable at origin for any initial conditio
e(0)PR2. Note that if control commandu is able to stabilize
system~3! at origin, then the synchronization error and
dynamics can be leaded to zero~i.e., u induces a steady stat
e(t)50 for all t>t0>0, wheret0 is the time when control is
activated!. That is, dynamic evolution of slave system can
manipulated toward the master behavior.

A. Reduced-order synchronization under partial knowledge

We propose the following feedback:

u5~112d!x281~122g2!x282a cos~vt !1k1e11k2e2 ,
~4!

wherek1 , k2 are constant parameters of the control whi
are computed from the following procedure. Equation~3!
under controller~4! action results in the following closed
loop system:ė5Ae where the matrixA is given by

A5F 0 1

12k1 2~g21k2!
G . ~5!

Thenk1 andk2 are chosen such that matrix has all its eige
values at the open left-hand complex plane~i.e., all roots of
polynomial l21(g21k2)l112k150 have negative rea
part!, which is satisfied for anyk2.g2 and 0,k1,1.0.

Note that controller~4! yields linear behavior into system
~3!. That is, integration of system~3! under controller~4!
yieldse(t)5e(0)exp(At), wheree(0)PR2 is the initial con-
dition of the synchronization error andA is a stable matrix
for a givenk1 and k2 . Feedback based on Eq.~4! has two
advantages:~i! it does not require full knowledge of the sys
tem ~1!. Indeed, feedback~4! allows coupling between sys
tem ~1! and~2!. Such a design is reasonable. For example
neural systems, different neurons in one subsystem are
ways driven by output from neurons in higher level. Su
differences can be interpreted as the time series of stri
different dynamical systems. Thus differences between
nals in higher level neurons can be interpreted as the t
series of strictly different dynamical systems. Hence, s
chronization of dynamical systems from such time ser
plays an essential role in nonlinear processes. Thus, if ma
and slave systems have distinct properties, it is expected
direct interaction between them cannot necessarily yield s
chronization. It is our belief that synchronization in nature
given by several kinds of interactions by feedback coupli
~ii ! It compensates the nonlinear terms and induces a lin
behavior. Indeed, this is the main desirable feature of non
ear control.

Nevertheless, the controller~4! has the following draw-
backs:~i! the stability of the system~3! under controller~4!
is based on the choice of the eigenvalues of the matrix~5!.
This procedure is known as pole placement in control theo
Pole placement can result in poor control actions and~ii !
6-3
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RICARDO FEMAT AND GUALBERTO SOLÍS-PERALES PHYSICAL REVIEW E65 036226
controller~4! requires the values of the slave parameters. T
crux is obvious, what happen if the parametersd andg2 are
time varying or are not exactly known? Both drawbacks w
be discussed in Sec. III B. However, it is pertinent to illu
trate that feedback~4! yields the reduced-order synchroniz
tion. To this end, and in seek of clarity, some numeri
simulations were performed. Without lost of generality, o
can consider that parameters and initial conditions have s
value than Fig. 1~see above!. Figure 2 shows time evolution
of (x2 ,x3) and (x18 ,x28) under nonlinear feedback~4!. Eigen-
values of matrix~5! were located at230. Note that synchro-
nization has been attained. Figure 2~a! shows that statesx3

andx18 evolve under practical synchronous behavior. Fig
2~b! shows thatx2 and x28 do not behave in synchronou
manner. It seems that partial synchronization has been
tained~see Ref.@9# for details about partial synchronization!.
However, as we state below, trajectories of duffing syst
tracks the Chua system projection, i.e., reduced-order
chronization is performed by feedback~4!. It should be
pointed out that the synchronization achieved by contro
~4! is practical@9#; i.e., the trajectories of the synchronizatio
error system~3! converges to a ball centered at origin. Th
means that errore(t) does not converges exactly to zero. A
a consequence, the time-evolution of the controller~4! does
not go to zero. This is due to feedback~4! absorbs the struc
tural differences between systems~1! and ~2!. In other

FIG. 2. The differencee5x32x18 holds close to zero unde
feedback actions. Time evolution ofx2(t) has different amplitude
thanx28(t).
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words, feedback~4! ‘‘must pay the cost’’ of the synchroniza
tion.

B. Reduced-order synchronization with least prior knowledge

As was discussed above, the system~3! can be, if param-
eters are unknown, an uncertain nonlinear system. The
is to design a feedback controller such that the synchron
tion errore1(t) tends to a neighborhoodV of the origin for
all t>t0>0 and any initial conditions@e1(0),e2(0)# in R2.
Feedback~4! yields exponential stability of the synchroniza
tion error,e(t). However, it is quite complex and requiresa
priori information about slave oscillator. Then, a modific
tion is desirable in such manner main features of feedb
~4! be held.

