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Abstract

We address the problem of output feedback synchronization of certain chaotic systems, under
parameter uncertainty. That is, given a master system, the objective is to design a slave system that
copies the dynamics of the master and reconstructs both the state and the values of the constant
parameters of the master system. Hence, the synchronization problem that we address enters in the
framework of Pecora and Carroll and relies on adaptive observer theory. In particular, the conditions
that we impose take the form of persistency of excitation.

1 Introduction

Since the celebrated paper [12] master-slave synchronization of chaotic systems has gained an in-
creasing interest, specifically but not only, due to the applications of this problem into secured com-
munication; see for instance [13, 1, 9] to cite a few. Using chaotic systems to transmit and receive
information has several advantages as opposed to more conventional methods relying on periodic car-
rier signals: 1) chaotic modulation offers a better performance since the correlation of waves is lower
than in the case of conventional periodic carriers; 2) it may out-perform conventional methods in the
case of noisy channels; 3) chaotic modulation presents robust wide-band communications; etc.

In the classic master-slave or, transmitter-receiver scheme, a master circuit is tunned to transmit
information using a chaotic carrier signal. The signal is received by a “slave” circuit which, if it can
be constructed identically to the master, the information may be decoded out of the chaotic carrier.
In practice, it is impossible to repeat the master circuit with the exact values of its components even
when these values are known. To this, we add the fact that the information is transmitted through
a non-ideal channel. All this uncertainty stymies considerably the faculty of reconstructing the useful
information.

In this paper, we present an adaptive approach to synchronization which relies on adaptive observer
design. As it has been shown in the important paper [7] the synchronization problem may be recasted in
a problem of observer-design, well known in the literature of control systems theory. Different observer-
based synchronization schemes have been proposed in the literature, e.g. relying on sliding modes: [3];
high-gain: [1]; Luenberger-based observers: [4], etc. We propose an adaptive observer for a class of
systems that covers certain chaotic systems. Then, we give sufficient conditions to achieve master-slave
synchronization in the event of parameter uncertainty and assuming that only an output – possibly part
of the master’s state – is available for measurement.

1



The rest of the paper is organized as follows. In coming section we introduce some notation and
definitions of stability that set the framework for our main results. In Section 3 we present an adaptive
observer for a class of detectable systems and give examples of chaotic systems that fit in our framework.
In Section 5 we present the proofs of our findings, before concluding with some remarks.

2 Preliminaries

Notation. We say that a function φ : R≥0 × Rn → A with A a closed, not necessarily compact
set, satisfies the basic regularity assumption (BRA) if φ(t, ·) is locally Lipschitz uniformly in t and
φ(·, x) is measurable. We denote the usual Euclidean norm of vectors by |·| and use the same symbol
for the matrix induced norm. A function α : R≥0 → R≥0 is said to be of class K (α ∈ K), if it is
continuous, strictly increasing and zero at zero; α ∈ K∞ if, in addition, it is unbounded. A function
β : R≥0 × R≥0 → R≥0 is of class KL if β(·, t) ∈ K , β(s, ·) is strictly decreasing and limt→∞ β(s, t) = 0.
We denote the solution of a differential equation ẋ = f(t, x) starting at x◦ at time t◦ by x(·, t◦, x◦);
furthermore, if the latter are defined for all t ≥ t◦ we say that the system is forward complete.

Definition 1 (Uniform global stability) The origin of

ẋ = f(t, x) (1)

where f(·, ·) satisfies the BRA, is said to be uniformly globally stable (UGS) if there exists κ ∈ K∞
such that, for each (t◦, x◦) ∈ R≥0 × Rn, each solution x(·, t◦, x◦) of (1) satisfies

|x(t, t◦, x◦)| ≤ κ(|x◦|) ∀ t ≥ t◦ . (2)

¤

Definition 2 (Uniform global asymptotic stability) The origin of (1) is said to be uniformly globally
asymptotically stable (UGAS) if it is UGS and uniformly globally attractive, i.e., for each pair of
strictly positive real numbers (r, σ), there exists T > 0 such that for each solution

