This article may be downloaded for personal use only. Any other use requires prior permission of the author and American Society for Microbiology.

The following article appeared in *Applied and Environmental Microbiology,* June 2017 vol. 83 no. 11 e00645-17; and may be found at <u>https://dx.doi.org/10.1128/AEM.00645-17</u> AEM Accepted Manuscript Posted Online 24 March 2017 Appl. Environ. Microbiol. doi:10.1128/AEM.00645-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

1 Anaerobic methane oxidation driven by microbial reduction of natural organic matter

2 in a tropical wetland

- 3
- 4 Edgardo I. Valenzuela¹, Alejandra Prieto-Davó², Nguyen E. López-Lozano¹, Alberto
- 5 Hernández-Eligio³, Leticia Vega-Alvarado⁴, Katy Juárez³, Ana Sarahí García-González⁵,
- 6 Mercedes G. López⁵ & Francisco J. Cervantes^{1,*}
- 7
- 8 1. División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y
- 9 Tecnológica. Camino a la Presa San José 2055 Col. Lomas 4ª. Sección, San Luis Potosí,
- 10 SLP 78216 Mexico.
- 11 2. Facultad de Química, Unidad Sisal, Universidad Nacional Autónoma de México. Puerto
- 12 de Abrigo s/n, Sisal, Yucatán, 97356 Mexico.
- 13 3. Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología,
- 14 Universidad Nacional Autónoma de México, Campus Morelos. Av. Universidad 2001,
- 15 Cuernavaca Morelos, 62210 Mexico.
- 16 4. Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional
- 17 Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, D.F., 04510
- 18 Mexico.
- 19 5. Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios
- 20 Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico.
- 21
- 22 Running title: Anaerobic methane oxidation linked to humus reduction
- 23 Keywords: Anaerobic methane oxidation, humus, methanotrophy, wetlands
- 24 *Corresponding author: Francisco J. Cervantes, fjcervantes@ipicyt.edu.mx

Abstract 25

26	Wetlands constitute the main natural source of methane on Earth due to their high content
27	of natural organic matter (NOM), but key drivers such as electron acceptors supporting
28	methanotrophic activities in these habitats are poorly understood. We performed anoxic
29	incubations using freshly collected sediment along with water samples harvested from a
30	tropical wetland, amended with ¹³ C-methane (0.67 atm) to test the capacity of its microbial
31	community to perform anaerobic methane oxidation (AOM) linked to the reduction of the
32	humic fraction of its NOM. Collected evidence demonstrates that electron-accepting
33	functional groups (e.g. quinones) present in NOM fueled AOM by serving as terminal
34	electron acceptor. Indeed, while sulfate reduction was the predominant process accounting
35	for up to 42.5% of the AOM activities, microbial reduction of NOM concomitantly
36	occurred. Furthermore, enrichment of wetland sediment with external NOM provided
37	complementary electron-accepting capacity, which reduction accounted for $\sim 100 \text{ nmol}^{13}\text{C}$ -
38	CH_4 oxidized cm ⁻³ d ⁻¹ . Spectroscopic evidence showed that quinone moieties were
39	heterogeneously distributed in the wetland sediment, and that their reduction occurred
40	during the course of AOM. Moreover, an enrichment derived from wetland sediments
41	performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to
42	the reduction of the humic analogue, anthraquinone-2,6-disulfonate. Microbial populations
43	potentially involved in AOM coupled to microbial reduction of NOM were dominated by

divergent biota from putative AOM-associated archaea. We estimate that this microbial 44 process could potentially contribute to the suppression of up to 114 Tg CH_4 yr⁻¹ in coastal 45 wetlands and more than 1,300 Tg yr⁻¹ considering the global wetland area. 46

47

Importance 48

49 Identifying key processes governing methane emissions from natural systems is of major 50 importance considering the global warming effects triggered by this greenhouse gas. AOM coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in 51 mitigating methane emissions from ecosystems. Given their high organic content, wetlands 52 constitute the largest natural source of atmospheric methane. Nevertheless, processes 53 controlling methane emissions in these environments are poorly understood. Here we 54 provide tracer analysis with ¹³CH₄ and spectroscopic evidence revealing that AOM linked 55 56 to the microbial reduction of redox functional groups in natural organic matter (NOM) 57 prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to suppress methane emissions from tropical wetlands. This is a novel avenue 58 within the carbon cycle in which slowly decaying NOM (e.g. humic fraction) in 59 organotrophic environments fuels AOM by serving as terminal electron acceptor. 60 61 62 63

65

64

66 Introduction

67	Microbial processes produce and consume methane (CH ₄) in anoxic sediments playing a
68	crucial role in regulating Earth's climate. Virtually 90% of CH4 produced from marine
69	environments is oxidized by microorganisms avoiding its release to the atmosphere (1).
70	Anaerobic oxidation of methane (AOM) associated with sulfate reduction was first
71	discovered in marine environments (2). More recently, AOM has also been linked to the
72	microbial reduction of nitrate (3, 4) and nitrite (5), as well as Fe(III) and Mn(IV) oxides (6-
73	8) in freshwater and marine environments. Wetlands are the largest natural source of CH_4
74	(9), contributing to about a third of global emissions (10), but key drivers, such as electron
75	acceptors fueling methanotrophic activities in these habitats, are poorly understood. CH ₄
76	emissions from wetlands have been strongly responsive to climate in the past, and will
77	likely continue to be responsive to anthropogenic-driven climate change in the future,
78	predicting a large impact on global atmospheric CH_4 concentration (10). The traditional
79	assumption is that aerobic methanotrophy dominates wetlands' CH ₄ cycling by oxidizing
80	an estimated 40 to 70% of gross CH_4 production in these ecosystems (11). Recent findings
81	(12) challenged this conjecture by providing evidence that AOM may consume up to 200
82	Tg CH ₄ yr ⁻¹ , decreasing their potential CH ₄ emission by 50% in these habitats. Most AOM
83	activities observed in wetlands have been related to sulfate reduction (12, 13), but other
84	electron acceptors remain feasible. Natural organic matter (NOM), circumscribed to humic
85	substances (HS) in many studies (14), occurs at high concentrations in wetlands both in
86	soluble and solid phases (15). Recent evidence indicates that HS suppress methane
87	production in different ecosystems (16, 17), yet the mechanisms involved are still
88	enigmatic. HS can theoretically promote AOM as they can serve as terminal electron

89	acceptors for microbial respiration (18, 19) and have higher redox potential than sulfate
90	(20). However, compelling evidence demonstrating AOM driven by the microbial reduction
91	of NOM present in anoxic environments remains elusive (21, 22).
92	We aimed to document ¹³ CH ₄ anaerobic oxidation and the ongoing reduction of intrinsic
93	electron acceptors, including the electron accepting fraction of NOM, by the biota of
94	freshly sampled sediment from a coastal tropical wetland. We provide $^{13}\mathrm{CH}_4$ tracer studies
95	and spectroscopic evidence demonstrating for the first time that AOM is linked to the
96	microbial reduction of redox functional groups present in the NOM of this tropical marsh.
97	Furthermore, we found evidence, based on 16S rRNA gene sequences, indicating that
98	microbial populations potentially involved in AOM coupled to microbial reduction of
99	NOM were dominated by divergent biota from putative AOM-associated microorganisms.
100	

