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Abstract: A self-tuning algorithm is presented for on-line insulin dosage adjustment in type 1
diabetic patients (chronic stage). The algorithm suggested does not need information of the
patient insulin–glucose dynamics (model-free). Three doses are programmed daily, where a
combination of two types of insulin: rapid/short and intermediate/long acting is injected into the
patient through a subcutaneous route. The doses adaptation is performed by reducing the error in
the blood glucose level from euglycemics. In this way, a total of five doses are tuned per day: three
rapid/short and two intermediate/long, where there is large penalty to avoid hypoglycemic scenarios.
Closed-loop simulation results are illustrated using a detailed nonlinear model of the subcutaneous
insulin–glucose dynamics in a type 1 diabetic patient with meal intake.
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INTRODUCTION

The diabetes mellitus is a group of metabolic diseases
characterized by a high blood glucose concentration (hy-
perglycemia) resulting from defects in insulin secretion,
insulin action, or both phenomena. This complication has
largely exceeded its growth expectative, and its impact in
the worldwide health-care problem has raised the interest
of the scientific community to provide control algorithms
that can be implemented for the real-time patient treatment
(Carson and Deutsch 1992; Bellazzi et al 2001; Parker et al
2001). In a type 1 diabetes mellitus (TIDM) patient,
the pancreas is not able of producing the insulin at all.
This problem can produce short- and long-term illnesses
(diabetes coma, nephropathy, retinopathy, and other
tissue damage) due to the variations in the blood glucose

Corresponding author:
Dr D. U. Campos-Delgado
Universidad Autónoma de of San Luis Potosı́
Facultad de Ciencias, Av. Salvador Nava s/n
Zona Universitaria, C.P. 78290, S.L.P., México
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level (BGL). As a matter of fact, long-term complications
of diabetes include, among others, peripheral neuropathy
with risk of amputation (Lebovitz 1998). As a result, the
BGL has to be monitored externally to maintain it reg-
ulated by applying insulin infusions in a regular scheme.
Meanwhile, in a healthy patient, the insulin released by
the pancreas maintains the basal blood glucose concen-
tration around euglycemic (normoglycemic) levels 70–
120 mg/dl. Hence, the pancreas provides a basal rate of
≈22 mU/min (Lebovitz 1998; Bode 2004), and it increases
this amount during meal intakes (postprandial peak), in
order to process the glucose absorbed from the gut. Con-
sequently, in the absence of insulin, the blood glucose level
for a TIDM patient can decrease or increase above eug-
lycemic levels (hypoglycemia and hyperglycemia, respec-
tively) for long periods of time. In fact, the TIDM patient
requires external insulin for survival. However, the Dia-
betes Control and Complications Trial (DCCT) (DCCT
1993) showed that an intensive insulin therapy can reduce
the incidence of long-term illnesses. Therefore, an inten-
sive therapy is encouraged for TIDM patients prescribed
either by a continuous-infusion pump (CIP), or a multiple
daily injection regimen (MDIR). On the other hand, it was
also noticed in DCCT (1993) that a possible side effect
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Table 1 Insulin characteristics after subcutaneous
infusion

Type Action (hours)

Onset Peak Duration

Rapid
Aspart 0.17–0.33 1–3 3–5
Lispro 0.25–0.50 0.25–0.5 3–4
Short
Regular 0.5–1 2–3 3–6
Intermediate
NPH 2–4 4–10 10–18
Lente 3–4 4–10 16–24
Long
Ultralente 6–10 8–24 18–30
Glargine 1–2 2–20 20–24

of an intensive therapy is the propensity to hypoglycemic
scenarios in the patient. With this consideration, if an in-
tensive therapy is followed by the patient, the presscribed
insulin treatment mus be carefully studied by the physi-
cian, and it should be constantly updated according with
the results achieved. Nevertheless, the benefits of an in-
tensive therapy have been shown in multiple experimental
trials for children and adults (Strowig and Raskin 1998;
Lalli et al 1999; Weintrob et al 2003). Hence, it is appeal-
ing the idea of an automatic advisory system for the patient
in order to update each daily dose of insulin continuously
(Bellazzi et al 1995; Bellazzi et al 2001; Miyako et al 2004;
Bailey and Haddad 2005).