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T .
¤

Definition 3 (UES) The origin of the system ẋ = f(t, x) is said to be uniformly exponentially stable
on any ball if for any r > 0 there exist two constants k and γ > 0 such that, for all t ≥ t◦ ≥ 0 and all
x◦ ∈ Rn such that |x◦| < r

|x(t, t◦, x◦)| ≤ k |x◦| e−γ(t−t◦) . (3)

¤

Definition 4 (Uniform Semiglobal Practical Asymptotic Stability) The origin of (1) is said to be uni-
formly semiglobally practically asymptotically stable (USPAS) if for each positive real numbers ∆ >
δ > 0 and σ > 0 there exist T > 0 and κ ∈ K∞ such that |x(t, t◦, x◦)| ≤ κ(|x◦|) for all t ≥ t◦ ≥ 0 and

|x◦| ≤ ∆ =⇒ |x(t, t◦, x◦)| ≤ σ + δ ∀ t ≥ t◦ + T .
¤

3 Adaptive Observers With Persistency of Excitation

Consider a nonlinear system of the form

ẋ = A(y)x + Ψ(x)θ + B(t, x) (4)
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where x ∈ Rn is the state vector; θ ∈ Θ is a vector of unknown constant parameters and Θ is a compact
of Rm; y = Cx is a measurable output; the pair (A(y(t)), C) is detectable, that is y(t) ≡ 0 implies that
x(t) → 0; the functions Ψ and B are globally Lipschitz, i.e. there exist ψM and bM such that, for any
vectors ζ ∈ Rm, with |ζ| = 1, x1, x2 ∈ Rn and all t ≥ 0,

|Ψ(x1)ζ −Ψ(x2)ζ| ≤ ψM |x1 − x2| (5a)
|B(t, x1)−B(t, x2)| ≤ bM |x1 − x2| . (5b)

Moreover, there exists ψ0 ≥ 0 such that

max
|ζ| = 1

∣∣∣ζ>Ψ(0)ζ
∣∣∣ ≤ ψ0 . (6)

Under these conditions we propose for systems of the form (4), the adaptive observer

˙̂x = A(y)x̂− L(t, y)C(x− x̂) + B(t, x̂) + Ψ(x̂)θ̂ (7)

where L(·, ·) satisfies the basic regularity assumption. Using (4), and defining x̄ := x̂−x, θ̄ := θ̂− θ the
estimation error dynamics is given by

˙̄x = [ A(y)− L(t, y)C ]x̄ + Ψ(x̄ + x(t))θ̄ + Φ(t, x̄, x(t), θ) (8a)
Φ(t, x̄, x(t), θ) := [ Ψ(x̄ + x(t))−Ψ(x(t)) ]θ + B(t, x̄ + x(t))−B(t, x(t)) . (8b)

Conditions (5) and the assumption that θ ∈ Θ where Θ is a compact of appropriate dimension imply
that there exists θM > 0 such that

|Φ(t, x̄, x(t), θ)| ≤ ψMθM |x̄|+ bM |x̄| =: φM |x̄| . (9)

The following assumption on the observer gain L guarantees that the state estimation errors tend
uniformly to zero; roughly the condition is that the gain L, through the measurable output y(t), makes
the error dynamics persistently excited.

Assumption 1 Define yt := y(t) for each t. There exists a globally bounded positive definite ma-
trix function P (·) such that pM ≥ |P | and, defining Ā(t, yt) := A(yt) − L(t, yt)C, −Q(t, yt)
:= Ā(yt)>P (t) + P (t)>Ā(yt) + Ṗ (t) we have the following for all t ≥ 0 and all yt ∈ Rm

1. Q(t, yt) ≥ 0

2. There exist µ and T > 0 such that
∫ t+T

t
Q(τ, yτ )dτ ≥ µI > 0 , ∀ t ≥ 0 (10)

3. There exists qM > 0 such that qM ≥ |Q(t, yt)| .

We remark for further development that Inequality (10), which is known as persistency of excitation, is
equivalent to ∫ t+T

t
ξ>Q(τ, yτ )ξdτ ≥ µ, ∀ t ≥ 0, |ξ| = 1 .