101 Results

102 Kinetics of ¹³C-methane oxidation and electron balances

103	Exponential phase of AOM was observed in microcosms over the first 15 days of
104	incubation in the case of unamended sediment (free from external NOM addition). The
105	methanotrophic rate in this experimental treatment was ~1.34 μ mol ¹³ C-methane oxidized
106	cm ⁻³ d ⁻¹ (Fig. 1). At the end of the exponential phase, sulfate and Fe(III) reduction
107	accounted for 42.5% and 0.5% of 13 C-methane oxidized, respectively, while the role of
108	nitrate was marginal (Fig. 2 and Table S2). These unamended sediment microcosms
109	exhibited a reduction in intrinsic NOM during the course of AOM, which was expected due
110	to the high concentration of organic carbon in the tropical wetland, with the capacity to

\sim		
	112	NOM reduction in experimental controls lacking ¹³ C-methane obstructed accurate
	113	assessment of AOM driven by this microbial process (Fig. 2). The large endogenous NOM
ר נו נו	114	reduction observed in these control experiments may be explained by concomitant methane
<u>ש</u>	115	production (and subsequent consumption) observed (Fig. S2), and by oxidation of labile
ť	116	organic matter present in the sediment (Table S1). Supplementary incubations spiked with
	117	the sulfate-reduction inhibitor, sodium molybdate (25 mM), showed decreased sulfate
	118	reducing activities (~50%, Fig. 2), while AOM rates remained high when compared against
	119	their non-inhibited counterparts (Fig. 1). Remarkably, when sulfate reduction was inhibited
	120	the reduction of intrinsic NOM was doubled (from 1.6±0.11 to 3.4±0.19 milli-electron
	121	equivalents (meq) l ⁻¹), implying that the reduction of redox functional groups in NOM was
iology	122	promoted when the utilization of sulfate was impeded.
Microk	123	Further enrichment of wetland sediment with external NOM, in the form of HS derived
	124	from Pahokee Peat (Florida Everglades, 2.5 g l ⁻¹), provided complementary electron
	125	accepting capacity, which significantly elicited AOM up to ~1.88 μ mol ¹³ C-methane
	126	oxidized cm ⁻³ d ⁻¹ and extended the exponential phase to 20 days (Fig. 1). In this
	127	experimental treatment, electron balances revealed a methanotrophic activity responsible of
	128	$\sim 100 \text{ nmol}^{13}\text{C-CH}_4$ oxidized cm ⁻³ d ⁻¹ linked to microbial reduction of NOM (including
×	129	both intrinsic and externally added as Pahokee Peat HS). As hypothesized before,
ζ	130	consumption of intrinsically produced methane was confirmed by experimental controls
	131	enriched with HS from <i>Pahokee Peat</i> and incubated in the absence of ¹³ C-methane, which

accept electrons (Table S1, Fig. 2). Nevertheless, large perturbation caused by endogenous

abated in the absence of ¹³C-methane, which

showed significant consumption of ¹²CH₄ (Fig. S2). This was also confirmed by increased 132

 12 CO₂ production quantified, which was reflected on 2 to 4-fold lower enrichment of 13 CO₂ 133

111

in HS enriched incubations as compared to unamended controls (see ¹³FCO₂ values in Fig.
1). Reports (23, 24) indicate that methanotrophic microorganisms prefer to oxidize ¹²CH₄ as
compared to ¹³CH₄, which may partly explain our findings.

The role of sulfate reduction on AOM when wetland sediment was enriched with HS was not possible to assess (Table S2) due to large endogenous sulfate reduction elicited by degradation of the labile fraction of externally added NOM (Fig. 2), which also triggered methanogenesis in these microcosms. Since no significant differences in iron reduction were detected between microcosms with or without 13 CH₄ addition, the only microbial process clearly identified driving AOM in *Pahokee Peat* enriched sediments was the microbial reduction of HS (Table S2).

144 Spectroscopic evidence on presence and reduction of redox-functional groups in NOM

Initial exploration of the solid phase NOM present in wetland sediment by micro-ATR-145 FTIR spectra, revealed the presence of electron accepting moieties both in unamended and 146 in HS enriched wetland sediments. By mapping of acquisition points at 1650-1620 cm⁻¹, 147 148 presence and heterogeneous distribution of quinone functional groups was evidenced in 149 sediments confirming the presence of non-soluble electron accepting moieties classically attributed to humic-like materials (Fig. 3a and b). To further confirm this, we looked for 150 double bonded carbon and oxygen (C=O) by use of X-ray photoelectron spectra (XPS), 151 152 technique that supported the existence of quinone-like functional groups in unamended sediment and furthermore, provided evidence of the reduction of these moieties by showing 153 154 the disappearance of the C=O signal from C1s and O1s high resolution spectra when comparing signals from sediment analyzed before and after incubation with ¹³CH₄ in the 155

absence of external HS (Fig. 3c to f). Another missing signal after the AOM process was 156 157 that which corresponds to metallic oxides, evidenced by analysis of the O1s high resolution 158 spectra (Figure 3d and f), which may imply reduction of intrinsic iron oxides that supported $\sim 0.5\%$ of methanotrophy according to electron balances (Table S2). Further analysis of the 159 liquid phase of pristine sediment microcosms also revealed the reduction of quinone-like 160 moieties during the course of AOM (Fig. 4). Initial samples exhibited a well-defined and 161 strong peak at 1690 cm⁻¹ associated with quinone moieties, while reduced samples, at the 162 end of the incubation period, showed an increase in the signal related to phenolic groups 163 (1660 cm⁻¹). Additional signals of phenolic groups were detected after incubation with 164 ¹³CH₄ and *Pahokee Peat* by spectral signals detected around 2260-2500 cm⁻¹ (25). 165

166 **Microbial communities performing AOM**

According to 16S rRNA gene sequences from wetland sediment samples performing AOM, 167 168 anaerobic methanotrophic archaea (ANME), which are traditionally linked to anaerobic methanotrophy under sulfate-reducing (2, 26), Fe(III)-reducing (6, 8), and artificial electron 169 170 acceptor-reducing conditions (27), were barely detected in our experiments, with ANME-171 1b and ANME-3 representing less than 0.5% and 0.2%, respectively, from the archaeal 172 community in all experimental treatments (Fig. 5). The only abundant Euryarchaeota 173 members detected were affiliated to an unclassified genus of the Marine Benthic Group D family (MBGD and DHVEG-1), which accounted for 18 to 23% of the archaeal biota in all 174 175 treatments. Outside of the Euryarchaeota phylum, members from the newly named 176 Bathyarchaeota lineage (formerly known as Miscellaneous Crenarchaeotic Group) were another cluster of microorganisms that remained in high percentages (from 8 to 14%) in all 177 178 treatments. Two genera from the Thaumarchaeota phylum, one belonging to the

pMC2A209 class, and the other from the Marine Benthic Group B (MBG-B) were also 179 180 consistently present in all sediment samples showing AOM, the latter one increasing its 181 proportion up to 12% when sulfate reduction was inhibited (Fig. 5). From the bacterial counterpart, the most abundant bacteria in two of the treatments was a genus of 182 Oceanimonas from Aeromonadaceae family (Gammaproteobacteria), whose presence was 183 diminished when sulfate reduction was inhibited and when ¹³CH₄ was absent (Fig. S3), 184 suggesting that this microorganism might have been involved in sulfate-dependent AOM. 185 Other evident changes in the bacterial community included the increase of Clostridia and 186 187 Bacilli members when external NOM was supplied (Fig. S3), which agrees with their 188 capacity to reduce HS (28).