There are two overall approaches for glucose control
(Carson and Deutsch 1992), and they depend on the lo-
cation of the insulin infusions: (a) subcutaneous (Bellazzi
et al 2001), and (b) intravenous (Parker et al 2001). For
the intravenous approach, a continuous pump is used to
deliver a variable insulin infusion rate to the patient, ac-
cording with a control algorithm that processes the glu-
cose measurements. Several control methodologies have
been suggested: H∞ robust control (Kienitz and Yoneyama
1993; Ruiz-Velazquez et al 2004), model predictive control
(Parker et al 1999; Lynch and Bequette 2002), and optimal
control (Fisher 1991). However, due to the size of me-
chanical pumps, this approach is now limited to patients
under a hospital treatment. Meanwhile, the subcutaneous
approach relies on several therapeutic regimens based on
combinations of different types of insulin. In general, the
insulin can be classified according with its origin: bovine,
porcine, and human; and with its action: rapid (Aspart and
Lispro), short (Regular), intermediate (NPH and Lente),
and long (Ultralente and Glargine) (APhA Special Report
2001; Dickerson 1999). Table 1 illustrates the dynamic
characteristics of the different types of human insulin.
For some types of insulin, in Berger and Rodbard (1989);
Wilinska et al (2005) a mathematical model was proposed
to reproduce the assimilation pattern after a subcutaneous
injection. The time evolution of Lispro, Regular, NPH,

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

time (hours)

P
la

sm
a 

In
su

lin
 C

o
n

ce
n

tr
at

io
n

 (
µ 

U
/ m

l )
 

Lispro 

Regular

NPH
Lente

Ultralente

Figure 1 Time evolution of plasma insulin concentration
after a subcutaneous insulin infusion of 10 U.

Lente, and Ultralente insulins after a 10 U infusion is
shown in Figure 1.

The subcutaneous doses are programmed on an MDIR,
and they are calculated according with the information
gathered by implanted glucose sensors (MiniMed ©), picks
of blood glucose concentration (Accu-Chek ©) or non-
invasive blood glucometers (GlucoWatch ©) (Tamada et
al 2002), and physician advice. Algorithms for the opti-
mal time and amount of insulin have been suggested in
Doyle et al (2001) and Shimauchi et al (1988). Further-
more, in Trajanoski and Wach (1998) a strategy based on
neural predictive controllers was adopted. Due to the nat-
ural variability of the human metabolism (Lehmann and
Deutsch 1998), adaptive control schemes have been pro-
posed in the literature (Carson and Deutsch 1992; Bellazzi
et al 2001). In this context, the structure of the minimal
model including a peripheral compartment was used in
Candas and Radziuk (1994) to perform a parameter esti-
mation to update a control law for glucose regulation. Now,
in Bellazzi (2003), an adaptive controller that uses a two-
level architecture is suggested, where a low-level controller
uses a fuzzy controller, and an ARX-model for parame-
ters identification and glucose prediction. The high-level
module acts as a supervisory system for the low-level con-
troller, and adaptively modifies its characteristics to im-
prove glycemic control. The overall adaptive scheme gives
advise to the patient on the insulin protocol (time, type,
and amount). On the other hand, in Cavan et al (1998);
Hovorka et al (1999) an stochastic model (Bayesian net-
work) was considered, where an algorithm for the opti-
mal insulin dosages is employed based on blood glucose
measurements, meal intakes (carbohydrates equivalents),
and past insulin injections. This approach (Diabetes Ad-
visory System, DIAS) has been evaluated with good re-
sults compared with expert advise of a specialist nurse
(Cavan et al 1998). Moreover, using the information of
the insulin sensitivity for the patient, the optimum insulin
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dose and timing were calculated by a linear programming
algorithm in Shimauchi et al (1988). Also, fuzzy logic has
been suggested to incorporate expert knowledge in the
disease treatment based on an MDIR (Campos-Delgado
et al 2003).