Next, consider the adaptation law

˙̂
θ(t) = −γΨ(x̂(t))>P (t)x̂(t) , γ > 0 (11)

which, considering that θ̇ = 0, is equivalent to

˙̄θ = −γΨ(x̄ + x(t))>P (t)x̄− γΨ(x̄ + x(t))>P (t)x(t) , γ > 0 . (12)

In order to guarantee that the parameter errors θ̄(t) → 0 we shall also impose a persistency-of-excitation
condition on the function Ψ(x(t)):
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Assumption 2 The function Ψ(x(t)) is such that there exist positive numbers µψ and Tψ such that, for
any unitary vector ζ ∈ Rm,

∫ t+Tψ

t
|Ψ(x(τ))ζ| dτ ≥ µψ , ∀ t ≥ 0 . (13)

Under these conditions we have the following.

Proposition 1 The origin of the estimation error dynamics corresponding to x̄ and θ̄, i.e. equations (8)
and (12), is uniformly semi-globally practically asymptotically stable provided that: 1) conditions (5)
hold; 2) Assumptions 1 and 2 are satisfied; 3) the solutions x(t) and their derivatives ẋ(t) are bounded
for all t. ¤

Roughly, Proposition 1 establishes conditions for the state and parameter estimation errors to con-
verge to an arbitrarily small neighborhood of the origin. In the context of master-slave synchronization
of chaotic systems, Proposition 1 establishes conditions under which two chaotic systems with unknown
constant parameters, synchronize, in the event that only an output of the master system is measurable.

In the present context of synchronization, conditions (5) are mild regularity properties that are
satisfied by a number of chaotic systems as we shall illustrate below. The assumption on x(t) is not
restrictive either in the present context if we assume that x(t) corresponds to the solutions of an ordinary
differential equation ẋ = f(t, x, θ) such that for a particular choice of θ the system exhibits a chaotic
behavior and therefore, x(t) is bounded. Boundedness of ẋ(t) follows directly from the usual hypotheses
imposed on f to guarantee existence and uniqueness of solutions. The only conditions that are, in
general, hard to verify are the persistency-of-excitation conditions; yet, we stress that this property has
been showed to be necessary for parameter convergence, in the context of adaptive control (see e.g.
[11], [10]).

Assumption 2 is a structural condition on the function Ψ(·) as well as on the richness of its trajecto-
ries x(t). A particular method to verify Assumption 1 on the PE of the observer gain is using high-gain
observers – cf. [7, 6, 2]. According with [5], we make the following detectability hypothesis:

Assumption 3 Let Φx(t, t◦) denote the transition matrix associated to A(yt), i.e., the solution of
{

Φ̇x(t, t◦) = A(yt)Φx(t, t◦) ,

Φx(t◦, t◦) = I .

Assume that there exist positive numbers Tx and µx, such that, for all t ≥ 0
∫ t+Tx

t
Φx(τ, t)>C>CΦx(τ, t)dτ ≥ µxI . (14)

Next, for any given ρx > 0, we define the observer gain L(t, y) as

L(t, yt) := P (t, yt)−1C> (15)
Ṗ (t, yt) = 2C>C − ρxI − P (t, yt)A(yt)−A(yt)>P (t, yt) , ∀ t ≥ ty◦ + Tx (16)

P (t, yt◦) = P◦ = P>
◦ > 0 ∀ t ∈ [t◦, t◦ + Tx]. (17)

It can be shown that, under Assumption 3, one has P (t, yt) ≥ µxe−ρxTxI for all t ≥ t◦ + Tx. On the
other hand, a direct calculation yields that the matrix

−Q(t, yt) := [A(yt)− L(t, yt)C]>P (t) + P (t)>[A(yt)− L(t, yt)C] + Ṗ (t, yt) (18)

with P and L given by (15) and (16), satisfies Q(t, yt) ≡ ρxI, hence Assumption 1 is trivially satisfied.
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4 Adaptive Synchronization via PE Observers

From the previous general developments, we draw the following conclusions in the context of master-
slave synchronization.