189 AOM linked to AQDS reduction

In order to confirm the capacity of the sediment biota to channel ¹³C-methane derived 190 191 electrons to quinone groups, the humic analogue, anthraquinone-2.6-disulfonate (AODS), was added as an electron acceptor to the artificial basal medium for sediment enrichments. 192 193 AQDS reduction and methane consumption were observed since the first enrichment cycle, 194 although no clear relationship between net methane consumption and AH₂QDS production was observed due to high concentrations of intrinsic electron donors and acceptors (data not 195 shown). Nevertheless, during the third incubation cycle, net AOM was observed within 11 196 days, which corresponded to a final ratio of oxidized methane/reduced AQDS of 1:4.7 197 198 corrected for endogenous controls, which is very close to the stoichiometric 1:4 according to the following equation (Fig. 6a): 199

 $CH_4 + 4AQDS + 2H_2O \rightarrow CO_2 + 4AH_2QDS$

200

Applied and Environmental Microbiology

Gibbs free energy ($\Delta G^{o'}$) = -43.2 kJ mol⁻¹

Analysis of 16S rRNA gene sequences from enriched sediment sampled at the end of the 201 third cycle of AQDS-dependent AOM activity (Fig. S1) displayed a significant decrease on 202 203 the diversity of the microbial community evidenced by a decrease in Shannon index, from 5.52 in freshly sampled sediment to 3.56 after enrichment with CH₄ and AQDS. Significant 204 205 increments and decreases of specific groups of archaea and bacteria did occur in this 206 enrichment (Fig. 6b and c). From the archaeal fraction, the pMC2A209 class from the Thaumarchaeota and the Methanosaeta genera were archaeal clusters that significantly 207 increased their presence in the AQDS enrichment (34% and 23%, respectively). Also in the 208 209 AQDS enrichment, the *Bathyarchaeota* phylum previously detected in wetland sediments, 210 both in the presence and in the absence of external NOM, significantly increased its proportion in the archaeal community (around 10% respect to the original composition), 211 suggesting potential metabolic arrangements to thrive under AQDS-dependent AOM 212 213 conditions (Fig. 6b). Humus-reducing bacteria that proliferated throughout the five months 214 of enrichment included genera from the Desulfuromonadales (29, 30), Clostridiales (14, 28) and Propionibacteriales (31) orders in 27%, 7%, and 12%, respectively, with respect 215 216 to the original composition (Fig. S3).

217

218 Discussion

219 NOM as terminal electron acceptor fueling AOM in wetland sediment. Although the

220 complex composition of the studied wetland sediment challenged efforts to elucidate the

221 microbial processes responsible for the high methanotrophic activities quantified, the

d Online

Post		
script	222	present study provides multiple lines of evidence demonstrating that electron-accepting
inu:	223	functional groups present in its NOM fueled AOM by serving as terminal electron acceptor.
X	224	Indeed, while sulfate reduction was the predominant process accounting for up to 42.5% of
oted	225	AOM activities, microbial reduction of NOM concomitantly occurred. Furthermore,
cep	226	enrichment of wetland sediment with external NOM, as Pahokee Peat HS, significantly
Ă	227	promoted AOM with a quantified amount of ~100 nmol 13 C-CH ₄ oxidized cm ⁻³ d ⁻¹
	228	attributed to this microbial process. Spectroscopic evidence also demonstrated that quinone
	229	moieties, main redox functional groups in HS (19), were heterogeneously distributed in the
	230	studied wetland sediment and that their reduction occurred during the course of AOM.
	231	Moreover, an enrichment derived from wetland sediments performing AOM linked to
mental	232	NOM reduction stoichiometrically oxidized methane coupled to AQDS. Sediment
/iron	233	incubations performed in the presence of the sulfate reduction inhibitor, molybdate, further

confirmed the role of HS in AOM. Certainly, even though sulfate-reducing activities 234 significantly decreased in the presence of molybdate, AOM activities remained high, while 235 microbial reduction of NOM was doubled under these conditions. These interesting 236 findings suggest that methanotrophic microorganisms performing sulfate-dependent AOM 237 might have directed electrons derived from AOM towards NOM when sulfate reduction 238

239 became blocked as has been suggested based on experiments performed under artificial

240 conditions (27).

241 Microbial communities in wetland sediments performing AOM. Archaeal clusters consistently found in wetland sediment incubations performing AOM included members 242 from the MBG-D family, which have already been proposed as players in metal-dependent 243 AOM (6), thus their presence agrees with evidence indicating AOM linked to iron 244

AEM

245	reduction observed in some experimental controls (Table S2). Additionally, these
246	microorganisms were not found in the AQDS enrichment, probably due to depletion of
247	intrinsic ferric iron throughout the incubation cycles. Archaea constantly present amongst
248	fresh sediment incubation and AQDS enrichment were those from the pMC2A209 class
249	and the Bathyarchaeota phylum. To our knowledge, the pMC2A209 class of archaea has
250	not been related to AOM, but its close partners from the MBG-B class have been
251	consistently found in environments in which AOM occurs (32-35). In fact,
252	Thaumarchaeota members, including the MBG-B, have been found in consortia
253	performing AOM in the absence of ANME clades (36). Interestingly, the pMC2A209
254	cluster seemed to duplicate its proportion up to 12% when sulfate reduction was inhibited
255	(by molybdate), which might suggest that the impediment of sulfate reduction enhanced its
256	activity promoting AOM coupled to NOM reduction. Respect to the Bathyarchaeota
257	phylum, increasing evidence suggests that this lineage might be involved in the methane
258	cycle. Recently, it has been demonstrated that this cluster possesses the necessary genetic
259	elements to express the enzymatic machinery required for methane production, and
260	potentially methane consumption (37). Additionally, Saxton and colleagues have found
261	abundant Bathyarchaeota representation in a fulvic acids rich deep sediment that oxidizes
262	methane uncoupled from sulfate reduction (22). Unexpectedly, a very low percentage
263	within the archaeal population was identified as members from the ANME type archaea,
264	even though it would be expected to find ANME-2 members since it is the only ANME
265	subgroup with proven capability to derive electrons extracellularly towards humus and its
266	analogues under artificial conditions (27). Our microcosms, both in fresh sediment as well
267	as in the AQDS long-term enrichment, showed a barely detectable number of copies of

AEM

ANME-1b and ANME-3 sequences retrieved by the methodology employed, suggesting a
low presence of ANME microorganisms in the ecosystem studied.