In the overall picture, the blood glucose regulation in
TIDM patients presents a challenging interdisciplinary
problem that can be approached from different points of
view: systems, control, and medicine. However, in order
to provide significant advances in the treatment of this
disease, the knowledge from these areas must be merged
together with a common and clear objective: an effective
patient treatment. In this paper, a self-tuning algorithm is
suggested to automatically adjust the insulin dosages in
an MDIR, using the information of the glucose deviation
from euglycemics. The proposed scheme does not need
the information of the equivalent carbohydrates by each
meal as in Bellazzi (2003); Cavan et al (1998) and Hovorka
et al (1999). Moreover, the algorithm does not rely on a
direct glucose prediction or estimation to evaluate the in-
sulin adjustments. The paper is organized as follows. The
problem statement and performance index are detailed in
section “Problem Statement and Control Methodology”.
Section “MDIR Strategies” defines several MDIR based
on combinations of insulin in the formulation, and the
self-tuning dosage control structure is detailed in Section
“Self-Tuning Insulin Algorithm”. Section “Diabetic Pa-
tient Modeling” presents briefly the mathematical model-
ing of the insulin–glucose dynamics in a TIDM patient.
Finally, Section “Closed-Loop Simulation Results” intro-
duces the closed-loop simulation results with four testing
scenarios and Section “Conclusions” presents concluding
remarks and future work.

PROBLEM STATEMENT AND CONTROL
METHODOLOGY

According to Mexican customs, three major meals are taken
per day: breakfast (desayuno) (7:00–10:00 hours), lunch
(comida) (13:00–15:00 hours), and dinner (cena) (20:00–
22:00 hours); where the comida meal is the major one of the
day. Roughly, there is a time interval of 6 h among each
meal of the day. The approach presented in the paper relies
in a three daily injections using rapid/short acting insulin
(RSAI) to regulate the postprandial peaks, and intermedi-
ate/long acting insulin (ILAI) to provide the basal condi-
tion. These doses are programmed 10–15 min before taking
a meal for rapid insulin, and 30–60 min for short-action
insulin. Due to the delayed action of the ILAI, the doses
for lunch-time is omitted, and only an RSAI is injected.

In order to prevent long-term illnesses (DCCT, 1993),
the control objective is defined as to regulate the BGL
around a normal level, defined as

NGL = 70–120 mg/dl (1)

using three daily doses of a preparation of RSAI and
ILAI. Furthermore, it is desired to reach this objective

minimizing the amount of insulin by the patient. In this
control scheme, several glucose measurements are avail-
able daily which could be derived from blood samples, in
vivo sensors or noninvasive means (Tamada et al 2002).
The control problem posed is very demanding because the
doses given by a physician can vary abruptly from patient
to patient. Moreover, the insulin–glucose dynamics for a
TIDM patient are highly nonlinear and can be modified
by different parameters like diet, exercise, etc. (Sorensen
1985; Puckett 1992). Note that a diet for the patient is
assigned by the physician according with age and weight;
however, in most of the cases, the patient cannot follow
tightly the amount of carbohydrates per meal assigned. So,
the insulin regime should be robust enough to maintain
the BGL regulated despite these issues. Due to the clinical
implications, the work in this paper is restricted to TIDM
patient in a chronical stage.

According with the glucose measurements, the systemic
blood glucose deviation from the NGL can be measured as:

J = 1
T

∫ T

0
φ(t) dt ≈ 1

N

N∑
k=1

Ts · φ(κTs) (2)

where N is the number of measurements during the mea-
sured interval T, Ts represents the sampling interval in the
glucose measurements, and φ(t) (pointwise deviation from
NGL) is defined as

φ(t) =




G(t) − 120 mg/dl G(t) > 120 mg/dl
� · [G(t)

−70 mg/dl] G(t) < 70 mg/dl
0 70 ≤ G(t) ≤ 120 mg/dl

(3)

In definition (3), � > 1 represents a constant that imposes a
large penalty for reaching hypoglycemic scenarios. There-
fore, (i) φ(·) is positive in the case of a hyperglycemic
(above NGL) condition; (ii) it is negative in the case of
a hypoglycemic (below NGL) one; and (iii) it should be
close to zero ideally. Thus, equation (2) measures the area
outside the NGL during the glucose evolution in a given
time interval. However, due to the multi-doses control
regime and the absorption process of the subcutaneous in-
sulin infusions, the BGL cannot be completely regulated
into the interval [70, 120] mg/dl, and there will be time
instants where the BGL lies outside the desired interval.
As a result, the doses are increased if the index (2) is posi-
tive (hyperglycemia), and reduced if the index is negative
(hypoglycemia).

A total of five insulin dosages are then tuned:

(1) Ib
r : breakfast dose of RSAI.

(2) Il
r : lunch dose of RSAI.

(3) Id
r : dinner dose of RSAI.

(4) Ib
nph: breakfast dose of ILAI.