Proposition 2 Consider a chaotic master system of the form (4) where θ is such that the solutions x(t)
exhibit a chaotic behavior. Let y = Cx be a measurable output of the master system. Construct a
slave system according to the dynamics (7), (11). Then, under the conditions of Proposition 1 a slave
system synchronizes with the master, in the sense that x̂(t) approaches x(t) arbitrarily close as t →∞.
In particular, we have the following:

1. in the case that the parameters θ are unknown, the errors |x(t)− x̂(t)| and
∣∣∣θ − θ̂

∣∣∣ approach an
arbitrarily small neighborhood of the origin as t → ∞. Moreover, the size of this neighborhood
may be reduced by increasing the persistency of excitation, i.e. µx and µ;

2. in the case that the parameters θ are unknown but C = I, i.e. the whole master system’s
state is measurable, perfect synchronization occurs and the parameters θ may be estimated if the
persistency of excitation condition (13) holds;

3. in the case that the parameters θ are known, the slave system will achieve perfect synchronization
provided that the persistency of excitation condition imposed in Assumption 1 holds.

¤

4.1 Example: Lorenz system

For illustration we apply our main result in the estimation of on estate and two parameters of the
well-known chaotic Lorentz system. The latter is given by

ẋ1 = θ1(x2 − x1) (19)
ẋ2 = θ2x1 − x2 − x1x3 (20)
ẋ3 = x1x2 − θ3x3 . (21)

We assume to measure y1 = x1, y3 = x3 and that we know θ1. Under such conditions the system can
be rewritten in the form (4) with y = x1,

A(y) :=



−θ1 θ1 0
0 −1 −y1

0 y1 0


 , Ψ(x) :=




0 0 0
0 x1 0
0 0 −x3


 . (22)

Again, the functions above satisfy the required regularity conditions imposed in Proposition 1.

We tested the proposed algorithm in simulation under the following conditions: 1) For a chaotic
behavior we chose θ1 = 16, θ2 = 45.6 and θ3 = 4; 2) the initial states are: x(0) = [1; 1; 1], x̂(0) = [0; 0; 0],
θ̂1(0) = 15, θ̂2(0) = 47, θ̂3(0) = 25; the gains are set to ρx = 150, γ = 0.0001,

P◦ =




5 1 2
1 8 3
2 3 9
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Some representative simulation results are presented in Figure 1–3. It may be appreciated that
practical asymptotic stability is achieved with a relatively short transient. Exact synchronization and
parameter estimation are not achieved as expected, due to the lack of measurements and knowledge of
the parameters.

5 Proofs

5.1 Proof of Proposition 1

The dynamics of the estimation errors z := col[x̄ , θ̄] is given by

ż = F (t, z)z + K(t, z) (23a)

F (t, z) :=
[

[A(yt)− L(t, yt)C ] −γΨ(x̄ + x(t))
−γΨ(x̄ + x(t))>P (t) 0

]
(23b)

K(t, z) :=
[

Φ(t, x̄, x(t), θ)
−γΨ(x̄ + x(t))>P (t)x(t)

]
. (23c)

Let βx be such that |x(t)| ≤ βx for all t ≥ 0 then, from (9) and (6), it follows that

|K(t, z)| ≤ (ψMpMβx + φM ) |z1|+ pMψ0βx (24a)
=: b1 |z1|+ b2 . (24b)

Claim 1 Under the conditions of Proposition 1 the origin of ż = F (t, z)z is UGAS and uniformly
exponentially stable on any ball.

From the proof of Claim 1 – cf. Section 5.2 we obtain, for any r ≥ 0 and t◦ ≥ 0,

|z(t◦)| < r ⇒ |z(t)| ≤ k |z(t◦)| e−γ(t−t◦) (25)

where k := 2ce1/2, γ :=
1

2c2
and c > 0 is defined below (32). It follows, from the proof of [8, Theorem

4.14], that there exists V4 : R≥0 ×BR → R≥0 with R := kr, such that
(

1− e−2qMT

2qM

)
|z|2 ≤ V4(t, z) ≤

(
1− e−2γT

2γ

)
|z|2

∂V4

∂t
+

∂V4

∂z
F (t, z)z ≤ −(1− e−2γT ) |z|2

∣∣∣∣
∂V4

∂z

∣∣∣∣ ≤
2

γ − qM

[
1− e−(γ−qM )T

]
.