Regarding the bacterial composition, while Clostridia, Bacilli and Gammaproteobacteria 270 were significantly represented within the fresh sediment performing AOM (Fig. S3), the 271 AQDS enrichment (Fig. 6) exhibited the most significant increase in Deltaproteobacteria 272 273 of the Desulfuromonadales order, which includes several humus-reducing microorganisms (14). Since a wide diversity of microorganisms have been proven to reduce humus 274 275 analogues or HS, we do not rule out that diverse bacterial clusters could have participated in partnership with detected archaea to jointly performed AOM coupled to NOM reduction. 276 Nevertheless, humus-reducing bacteria possess metabolic versatility and capability to 277 278 reduce miscellaneous electron acceptors, which makes it difficult to come to conclusions about their participation in our experiments. Further investigation must be done to unravel 279 the potential involvement of humus-reducing bacteria in AOM. 280

Ecological significance. To our knowledge this is the first report of AOM coupled to 281 282 microbial reduction of NOM, which constitutes a missing link within the carbon cycle. HS 283 frequently contribute up to 80% of soil NOM and up to 50% of dissolved NOM in aquatic environments. While the labile fraction of NOM promotes methanogenesis in anaerobic 284 environments, the slowly decomposing humic portion may serve as an important barricade 285 to prevent methane emissions in organotrophic ecosystems by serving as terminal electron 286 287 acceptor driving AOM (Fig. 7). As an example, considering the maximum AOM driven by 288 microbial reduction of NOM measured in humic enriched sediments, and the global area of coastal wetlands (38, 39), we approximate that this microbial process consumes up to 114 289 Tg CH_4 yr⁻¹. Considering the global wetland area (10), we anticipate methane suppression 290

of more than 1,300 Tg yr⁻¹ (see Supplemental Material for details). Accordingly, NOM-291 292 driven AOM may be more prominent in organotrophic sites with poor sulfate content, such 293 as peatlands, swamps and organotrophic lakes. This premise is supported by suppression of methanogenesis by HS observed in different ecosystems (16, 17) and by the widespread 294 AOM activity reported across many peatland types (40-42). The potential role of HS is 295 296 further emphasized because their electron accepting capacity is fully recycled in recurrently anoxic environments. Thus, the suppression of methanogenesis by HS estimated to be of 297 the order of 190,000 mol CH4 km⁻² yr⁻¹ may be much larger than previously considered 298 299 (43).

300

301 Materials and Methods

302 Sediment sampling and characterization

303 Sediment cores were collected from the tropical marsh Sisal, located in Yucatán Peninsula, south-eastern Mexico (21°09'26''N, 90°03'09''W) in January 2016. Sediment cores with a 304 depth of 15 cm were collected under a water column of approximately 70 cm. Water 305 samples were also collected from the area of sediment sampling points to be used as liquid 306 307 medium in anaerobic incubations. All sediment and water samples were sealed in hermetic flasks and were maintained in ice until arrival to the laboratory. Upon arrival, all sampled 308 materials were stored at 4°C in a dark room until analysis and incubation. Sediment cores 309 310 were opened and homogenized within an anaerobic chamber (atmosphere composed of N₂/H₂ (95%/5%, v/v)) before characterization and incubation. No amendments (addition of 311 312 chemicals, washing or exposure to air) were allowed on sediment and water samples in

Applied and Environmental Microbiology

AEM

313 order to reflect the actual conditions prevailing *in situ* as closely as possible.

314 Characterization of water and sediment samples is described in Table S1.

315

316 Sediment incubations. Water samples collected from sediment sampling points were thoroughly mixed before amendment with HS (2.5 g l⁻¹) by magnetic stirring. Pahokee Peat 317 (Florida, Everglades) HS, purchased from the International Humic Substances Society, 318 319 were employed as external NOM in sediment incubations. Humic-enriched water was 320 flushed with N2 to blow away any dissolved oxygen. Portions of 15 ml were then 321 distributed in 25-ml serological flasks. Sediment containers were opened inside an 322 anaerobic chamber. Portions of 2.5 ml of wet sediment previously homogenized were then inoculated into each serological bottle. After sealing all bottles with rubber stoppers and 323 aluminum rings inside the anaerobic chamber, they were flushed with N2. Once anaerobic 324 conditions were established, 5 ml of ¹³C-labeled methane were injected into each vial to 325 reach a ¹³CH₄ partial pressure of 0.67 atm in a headspace of 7.5 ml. Controls incubated in 326 the absence of external HS were also prepared by following an identical protocol. Killed 327 controls included chloroform at a concentration of 10% (v/v) to annihilate any microbial 328 activity. Additional incubations were executed in the presence of the sulfate-reduction 329 inhibitor, molybdate (25 mM), in the presence and in the absence of external NOM. All 330 331 incubation bottles were statically placed in a dark room at 28 °C (temperature prevailing at 332 Sisal wetland at the sampling time). The pH remained at 7.5±0.05 throughout all incubations. 333

Enrichment incubations with AQDS. Incubations were commenced by inoculating 120 ml serological bottles with 10 g of volatile suspended solids (VSS) l⁻¹ of Sisal sediment.

Prior inoculation, portions of 60 ml of artificial medium were distributed into the
incubation bottles and flushed for 15 min with a mixture of N2:CO2 ($80\%/20\%$, v/v) for
stripping any dissolved oxygen from the medium. AQDS (>98.0% purity, TCI AMERICA
Chemicals) was added at a concentration of 10 mM as terminal electron acceptor along
with the following basal medium components (g l^{-1}): NaHCO ₃ (5), NH ₄ Cl (0.3), K ₂ HPO ₄
(0.2), MgCl ₂ ·6H ₂ O (0.03) and CaCl ₂ (0.1). Trace elements were included in the medium by
adding 1 ml l^{-1} of a solution with the following composition (mg l^{-1}): FeCl ₂ ·4H ₂ O (2,000),
H ₂ BO ₃ (50), ZnCl ₂ (50), CuCl ₂ ·6H ₂ O (90), MnCl ₂ ·4H ₂ O (500), AlCl ₃ ·6H ₂ O (90),
CoCl ₂ ·6H ₂ O (2000), NiCl·6H ₂ O (920), Na ₂ SeO·5H ₂ O (162), (NH ₄) ₆ Mo ₇ O ₂₄ (500), EDTA
(1,000), Na ₂ WO ₄ ·H ₂ O (100) and 1 ml l ⁻¹ of HCl at 36%. The final pH of the medium was
7.2 and no changes were observed throughout the incubation time. Once inoculation took
place, microcosms were sealed with rubber stoppers and aluminum rings, and then flushed
with the same N ₂ :CO ₂ mixture. After anoxic conditions were established, 1 ml of sodium
sulfide stock solution was injected into each vial to reach a sulfide concentration of 0.1 g l^{-1}
in order to consume any traces of dissolved oxygen. Methane was provided into the
microcosms by injecting 30 ml of CH ₄ (99.9% purity, Praxair) reaching a partial pressure of
methane of 0.54 atm. Subsequent incubations were performed after AQDS was reduced
(converted to AH_2QDS) coupled to anaerobic oxidation of methane (AOM). A new set of
bottles containing basal medium with AQDS (10 mM) were inoculated within an anaerobic
chamber by transferring 10 ml of slurry (sediment and medium) taken from previous
incubations (Fig. S1). The following incubations were completed under the same
experimental conditions.
Analytical techniques