(5) Id
nph: dinner dose of ILAI.
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Table 2 Three daily doses control regimens

Breakfast Lunch Diner

Lispro+NPH Lispro Lispro+NPH
Lispro+Lente Lispro Lispro+Lente
Lispro+Ultralente Lispro Lispro+Ultralente
Regular+NPH Regular Regular+NPH
Regular+Ultralente Regular Regular+Ultralente

by using the information of the performance index in
equation (2), the previous insulin dosages, and the
characteristic peak and duration time of each insulin type.

MDIR STRATEGIES

According with the pharmacokinetics and pharmacody-
namic effects of each type of insulin, several combi-
nations of RSAI and ILAI can be suggested (APhA
Special Report 2001; American Diabetes Association 2002;
Dickerson 1999). Consequently, Lispro or Regular insulin
are combined with NPH, Lente, or Ultralente insulin. Five
therapeutic regimes are illustrated in Table 2. These regi-
mens are also known as flexible insulin regimens or basal-bolus
insulin therapy (Hirsch 1999), because they allow the patient
to adjust the timing and amount of insulin in accordance
with changes in meal carbohydrate content, euglycemic
control, or exercise. Note that the mixing of short-acting
(Regular) and lente insulin is not recommended, because
the absorption dynamics of the mixture can be seriously de-
layed (American Diabetes Association 2002). At the time of
this study, there was not accurate data and models to iden-
tify the absorption dynamics of the (rapid-acting) Aspart
and (long-acting) Glargine insulin (see Table 1). Hence, it
was not possible to simulate an MDIR that could include
these insulins in this study.

Initially, in type 1 diabetic patients, the amount of in-
sulin is calculated based on the patient weight, as 0.3–
0.8 U/kg per day. This amount is continuously updated
by the physician in collaboration with the patient in order
to reach an euglycemic control, and it could change
according with food consumption, exercise, illness, stress,
hormonal changes, traveling, and any change of routine
(APhA Special Report 2001; American Diabetes Asso-
ciation 2002). Hence, it looks promising and rewarding
the idea of an automated insulin adjustment algorithm for
diabetic patients. In this paper, a combination of a Lispro
and NPH is applied for the RSAI and ILAI. As it was
reported in Lalli et al (1999), this combination results in less
frequent hypoglycemic scenarios and effective glycemic
control. However, the approach could also be fitted to a
different combination of RSAI and ILAI.

SELF-TUNING INSULIN ALGORITHM

The self-tuning algorithm assumes that the patient has
a diet and exercise regimens prescribed by a physician

(Bode 2004). Hence, the euglycemic control posterior to the
insulin infusions is evaluated to suggest tuning. Therefore,
each dose is computed by an evaluation of the performance
index (2) based on an optimization criteria:

• The breakfast dose of slow insulin Ib
nph is evaluated by mea-

suring equation (2) during the day until the dinner dosage
(dinner), and the dinner dose Id

nph is evaluated during the
night and until breakfast. Thus, if the doses are properly
chosen, they should regulate the BGL in an euglycemic
level ( J ≈ 0).

• The rapid insulin doses (Ib
r , Il

r , Id
r ) are evaluated during

the posterior time following the infusion, until the next
dosage is prescribed.

• If at the time of the infusion, the BGL is above 300 mg/dl
(severe hyperglycemic scenario), then to the next dosage
an increase of 30% of the previous dose is added.

• If at the time of the infusion, the BGL is below 50 mg/dl
(severe hypoglycemic scenario), then to the next dosage a
reduction of 30% of the previous dose is subtracted.

The last two criteria are expert rules included in order
to avoid extreme situations of hyperglycemia and hypo-
glycemia. If the breakfast, lunch, and dinner times are
denoted by tb, tl and td, then five error measures are used
for tuning, assuming for simplicity of the notation of con-
tinuous variables:

Jb
nph = 1

td − tb

∫ td

tb

φ(t) dt (4)

Jd
nph = 1

tb − td

∫ tb

td

φ(t) dt (5)

Jb
r = 1

tl − tb

∫ tl

tb

φ(t) dt (6)

J l
r = 1

td − tl

∫ td

ti

φ(t) dt (7)

Jd
r = Jd

nph (8)

These integral can then approximated by summa-
tions of sampled values. The tuning rules are given by
equations (9) and (10),

Ii
r (k) = Ii

r (k − 1) + αJi
r (k) + β

[
Ji

r (k) − Ji
r (k − 1)