Let us defineh5g2e21te8(x8,t;p) as a new variable,
which is smooth. Of course, ifte8(x8,t;p)5(112d)x281(1
22g2)x182a cos(vt) is uncertain, the stateh is not available
for feedback. We propose the following procedure for d
signing the feedback controller with least prior knowledg
The uncertain termh can be computed from Eq.~3.2! in the
following way: h5ė22e11u. Now, by approaching the
time derivative by means of finite differences at timetk
P@ tk ,tk11#, one has thath(tk)'ĥ(tk)52e1(tk)1u(tk21)
1@e1(tk)2e1(tk21)#/Dt, where Dt denotes the sampling
rate. Such an approach provides an estimated value of
uncertain termh at time tk from the measurements of th
errore(tk) and the last control inputu(tk21). In this way, the
controller ~4! becomes

u~ tk!52ĥ~ tk!1k1e1~ tk!1
k2

Dt
@e1~ tk!2e1~ tk21!#, ~6!

wherek1 and k2 are chosen such that matrix~5! has all its
eigenvalue located at open left-hand complex plane. N
that proposed controller comprises two parts:~i! the feed-
back ~6! and ~ii ! the uncertainties estimator given by th
finite differences approach. In addition, such a contro
does not require prior knowledge neither the parameters
ues nor model of the master system. In principle, asDt→0
as the estimated valueĥ(tk)→h(t) for all tP@ tk ,tk1Dt)
>t0>0, wheret0 denotes the time where controller is ac
vated. Hence, asDt→0, the controller~6! will behave as the
nonlinear controller~4!. This means that asDt→0, nonlinear
terms of the synchronization system~3! can be counteracted
by the controller~6!. It should be pointed out that ifDt50,
then the controller~6! is not physically realizable. This
makes sense becauseDt50 means ‘‘no sampling rate.’
However, such a condition implies that noise sensitivity c
be displayed by controller~6!. Figure 3~a! shows the dynam-
ics of the synchronization error under controller~6! for Dt
52.5 Hz. The time evolution of the respective control co
mand is shown in Fig. 3~b!. Here, same values of the contr
parametersk1525.0 andk2510.0 were chosen for controlle
~4! and~6!. This implies that all eigenvalues of the matrix~5!
are located at25.0. Note that, in spite of Eq.~6! requires
least prior knowledge about the synchronization system,
proposed strategy is able to achieve reduced-order sync
nization for relatively small sampling rates. Indeed,
6-4
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SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH . . . PHYSICAL REVIEW E65 036226
smaller sampling rate as better synchronization. In addit
Figs. 3~a! and 3~b! shows that synchronization under fee
back ~4! and ~6! are equivalent.

IV. DISCUSSION OF THE RESULTS

In this section, we briefly discuss the obtained resu
Figure 4 shows the projection of Chua system@Eq. ~1!# on
(x2 ,x3) plane and phase portrait of the Duffing oscillat
under feedback actions@Eq. ~2!#. Here, eigenvalues of matri
~5! were arbitrarily located at25 and control command wa
computed by feedback~6! ~including the uncertainties est
mator! with Dt2152.5 Hz. The controller was activated
time t0>0. Two features should be noted:~a! chirality and
~b! amplitude oscillations. The following comments are
regarding to both chirality and amplitude features:

~a! Note that Fig. 4~b! is a mirror reflection of Fig. 4~a!.
@Same phenomenon was observed under feedback~4!#. That
is, while (x2 ,x3)-plane projection of Chua system rotat
toward left, Duffing equation under feedback~6! rotates to-
ward right. Note that Duffing attractor under actions of fee
back~6! is not superimposableon the mirror image of Chua
(x2 ,x3)-plane projection. Such property is so-calledchirality
~see Ref.@25# for introductory notion!. The chirality notion
has been burrowed from study of organic molecules. Th
for example, notice that symmetry axis corresponds to s