AEM

359	Isotopic carbon dioxide and methane measurements. Ions 16 (¹² CH ₄), 17 (¹³ CH ₄), 44
360	$(^{12}CO_2)$ and 45 $(^{13}CO_2)$ were detected and quantified in a Gas Chromatograph Agilent
361	Technologies 7890A coupled to a Mass Spectrometer (detector) Agilent Technologies
362	5975C, the ionization was achieved by electronic impact and quadrupole analyzer. For the
363	analysis, a capillary column Agilent Technologies HP-PLOT/Q with a stationary phase of
364	poly-styrene-di-vinyl-benzene (30 m \times 0.320 mm \times 20 $\mu m)$ was employed as stationary
365	phase using helium as carrier gas. The chromatographic method was as follows: the starting
366	temperature was 70 $^{\rm o}{\rm C}$ which was held for 3 min, and then a ramp with an increase of 20 $^{\rm o}{\rm C}$
367	per min was implemented until 250 °C was reached and maintained for 1 min. The total
368	time of the run had a duration of 13 min. The temperature of the injection port was 250 $^{\circ}$ C.
369	The injection volume was 20 μ l and there was only one replicate of injection per bottle. The
370	gas injected into the GC was taken directly from the headspace of the incubations and
371	immediately injected in to the GC port. Methane calibration curves were made by injection
372	of different methane (99.9% of purity) volumes into serological bottles under the same
373	experimental conditions (atmosphere composition, pressure, temperature, and liquid
374	volume). ¹² CO ₂ and ¹³ CO ₂ curves were made using different dried sodium bicarbonate
375	(99% purity, Sigma Aldrich) and sodium ¹³ C-labelled carbonate (99 atom % ¹³ C, Sigma
376	Aldrich) concentrations, respectively, in serological bottles which contained the same
377	volume of wetland sediment and water used in incubations. Standards were incubated at
378	room temperature for 12 hours until equilibrium with the gaseous phase was reached. The
379	linear regression analysis of obtained measurements had a co-relation coefficient higher
380	than 0.97. 13 CO ₂ production rates were based on the maximum slope observed on linear
381	regressions considering at least three sampling points.

382	Methane quantification in AQDS enrichment. Net methane consumption was assessed in
383	terms of methane concentration measurements in the headspace of microcosms. These
384	measurements were carried out by injecting 100 μ l of gas samples from the headspace of
385	incubation bottles into a gas chromatograph (Agilent Technologies 6890M) equipped with
386	a thermal conductivity detector, and a Hayesep D (Alltech, Deerfield, Illinois, USA)
387	column with the following dimensions: 3.048 m \times 3.185 m \times 2.16 mm. Helium was
388	employed as carrier gas at a flux of 12 ml min ⁻¹ . The temperature of injection port, oven
389	and detector was 250, 60 and 250 $^{\circ}$ C, respectively. Calibration curves were made for each
390	reaction volume used by injecting different methane concentrations into serological bottles
391	under the same experimental conditions at which microcosms were performed (atmosphere
392	composition, pressure, temperature, and liquid volume).

393 Determination of electron accepting functional groups in solid phase by XPS.

Sediment samples (solid fraction of microcosms) were dried under a constant nitrogen flowafter incubation with methane. Once sediments became dried, bottles were open inside an

anaerobic chamber with an atmosphere composed of N_2/H_2 (95%/5%, v/v) and were

397 triturated on an agate mortar. Samples were then kept under anaerobic conditions until

analysis in a X-Ray Photoelectron Spectroscopy Analyzer PHI VersaProbe II (Physical

399 Electronics, ULVAC-PHI). Two representative spectra were recorded per scanned sample.

400 Determination of electron accepting functional groups in solid phase by Micro-ATR-

401 FT-IR imaging. Micro-ATR-FT-IR images were collected from each sample with a

402 continuous scan spectrometer, Agilent 660 FT-IR interfaced to a 620 infrared microscope

- 403 with a 32×32 FPA detector and Ge ATR objective for micro-ATR. Each pixel obtains a
- 404 full IR spectrum or a total of 1024 spectra. Background spectra were collected from a clean

ot Po		
scri	405	ATH
anu	406	onto
X	407	were
otec	408	spec
	409	refle
Ă	410	for o

R crystal (i.e., without sample). The Ge crystal of the ATR microscope was lowered the surface of each sample for a contact area of approximately $100 \times 100 \ \mu\text{m}$. Spectra e collected by co-addition of 256 scans over a spectral range of 4000 to 900 cm⁻¹, at a ctral resolution of 4 cm⁻¹. In all images, a color scale bar is set within the software to ect the relative concentration range, from low to high. Agilent Resolutions Pro was used data acquisition and analysis.

411 Determination of electron accepting functional groups in liquid phase by high

resolution UV-Vis-NIR spectroscopy. After each incubation cycle, liquid samples (1.5 412 413 ml) were taken in an anaerobic chamber with a disposable syringe and put into a quartz cell, which was sealed with plastic film in order to keep anoxic conditions during 414 spectrometric analysis. Spectra were obtained in a Varian Cary 5000 UV-Vis (diffuse 415 reflectance) spectrophotometer, equipped with an integrating sphere. 416

Nitrite and nitrate determinations. Nitrite and nitrate concentrations were measured 417 according to spectrometric techniques established at Standard Methods (44). Nitrate 418 419 measurement is taken under acidic conditions at a wavelength of 275 nm and the value 420 obtained is corrected for dissolved organic matter which has its maximum absorbance at 421 220 nm. Nitrite forms a purple complex through a reaction with sulfanilamide and N-(1-422 naphthyl) ethylene diamine, which presents its maximum absorbance at a wavelength of 423 543 nm. Samples were taken with a disposable syringe directly from the microcosms, injected into sealed quartz cuvettes or glass tubes (depending on the required lecture 424 wavelength) and immediately taken to the spectrophotometer to avoid any reaction of the 425 426 sample with atmospheric oxygen.

Sulfate and sulfide determinations. Samples were extracted from microcosms and 427 428 immediately filtered through 0.22 µm nitrocellulose membranes. Filtered samples were then diluted (1:10) with deionized water and processed in an Agilent Capillary 429 430 Electrophoresis System (Agilent Technologies) according to the methodology proposed by 431 Soga & Ross (45). Dissolved sulfide was measured by the spectrometric method proposed 432 by Cord-Ruwisch (46). Briefly, 100 μ l of sample were taken and immediately mixed in vortex with 4 ml of an acidic CuSO₄ solution. Absorbance at 480 nm was immediately 433 registered in a UV-VIS spectrophotometer (Thermo Spectronic) to avoid sulfide oxidation 434 435 before measurements.

reduction of electron-accepting functional groups in HS was performed according to
Lovley et al. (18). Slurry samples (~500 μl) were taken from microcosms with a disposable

Humic substances reduction and ferrous iron measurements. Quantification of the

syringe while bottles were being manually shaken inside an anaerobic chamber. A portion 439 440 of each sample (200 µl) was mixed with an equal volume of an acidic solution (HCl, 0.5 M) and allowed to stand for 30 min, while the same volume of sample was reacted with ferric 441 442 citrate (20 mM) for 3 hours. After reaction with ferric citrate, samples were mildly resuspended in a vortex and 200 µl were left repose with the same volume of HCl solution for 443 30 min. Afterwards, each sample was centrifuged for 10 min at 10,000 g in a centrifuge 444 Spectrafuge 16M and 200 µl of supernatant were then recovered and reacted with a solution 445 0.2 g l⁻¹ of 2,4,6-tris(2-pyridil)-1,3,5-triazine (ferrozine reagent). Ferrous iron produced due 446 447 to chemical reduction of ferric citrate by reduced functional groups in HS, forms a purple complex along with ferrozine reagent, which has its maximum absorbance at 562 nm. The 448 ferrozine solution was buffered with HEPES (50 mM). Once centrifuged samples were 449

436

mixed with ferrozine solution, they were left reacting for 10 min before their measurement
in a spectrometer Thermo Scientific Genesis 10 UV located inside an anaerobic chamber.
All solutions employed in this determination were bubbled with N₂ for 30 min to ensure the
absence of dissolved oxygen.