]
+ ψ · Ii

r (k − 1) i = b, l, d (9)

Ii
nph(k) = Ii

nph(k − 1) + γ Ji
nph(k) + δ

[
Ji

nph(k)

− Ji
nph(k − 1)

] + ψ · Ii
nph(k − 1) i = b, d

(10)

ψ =




1
3 Gi > 300 mg/dl
0 50 ≤ Gi ≤ 300 mg/dl
−1
3 Gi < 50 mg/dl

(11)

where the index k is referred to the actual evaluation and
k − 1 to the past one, (α, γ ) are positive constants related
to the correction steps for each type of dose, and (β, δ)
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Figure 2 Block diagram of the self-tuning scheme.

are also positive constants that involve a momentum cor-
rection that speeds up the convergence to the optimal val-
ues (Nocedal and Wright 1999). The glucose measurement
Gi = G(ti) i = b, l, d represents the glucose value at the time
of the insulin infusion. The four parameters (α, β, δ, γ )
can also be time varying, where they are adjusted
according with the past history of the performance in-
dex. However, this strategy was not pursued in this work,
because the simulation showed good performance in the
tested scenarios (section “Closed-Loop Simulation Re-
sults”). The feedback block diagram of the self-tuning
control algorithm is presented in Figure 2. It is important
to point out that the tuning rules in equations (9) and (10)
can also be visualized as a PID discrete control structure
with respect to the glucose deviation that evaluates an er-
ror in the euglycemic regulation, plus an expert rule (11) to
correct severe hyperglycemic and hypoglycemic scenarios.

DIABETIC PATIENT MODELING

In this section, the mathematical modeling of a TIDM
patient is described. For simplicity, this model is presented
in three parts: (1) Insulin–Glucose Compartmental Model:
describes the interactions between the different com-
partments in the body that influence the insulin–glucose
dynamics; (2) Glucose Input via Gastric Emptying: presents
the modeling of the glucose liberation in the gut following
the ingestion of a meal; (3) Subcutaneous Insulin Injection:
describes the interactions in the insulin absorption due
to subcutaneous injections, and different types of insulin
(see Figure 3). The models presented in this section were
initially developed by Sorensen (1985); Berger and
Rodbard (1989), and Lehmann and Deutsch (1992).

Insulin–glucose compartmental model

The insulin–glucose model for a type 1 diabetic patient
used in this work has a physiological structure based on a
compartmental technique (Sorensen 1985; Puckett 1992).

Glucose
Dynamics

Insulin
Dynamics

Glucagon
Effects

Subcutaneous
Insulin

Absorption

Glucose
Gastric

Absorption

Meal
Carbohydrates

Intake 

Insulin
Infusion

Periphery
Glucose

Measurement 

7

Figure 3 Block diagram of insulin–glucose simulation model.

This model departs from experimental evidence to formu-
late and validate metabolic processes of the compartmental
model on the whole organ and tissue level including
counter-regulatory effects. Thus, the insulin–glucose
model is governed by 19 nonlinear ordinary differential
equations, and is divided into three subsystems:

(1) Glucose,
(2) Insulin, and
(3) Glucagon.

The first two subsystems were modeled for the brain, arte-
rial system (heart/lungs), liver, gut, kidney, and periphery
compartments, see Figure 3. The glucagon was modeled
as a single blood pool compartment. The system output is
the peripheral interstitial glucose, that permits to obtain
accurate glucose levels. The system has two inputs:

• Subcutaneous insulin infusion,
• Glucose input via gastric emptying by a meal.

The definition for the dynamic equations of each
compartment model are detailed in (Ruiz-Velazquez
et al 2004).
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Table 3 Parameters for the absorption process for
different types of insulin

Lispro Regular NPH Lente Ultra
Lente

s 1.80 2.0 2.0 2.4 2.5
a (h/U) 0.005 0.05 0.18 0.15 0
b (h) 1.3 1.7 4.9 6.2 13.0

Glucose input via gastric emptying

The amount of glucose in the gut following the ingestion
of a meal containing Ch milimoles of glucose equivalent
carbohydrate is modeled as a first-order differential
equation (Lehmann and Deutsch 1992). In this model,
the rate of gastric emptying due to a meal is a function of
the amount of carbohydrates intake Ch. This function can
have two shapes:

(1) Ch < 120 mmol of carbohydrate, then the rate of
gastric emptying presents a triangular function, with
equally raising and decreasing rates, and a peak value of
120 mmol/h.