FIG. 3. Time evolution of:~a! the synchronization error for the
sampling rateDt52.5 Hz. As sampling rate increases as the be
synchronization,~b! the coupling force given by the proposed co
trol command~Eq. 6!, ~c! Comparison between continuous-tim
and discrete-time controllers.
03622
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x18 . That is, in x18 direction both attractor@Figs. 4~a! and
4~b!# are equal@see Figure 2~a!# where reflection is in direc-
tion of x28 is chiral. Now, one can expect that power spectru
peaks ofx2 and x3 are equal thanx18 and x28 , respectively.
Hence reduced-order synchronization of systems~1! and ~3!
is attained in phase and in a practical sense@8,9#. Although
these results are novel, they are a consequence of how
synchronization is addressed. Thus, chirality cannot yet
claimed as a kind of synchronization; however, this feat
requires detailed study. Unfortunately, such a goal is bey
of the objective in this paper. Figure 5 shows the pow
spectrum~PSD! of x2 , x3 , x18 and x28 . PSD has been nor
malized by maximum amplitude peak. Such a picture sho
that, at least, frequency and phase synchronization is atta
by feedback~6!. PSD is an important measure of synchron
zation. Although, PSD is not sufficient to conclude that sy
chronization exists; however, it is a good evidence@8#.

~b! Concerning the magnitude of the attractors, we c
note that, under control actions, the following steady stat
obtained: e(t)→0⇒ie(t)i5ix3(t)2x18(t)i'0 for all t
.t1>0, wheret1 is the time of control activation. Such
steady state implies that all time derivatives ofe are zero for
all t>0. That is, ė[0 for all t>0, which implies that
ix28(t)i5g2ix2(t)i . Therefore, at steady state, an amplific
tion factorg2 affects the phase portrait of controlled Duffin
equation. However, as was stated above, synchronizatio
achieved. In order to add evidence, we have plottedx3 vs x18

r
FIG. 4. Reduced-order synchronization under feedback~6!. ~a!

Duffing equation yields an attractor which is a mirror reflection
~b! the (x2 ,x3)-plane projection of the Chua system.
6-5
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FIG. 5. Power spectrum of~a! x3 , ~b! x2 , ~c!
x18 ~under control actions! and~d! x28 ~under con-
trol actions!. Note that spectrum in Duffing equa
tions ~under control actions! are similar than
Chua system (x2 ,x3)-plane projection.
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andx2 vs 2x28 /g2 ~which can be seen as a modified pha
locking diagram, see Fig. 6!. Sincex28 essentially has simila
dynamic properties thanx2 ~see, for instance, Fig. 5!. It
should be pointed out that the dynamics of the synchron
tion error is close to zero. This means that controller~6!
provides practical reduced-order synchronization@9# of the
drive and response systems.

V. CONCLUDING REMARKS

This paper has one main contribution:the synchronization
of different order systems or reduced-order synchronizati.
Reduced-order synchronization is the problem of synch
nizing a slave system with projection of a master system
should be noted that reduced-order synchronization is
partial synchronization. On the one hand, partial synchro
zation is for coupling two chaotic systems whose order
equal. A main feature of the partial synchronization is that
least, one state of the slave system is not synchronou
some sense~see Refs.@9,21#, and references therein!. On the
other hand, in reduced-order synchronization, all states of
slave system are synchronous, in some sense. The main
ture of the reduced-order synchronization is that order of
slave system is less than master one. In this sense, the
chronization of Chua oscillator and Duffing equation
achieved in reduced order, i.e., Duffing equation can be s
chronized under feedback actions with a canonical projec
of the Chua system. Of course, the problem of the reduc
order synchronization has not been solved yet. Some q
tions have been opened:~i! Can the reduced-order synchr
03622
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FIG. 6. ~a! Phase locking diagram of the synchronization er
e1(t)5x182x3 variables.~b! Modified phase locking diagram fo
state variable in synchronization.
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SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH . . . PHYSICAL REVIEW E65 036226
nization be achieved from fourth-order and third-ord
systems?~ii ! Can the reduced-order synchronization be
tained from fourth order and second-order driven system
Results in this direction are expected. Nevertheless, we b
that this paper is a timely contribution.

Now, results show an interesting phenomenon. T
reduced-order synchronization yields a mirror reflection
the drive system. This can be casual; however, one m
question arises: Is the mirror reflection a synchronizat
n-
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un
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phenomenon or a casualty? Unfortunately, answer is bey
the paper goal. But, if mirror reflection is a synchronizati
phenomenon,chiral synchronizationcan be an interesting
and relevant discovery. Chiral synchronization should
characterized because the attractor of slave system is,
synchronized, a mirror reflection of the master system attr
tor, i.e., Duffing attractor under control actions cannot
superimposed on its mirror image. In this paper, mirror
flection of the synchronization is a consequence of how
feedback control is designed.
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