454 Total carbon (TC), total organic carbon (TOC) and total inorganic carbon (TIC)

455 **measurements.** Water samples were filtered through 0.22 μm nitrocellulose membranes

and diluted with deionized water, while sediment samples were dried until constant weight.

457 Both liquid and solid samples were analyzed in a Total Organic Carbon analyzer Shimadzu

458 TOCVCS/TNM-1 equipped with a solids sampling port (SSM-5000A). Solid sample

459 processing time was 6 min at 900°C using O_2 (500 ml min⁻¹) with a purity of 99.9% as

460 carrier gas, all samples were analyzed by triplicate.

461 Total, volatile and fixed solids. Total, fixed and volatile solids were measured by triplicate
462 according to Standard Methods procedure (44).

Elemental composition. Elemental composition of sediments was assessed by analyzing 463 acid-extracts from 2 g of wet sediment. In the case of iron and manganese measurements in 464 465 microcosms, supernatant samples were taken with disposable syringes, filtered and acidified prior analysis. Samples were then analyzed by inductively coupled plasma optical 466 emission spectrometry (ICP-OES) in an equipment Varian 730-ES. The operational 467 conditions were: potency 1 kW, auxiliary flow: 1.5 l min⁻¹, net flow: 0.75 l min⁻¹, sample 468 taking delay: 30 s, and the number of measured replicates by sample was three. Argon was 469 employed as carrier gas. 470

471

472	treatment was randomly chosen at the end of the incubation period (30 days for
473	experiments presented in Fig. 1, and 151 days for experiments depicted in Fig. 6). Before
474	DNA extraction, liquid medium was decanted and extracted from the serological bottles.
475	The total sediment was homogenized afterwards and a subsample of 0.5 g was taken to
476	proceed with DNA extraction. The remaining sediment and the other microcosms were
477	used for material characterization. The total DNA was extracted from sediment samples
478	using the Power Soil DNA extraction kit (MO BIO Laboratories, Carlsbad, CA, USA)
479	following the protocol described by the manufacturer. DNA isolated from each sample was
480	amplified using primers 341F and 785R, targeting the V3 and V4 regions of the 16S rRNA
481	gene fused with Illumina adapter overhang nucleotide sequences (47). The polymerase
482	chain reactions (PCRs) were performed in 50 μ l reactions using Phusion Taq polymerase
483	(Thermo Scientific, USA) under the following conditions: denaturation at 98 °C for 60 s,
484	followed by 5 cycles of amplification at 98 $^{\circ}\mathrm{C}$ for 60 s, 50 $^{\circ}\mathrm{C}$ for 30 s and 72 $^{\circ}\mathrm{C}$ for 30 s,
485	followed by 25 cycles of amplification at 98 $^{\circ}\mathrm{C}$ for 60 s, 55 $^{\circ}\mathrm{C}$ for 30 s and 72 $^{\circ}\mathrm{C}$ for 30 s,
486	followed by a final extension of 72 °C for 5 min. Two independent PCR reactions were
487	performed for each sample. The products were indexed using Illumina's 16S Metagenomic
488	Sequencing Library Preparation protocol and Nextera XT Index Kit v2 (Illumina, San
489	Diego CA). Libraries were deep sequenced with the Illumina MiSeq sequencer.
490	BIOINIORMATICS Analysis. An analysis of 165 rKNA gene libraries was carried out using
491	Mothur open source software package (v 1.34.4) (48). The high quality sequence data were

DNA extraction, PCR amplification and sequencing. One microcosm for each selected

492 analyzed for potential chimeric reads using the UCHIME algorithm. Sequences containing

493 homopolymer runs of 9 or more bases, those with more than one mismatch to the

AEM

49	4 sequencing primer and Q-value average below 25 were eliminated. Group membership v
49	5 determined prior to the trimming of the barcode and primer sequence. Sequences were
49	6 aligned against the SILVA 123 16S/18S rRNA gene template using the nearest alignmen
49	7 space termination (NAST) algorithm, and trimmed for the optimal alignment region. A
49	8 pairwise distance matrix was calculated across the non-redundant sequence set, and read
49	9 were clustered into operational taxonomic units (OTUs) at 3% distance using the furthes
50	0 neighbor method. The sequences and OTUs were categorized taxonomically using
50	1 Mothur's Bayesian classifier and the SILVA 123 reference set. The sequences obtained

502 have been submitted to NCBI GeneBank database.

Accession numbers 503

The accession numbers of sequences in this work were deposited in the GenBank sequence 504 read archive under the BioProject with SRP094593 accession number. 505

membership was

506 Acknowledgements

We thank Derek R. Lovley, Jim A. Field, Alfons Stams, Frederic Thalasso, Cesar Nieto and 507 508 Sonia Arriaga for the discussion. We are also grateful with Matthew Tippett for proofreading the manuscript. This work was financially supported by grants from the Council of 509 Science and Technology of Mexico (Program Frontiers in Science, grant 1289) and Marcos 510 Moshinsky Foundation to FJC. We thank Dulce Partida, Ma. Carmen Rocha-Medina, 511 512 Guadalupe Ortega-Salazar, Mariela Bravo-Sánchez, Roberto Camposeco, Elizabeth Cortez and Guillermo Vidriales, for technical support, as well as Lluvia Korynthia López-Aguiar 513 and Yessica Parera-Valadez for their help during sediment collection expeditions. We thank 514 Vicente Rodríguez for access to Cary 5000 UV-Vis spectrophotometer. We are also 515

516	grateful for the use of infrastructure of the National laboratories LINAN and LANBAMA						
517	at IPICYT, as well as USMB at UNAM.						
518							
519	Refe	rences					
520	1.	Reeburgh WS. 2007. Oceanic methane biogeochemistry. Chem Rev 107:486–513.					
521	2.	Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R,					
522		Jørgensen BB, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently					
523		mediating anaerobic oxidation of methane. Nature 407 :623–626.					
524	3.	Raghoebarsing A, Pol a, van de Pas-Schoonen K, Smolders A, Ettwig K, Rijpstra W,					
525		Schouten S, Damste J, Op den Camp H, Jetten M, Strous M. 2006. A microbial					
526		consortium couples anaerobic methane oxidation to denitrification RID B-9395-2011 RID					
527		F-5114-2011 RID B-8834-2011. Nature 440 :918–921.					
528	4.	Deutzmann JS, Stief P, Brandes J, Schink B. 2014. Anaerobic methane oxidation coupled					
529		to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci U S A					
530		111:18273–18278.					
531	5.	Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM,					
532		Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T,					
533		Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens					
534		EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. 2010.					
535		Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464 :543-8.					
536	6.	Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane					
537		oxidation. Science 325 :184–7.					
538	7.	Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Röckmann T, Van Der Veen					

539		C, Bânda N, Kartal B, Ettwig KF, Slomp CP. 2015. Iron-mediated anaerobic oxidation of
540		methane in brackish coastal sediments. Environ Sci Technol 49:277–283.
541	8.	Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. 2016. Archaea catalyze
542		iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci 113:12792-12796.
543	9.	Walter Anthony KM, Macintyre S. 2016. Nocturnal escape route for marsh gas. Nature
544		535 :363–365.
545	10.	Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. 2013. Methane emissions from
546		wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales.
547		Glob Chang Biol 19 :1325–46.
548	11.	Megonigal JP, Hines ME, Visscher PT. 2004. Anaerobic Metabolism:Linkages to Trace
549		Gases and Aerobic Processes. Biogeochemistry 317-424.
550	12.	Segarra KE a., Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs K-U, Joye SB. 2015.
551		High rates of anaerobic methane oxidation in freshwater wetlands reduce potential
552		atmospheric methane emissions. Nat Commun 6:7477.
553	13.	Segarra KEA, Comerford C, Slaughter J, Joye SB. 2013. Impact of electron acceptor
554		availability on the anaerobic oxidation of methane in coastal freshwater and brackish
555		wetland sediments. Geochim Cosmochim Acta 115:15-30.
556	14.	Martinez CM, Alvarez LH, Celis LB, Cervantes FJ. 2013. Humus-reducing
557		microorganisms and their valuable contribution in environmental processes. Appl Microbiol
558		Biotechnol 97 :10293–308.
559	15.	Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60-
560		8.