(2) Ch ≥ 120 mmol of carbohydrate, then a trapezoidal
shape is observed, also with equally raising and decreas-
ing rates, but it saturates to 120 mmol/h during some
specific interval.

Finally, the glucose input for a meal intake is given by a
proportion of the glucose in the gut.

Subcutaneous insulin injection

Assume that an insulin dose of D units is injected subcu-
taneously at time tinsulin. Hence, the rate of absorption can
be described by

dA
dt

= s (t − tinsulin)s (a D + b )s D
(t − tinsulin)[(t − tinsulin)s + (a D + b )s ]2

− ke A

(12)

where ke represents the plasma elimination constant, and
the parameters a, b, s are defined in terms of the different
types of insulin: Lispro, Regular, NPH, Lente, or Ultra-
lente (Table 3) (Berger and Rodbard 1989). Finally, the
plasma insulin concentration due to the subcutaneous in-
jection is proportional to the absorbed insulin. It is assumed
that the insulin effect of previous injections is additive
(Berger and Rodbard 1989), that is, the insulin plasma
concentration depends on the combined effect of the actual
and previous dosages. This consideration is not significant
for RSAI because its duration is approximately from 3 to
4 h, and the RSAI doses are programmed in periods of
6 h during the day and 12 h at night. However, it can be
important for ILAI because its duration is from 10 to 18 h.

CLOSED-LOOP SIMULATION RESULTS

The self-tuning control structure of Figure 2 was simu-
lated using the nonlinear model of the TIDM patient in

Figure 3. The numerical simulation was implemented in
MATLAB/Simulink C©. A total of 12 days (284 h) were
simulated with three meals per day:

• Breakfast: 8:00 hours,
• Lunch: 14:00 hours,
• Dinner: 20:00 hours.

Three infusions of insulin are programmed per day by
a subcutaneous injection, where a combination of Lispro
and NPH insulin is programmed according with the con-
trol algorithm for RSAI and ILAI, respectively. There-
fore, during the simulation period, a total of 60 doses
are computed. The parameters of the tuning algorithm in
equations (9) and (10) are shown in Table 4.

In the results of the DCCT (DCCT 1993), the glycosy-
lated hemoglobin (HbA1c) test was recognized as a valuable
source of information to identify possible risks for diabetic
complications. The HbA1c is a weighted average of blood
glucose over a period of 120 days (Bode 2004; Lebovitz
1998), hence it provides an estimation of euglycemic con-
trol over the preceding 6–10 weeks. It can be estimated
(Rohlfing et al 2002) following the relation

Hb A1c = MBGL + 77.3 mg/dl
35.6 mg/dl

(13)

where MBGL stands for mean blood glucose level during
the simulation time. This parameters will be used to eval-
uate the glycemic control during the simulation tests, note
that for a TIDM patient is recommended HbA1c < 7%
(Bode 2004).

Meals description

The meals carbohydrate intakes were calculated accord-
ing with the following profile: male, 30 years old, 80 kg,
1.75 m, number of hours of sleep per day: 7, number of
hours of very light activity: 4, number of hours of light ac-
tivity: 9, number of hours of intense activity: 4, amount of
calories per day: 3734 Cal/day. It is considered that 50% of
the calories are coming from carbohydrates, and take that 4
calories are equivalent to 1 g. of carbohydrates (CH). Con-
sequently, it is needed 466.7 g. of carbohydrates per day.
Assuming a distribution of this amount of carbohydrates in
three meals: 35% breakfast, 45% lunch, and 20% dinner,
results in the next meal distribution of carbohydrates:

• Breakfast: 163.34 g CH,
• Lunch: 210.01 g CH, and
• Dinner: 93.34 g CH.

Therefore, the lunch is the heaviest meal of the day ac-
cording to Mexican customs. During the simulation time
(12 days), the amount of carbohydrate intake per meal was
varied around the nominal values calculated previously
±10%, but looking to add up to ≈3734 Cal/day.