561 16. Blodau C, Deppe M. 2012. Humic acid addition lowers methane release in peats of the Mer 562 Bleue bog, Canada. Soil Biol Biochem 52:96-98. 563 17. Miller KE, Lai CT, Friedman ES, Angenent LT, Lipson DA. 2015. Methane suppression 564 by iron and humic acids in soils of the Arctic Coastal Plain. Soil Biol Biochem 83:176–183. 18. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic 565 566 Substances as Electron acceptors for Microbial Respiration. Nature. 19. Scott DT, Mcknight DM, Blunt-Harris EL, Kolesar SE, Lovley DR. 1998. Quinone 567 568 moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984-2989. 569 570 20. Straub KL, Benz M, Schink B. 2000. Iron metabolism in anoxic environments at near 571 neutral pH. FEMS Microbiol Ecol 34:181-186. 572 21. Timmers PH, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJ, Plugge CM. 573 2015. Anaerobic oxidation of methane associated with sulfate reduction in a natural 574 freshwater gas source. ISME J 10:1-13. 575 22. Saxton MA, Samarkin VA, Schutte CA, Bowles MW, Madigan MT, Cadieux SB, Pratt 576 LM, Joye SB. 2016. Biogeochemical and 16S rRNA gene sequence evidence supports a 577 novel mode of anaerobic methanotrophy in permanently ice-covered Lake Fryxell, 578 Antarctica. Limnol Oceanogr 61:S119–S130. 579 23. Alperin, M. J. RWS. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Biogeochem Cycles 2:279-288. 580 24. 581 Martens CS, Albert DB, Alperin MJ. 1999. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay German Baltic Sea. Am J Sci 299: 582 589-610. 583

584	25.	Socrates G. 2004. Infrared and Raman characteristic group frequenciesInfrared and Raman
585		characteristic group frequencies.
586	26.	Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2002. Multiple
587		archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad
588		Sci 99 :7663–7668.
589	27.	Scheller S, Yu H, Chadwick GL, Mcglynn SE. 2016. Artificial electron acceptors
590		decouple archaeal methane oxidation from sulfate reduction. Science (80-) 351 :703–707.
591	28.	Xi B, Zhao X, He X, Huang C, Tan W, Gao R, Zhang H, Li D. 2016. Successions and
592		diversity of humic-reducing microorganisms and their association with physical-chemical
593		parameters during composting. Bioresour Technol 219:204–211.
594	29.	Coates JD, Cole KA, Chakraborty R, Connor SMO, Achenbach LA. 2002. Diversity
595		and ubiquity of bacteria capable of utilizing humic substances as electron donors for
596		anaerobic respiration diversity and ubiquity of bacteria capable of utilizing humic substances
597		as electron donors for anaerobic respiration. Appl Environ Microbiol 68:2445–2452.
598	30.	Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD. 1998.
599		Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim
600		Hydrobiol 26 :152–157.
601	31.	Benz M, Schink B, Brune A. 1998. Humic acid reduction by Propionibacterium
602		freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507-4512.
603	32.	Glass JB, Yu H, Steele J a, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan
604		VJ. 2014. Geochemical, metagenomic and metaproteomic insights into trace metal
605		utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ
606		Microbiol 16 :1592–611.

607	33.	Knittel K, Lösekann T, Boetius A, Kort R, Amann R, Lo T. 2005. Diversity and
608		Distribution of Methanotrophic Archaea at Cold Seeps Diversity and Distribution of
609		Methanotrophic Archaea at Cold Seeps †. Appl Environ Microbiol 71:467–479.
610	34.	Schubert CJ, Vazquez F, L??sekann-Behrens T, Knittel K, Tonolla M, Boetius A. 2011.
611		Evidence for an aerobic oxidation of methane in sediments of a freshwater system (I ago di
642		C. L
612		Cadagno). FEMS Microbiol Ecol 76:26–38.
613	35.	Yoshinaga MY, Lazar CS, Elvert M, Lin YS, Zhu C, Heuer VB, Teske A, Hinrichs KU.
614		2015. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments.
615		Geochim Cosmochim Acta 164:35–52.
616	36.	Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF,
617		Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs
618		K-U. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.
619		Proc Natl Acad Sci U S A 103:3846–3851.
620	37	Evans PN Parks DH Chadwick GL Robbins SJ Ornhan VJ Golding SD Tyson GW
620	57.	2015 Methode methodism in the embeddeline Dethodes to several day several
621		2013. Methane metadorism in the archaeal phylum Bathyarchaeota revealed by genome-
622		centric metagenomics. Science 350 :434–8.
623	38.	Keller, Jason K. & Medvedeff C, A. 2016. Soil organic matter, p. 165–188. In Wetland
624		soils: genesis, hydrology, landscapes, and classificationsVepraskas,. Taylor and Francis
625		Group.
626	39.	Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C,
627		Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D,
628		Baldera A. 2012. Estimating Global "Blue Carbon" Emissions from Conversion and
629		Degradation of Vegetated Coastal Ecosystems. PLoS One 7: e43542.

630	40.	Gupta V, Smemo KA, Yavitt JB, Basiliko N. 2012. Active Methanotrophs in Two
631		Contrasting North American Peatland Ecosystems Revealed Using DNA-SIP. Microb Ecol
632		63 :438–445.
633	41.	Smemo KA, Yavitt JB. 2007. Evidence for Anaerobic CH 4 Oxidation in Freshwater
634		Peatlands. Geomicrobiol J 24:583–597.
635	42.	Smemo KA, Yavitt JB. 2011. Anaerobic oxidation of methane: An underappreciated aspect
636		of methane cycling in peatland ecosystems? Biogeosciences 8:779–793.
637	43.	Klüpfel L, Piepenbrock A, Kappler A, Sander M. 2014. Humic substances as fully
638		regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7:195-200.
639	44.	APHA/AWWA/WEF. 2012. Standard Methods for the Examination of Water and
640		WastewaterStandard Methods.
641	45.	Soga T, Ross GA. 1999. Simultaneous determination of inorganic anions, organic acids and
642		metal cations by capillary electrophoresis. J Chromatogr A 834:65-71.
643	46.	Cord-Ruwisch R. 1985. A quick method for the determination of dissolved and precipitated
644		sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33-36.
645	47.	Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 2013.
646		Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
647		generation sequencing-based diversity studies. Nucleic Acids Res 41:1-11.
648	48.	Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski
649		RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn
650		DJ, Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-
651		supported software for describing and comparing microbial communities. Appl Environ
652		Microbiol 75 :7537–7541.
		29

AEM

Applied and Environmental Microbiology 653

654

FIGURE LEGENDS

655	Fig. 1. Anaerobic methane oxidation measured as ¹³ CO ₂ production in microcosms'
656	headspace and ¹³ C enrichment calculated as ${}^{13}F_{CO_2}$ (${}^{13}CO_2/[{}^{13}CO_2 + {}^{12}CO_2]$). Panel a
657	displays the kinetics for incubations performed with unamended sediment. Panel b displays
658	the kinetics for incubations performed with sediment enriched with 2.5 g l^{-1} of external
659	NOM in the form of Pahokee Peat humic substances. Error bars represent the standard error
660	among replicates ($n = 4$, or 3*). SR-INH stands for sediment incubations performed with
661	molybdate (25 mM) in order to inhibit sulfate reduction. ¹³ CO ₂ production rates were based
662	on the maximum slope observed on linear regressions considering at least three sampling
663	points.