Simulations scenarios

Four simulation scenarios were tested with the self-tuning
adjustment:
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Table 4 Parameters of the tuning algorithm

α β γ δ �
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Figure 4 Simulation for Case 1: (top) meal intake, and (bottom) blood glucose level.
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Figure 5 Simulation for Case 1: (top) insulin dosages, and (bottom) insulin plasma concentration.
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Figure 7 Simulation for Case 3: (top) meal intake, and (bottom) blood glucose level.
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Figure 8 Simulation Case 3: (top) insulin dosages, and (bottom) insulin plasma concentration.
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Figure 9 Simulation Case 4: (top) blood glucose level, (middle) insulin dosages, and (bottom) insulin plasma concentration.
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(1) Case 1: the patient starts with high doses for both types
of insulin (Ib

r = Il
r = Id

r = 5 U, and Ib
nph = Id

nph =
10 U), as a result the BGL is low initially.

(2) Case 2: consider an opposite scenario to Case 1, the
patient starts with small doses for both types of insulin
(Ib

r = Il
r = Id

r = 2 U, and Id
nph = Id

nph = 6 U), producing
initially high BGL.

(3) Case 3: the patient varies his carbohydrate intakes
during meals by ±25%, and the meal time is also
perturbed randomly ±30 min using an uniform
distribution for both factors. This simulation looks
to represent a typical meals distribution for a TIDM
patient in chronic condition, because a tight
carbohydrates count and time schedule in each meal
is difficult for any patient. The patient starts with the
following insulin doses Ib

r = Il
r = Id

r = 2 U, and Ib
nph =

Id
nph = 8 U.

(4) Case 4: the insulin–glucose dynamics vary drastically
from patient-to-patient. In a previous study (Quiroz et al
2005), it was shown that the parameters related to the
hepatic glucose production presented the largest sensi-
tivity in the model response. Thus, in order to analyze
this scenario, these parameters were adjusted 10% at the
start of the simulation. The patient starts with the same
insulin doses as in Case 3.

In Figures 4 and 5, the results for Case 1 are illustrated.
Thus, a regular meal intake is simulated, and due to the
initial high dosage values, the BGL is below 70 mg/dl
during long periods of time. However, the algorithms
is able to decrease properly the insulin infusions (see
Figure 5) in order to regulate the BGL into euglycemics
almost constantly. Now, in Figure 6, the opposite scenario
is devised. The doses are low and the BGL initially reaches
a high value ≈200 mg/dl. In this case, the algorithm
increases the insulin infusions to reach a regulated BGL.
It was observed that the tuning algorithm did not converge
to the same insulin doses for Cases 1 and 2, see Figures 5
and 6.

Finally, in Figures 7–9, the results for Cases 3 and
4 are presented. Through these simulation scenarios the
robustness of the tuning algorithm was evaluated. For both
cases, the BGL was successfully regulated to euglycemics
by the control algorithm. Note that for Case 4, the insulin
infusions need to be raised to compensate the increment
by the hepatic glucose production in the insulin–glucose
dynamics. Table 5 gives a summary of the simulation
results. A hypoglycemic scenario was detected when the
BGL dropped below 50 mg/dl. Note that only one
hypoglycemic condition was isolated in Case 1, due to the
starting high insulin doses, but as shown in Figures 4 and
5, the control algorithm is capable of promptly adjusting
the insulin doses to correct this condition. The calculated
glycosylated hemoglobin HbA1c was always lower to 7%
indicating good euglycemic regulation. Consequently, the
results present good robustness in the tuning algorithm
proposed in this work.

Table 5 Simulation summary results

Case MBGL HbA1c Hypoglycemic Minimum
(mg/dl) (%) cases BGL (mg/dl)

1 99.52 4.96 1 44.49
2 113.10 5.34 0 —
3 111.17 5.29 0 —
4 111.20 5.29 0 —

CONCLUSIONS

In this paper, a self-tuning algorithm is introduced for in-
sulin dosage adjustment in TIDM patients (chronic stage).
Two types of insulin: RSAI and ILAI are considered into
the formulation, which are applied in an MDIR through
a subcutaneous route. The doses are updated in order to
regulate the BGL into euglycemics. The tuning algorithm
presents an error correction where a momentum term is
used to speed up the convergence. Moreover, the tun-
ing does not need information of the insulin-glucose dy-
namics (model-free) or meals carbohydrate equivalents,
and it is rather simple to compute. Therefore, it has the
potential of being implemented in a microcomputer for
home treatment. Besides, it can be adapted to another
combination of insulin, or another route of application to
the patient, like inhaled insulin. The approach and method-
ology introduced could also be visualized as an alternative
for type 2 diabetic patients, and it could be a valuable tool
for educational purposes.
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