664

665

Fig. 2. Production of ¹³CO₂ and reduction of intrinsic or added electron acceptors at 666 the end of the exponential phase (20 days of incubation) in the absence (Panels a and 667 b) and in the presence (Panels c and d) of external NOM as HS from Pahokee Peat. 668 SR-INH stands for controls amended with sulfate-reduction inhibitor, sodium molybdate 669 (25 mM). Error bars represent the standard error among replicates. ¹³CO₂ produced was 670 measured as described for Fig.1. Quantification of sulfate and nitrate reduction imply 671 672 decrease on their concentration at this sampling time, whereas Fe(III) reduction was 673 quantified in terms of the ferrous iron produced. Reduction of NOM and HS was 674 determined by the ferrozine technique.

675	
-----	--

676	Fig. 3. Spectroscopic evidence of the presence of quinone moieties and their reduction
677	in wetland sediment samples. Panels a and b depict the Micro-ATR-FTIR representative
678	spectra taken from imaged areas generated after processing quinone functional groups
679	(1650-1620 cm ⁻¹) of sediment samples before incubation in the absence and in the presence,
680	respectively, of external NOM in the form of Pahokee Peat HS. Panels c and e portray XPS
681	high resolution profiles of C1s, while d and f represent O1s signal. Panels c and d belong to
682	sediment samples prior incubation, while panels e and f correspond to sediment samples
683	after incubation with ¹³ C-methane. Regions and components were corrected at 284.8 eV for
684	the C-C adventitious carbon A; B and G components belong to C-O bond (~286.6 and ~532
685	eV), C and H correspond to C=O functional group (~288.9 and ~533.3 eV), D belongs to –
686	COOH (~289.6), E is typical of the presence of carbonate (~291) and F suggests the
687	occurrence of a metallic oxide (~530).

688

Fig. 4. High performance Ultraviolet-Visible-Near Infrared spectra obtained from liquid samples before and after incubation with ¹³CH₄. Panels a and c depict spectra

691 obtained before incubation with ${}^{13}CH_4$, while panels b and d show spectra obtained after 692 incubation with ${}^{13}CH_4$.

693

694 Fig. 5. Archaeal composition in wetland sediment samples performing AOM. Most

abundant archaeal genera detected, based on 16S rRNA amplicon gene libraries, on

Applied and Environmental

AEM

696 selected experimental treatments shown in Fig. 1 at the end of the incubation period (30

697 days).

Fig. 6. AOM with AQDS as electron acceptor by an enrichment derived from wetland 698 sediment. Panel a: Kinetics of methane consumption linked to AQDS reduction (to 699 AH₂QDS) observed during the last 11 days of the entire enrichment process lasting 151 700 701 days: filled squares (---) represent microcosms including CH₄ as electron donor and AQDS 702 as electron acceptor (complete experiments, n=3), open squares (-D-) represent controls 703 without electron acceptor provided (without AQDS control, n=3), solid circles (-•-) represent CH₄ free microcosms (endogenous controls, n=3), and crosses (-x-) represent heat 704 killed controls (sterile controls, n=2). Error bars represent the standard error among 705 706 replicates. Panels b and c depict microbial community changes at the end of the enrichment (151 days of incubation) at the phylum level based on Illumina sequencing of 16S rRNA 707 V3-V4 regions. Fresh sediment composition was used as a reference. 708

709

710 Figure 7. Schematic representation of methane generation and consumption by

wetland sediment biota. While a fraction of NOM may serve as electron acceptor to

support AOM (NOM-AOM) and decouple sulfate-reduction dependent AOM (SR-AOM),

- 713 depending on its chemical properties, a labile fraction of NOM could also be degraded
- following the methanogenesis pathway by a fermenting and methanogenic fraction of the
- consortia. Equilibrium between these three phenomena must be tightly dependent on
- thermodynamic conditions, concentration of chemical species, and composition of

- 717 microbial community. *Anaerobic methanotrophic archaea are considered in a broader
- 718 perspective than ANME clades from *Euryarchaeota* phylum

719

IR absorption images at the 1650-1620 cm⁻¹ range:

Applied and Environmental Microbiology

AEM

Taxonomy			Treatment			
Phylum	Family	Genus	¹³ C-methane	HS enriched	HS + ¹³ CH4	HS + ¹³ C-methane + SR-INH
Diapherotrites	Unknown_Family	Candidatus_lainarchaeum	0.0	1.1	0.0	1.9
	Halobacteriaceae	Halomarina	0.1	1.4	0.0	0.2
	ANME 1-b	unclassified (ANME 1-b)	0.0	0.1	0.5	0.0
	MHLsu47-B8A	unclassified (MHLsu47-B8A)	4.8	2.6	0.1	4.9
		Methanoculleus	0.0	1.2	0.0	0.0
	Methanomicrobiaceae	Methanogenium	0.2	0.5	1.6	0.4
		Methanomicrobium	2.4	2.4	2.8	2.0
Euryarchaeota	SMS-sludge-7	unclassified (SMS-sludge-7)	1.1	2.1	0.2	1.2
	Methanosaetaceae	Methanosaeta	4.0	1.5	3.2	1.3
	Methanosarcinaceae	ANME-3	0.2	0.0	0.0	0.0
	Unknown_Family	unclassified (Fe-A-9)	0.5	0.2	0.0	3.5
	AMOS4A-452-E11	unclassified (AMOS4A-452-E11)	1.4	0.6	0.1	0.9
	Marine_Benthic_Group_D_and_DHVEG-1	unclassified (MBGD and DHVEG-1)	22.6	18.9	20.6	17.7
	Marine_Group_III	unclassified (MG_III)	3.5	1.6	4.9	1.4
Bathyarchaeota	unclassified	unclassified (Bathyarchaeota)	12.8	7.5	14.0	10.0
SM1K20	unclassified	unclassified (SM1K20)	0.7	0.4	1.6	0.6
	unclassified	unclassified (Group_C3)	3.9	2.6	2.7	2.1
Thaumarchaeota	unclassified	unclassified (MBGB)	6.6	5.6	11.9	4.9
	unclassified	unclassified (pMC2A209)	19.3	16.3	14.9	12.5
Woesearchaeota_(DHVEG-6)	unclassified	unclassified (DHVEG-6)	11.7	26.2	15.6	25.0
	Others	Others	4.3	7.0	5.4	9.4

HIGH

Abundance code

LOW

а

AEM