Evaluating the time derivative of V4(t, z) along the trajectories of (23a) and using (24) we obtain

V̇4(t, z) ≤ −(1− e−2γT ) |z|2 +
2

γ − qM

[
1− e−(γ−qM )T

]
(b1 |z|2 + b2 |z|)

hence if, for any given ε > 0, b1, b2 and z satisfy

b1 ≤
(
1− e−2γT − ε

)
(γ − qM )

4
[
1− e−(γ−qM )T

] (26)

|z| ≥ b2
4

[
1− e−(γ−qM )T

]

(1− e−2γT − ε) (γ − qM )
(27)

we obtain
V̇4(t, z) ≤ −ε |z|2 .
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It follows that the solutions are uniformly ultimately bounded – cf. [8, p. 172] for all initial conditions
such that |z◦| < r. On the other hand, the term on the right hand side of (27) may be reduced at will
by enlarging γ (i.e., by enlarging c hence, µ and µψ) while the calculations above hold for r arbitrarily
large but finite; hence, it follows that the origin is semiglobally uniformly practically asymptotically
stable.

5.2 Proof of Claim 1

The proof of Claim 1 relies on the following:

Claim 2 The origin of the system ˙̄x = [A(yt)− L(t, yt)C ]x̄ is UGES.

Claim 3 There exists cz1 < ∞ such that the function t 7→ z1 generated by the differential equations
ż = F (t, z)z where F is defined in (23b), satisfies

∫ ∞

t◦
|z1(t)| dt ≤ cz1 |z◦| ∀ t ≥ t◦ ≥ 0 (28)

and moreover, the origin of ż = F (t, z)z is UGS with κ(s) := cz0s – cf. Ineq. (2), and

cz0 :=

√√√√√√√
max

{
pM ,

1
γ

}

min
{

pm ,
1
γ

} . (29)

Claim 4 There exists cz2 < ∞ such that the function t 7→ z2 generated by the differential equations
ż = F (t, z)z where F is defined in (23b), satisfies

∫ ∞

t◦
|z2(t)| dt ≤ cz2 |z◦| ∀ t ≥ t◦ ≥ 0 . (30)

From Claims 3 and 4 above it follows that
∫ ∞

t◦
|z(t)| dt ≤ cz |z◦| ∀ t ≥ t◦ ≥ 0 (31)

where cz := max{cz1 , cz2}. It follows from [10, Lemma 3] that the origin is uniformly exponentially
attractive on any ball, that is, it is uniformly globally attractive and, moreover, for any r > 0 we have
that

|z(t◦)| < r ⇒ |z(t)| ≤ 2ce1/2 |z(t◦)| e
− 1

2c2
(t−t◦)

(32)

with c := max{cz , cz0}. We conclude that the origin of the system is UGAS and uniformly exponentially
stable on any ball.

Notice that as c decreases, the rate of convergence γ := − 1
2c2

increases. As we show in the proof of
Claim 2 the latter is made possible by enlarging µ and µψ .

5.3 Proof of Claim 2

Consider Assumption 1. It is a standard result in adaptive control literature –cf. [11] that the
condition (10) is equivalent to: (A) for any unitary vector ξ ∈ Rn we have

∫ t+T

t
ξ>Q(τ, yt)ξdτ ≥ µ ∀ t ≥ 0 . (33)
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That is, φ(t) := ξ>Q(τ, yt)ξ is PE and satisfies φM ≥ |φ(t)| for all t ≥ 0.Consider now the function
V1(t, x̄) := x̄>P (t)x̄; its total derivative along the solutions of ˙̄x = Ā(yt)x̄ yields, by assumption,
V̇1 = −x̄>Q(t, yt)x̄ ≤ 0. This implies that, defining pm and pM as

pm := inf
|ξ| = 1
t ≥ 0

ξ>P (t)ξ pM := sup
|ξ| = 1
t ≥ 0

ξ>P (t)ξ , (34)

the solutions of ˙̄x = Ā(yt)x̄ satisfy

|x̄(t + T )|2 ≤ pM

pm
|x̄(τ)|2 , ∀ τ ∈ [t, t + T ] , t ≥ 0 . (35)

It follows from this, the equation V̇1(τ, x̄(τ)) = −x̄(τ)>Q(τ, yτ )x̄(τ) and (33) that

V1(t, x̄(t))− V1(t + T, x̄(t + T )) ≥
∫ t+T

t
x̄(τ)>Q(τ, yτ )x̄(τ)dτ

≥
∫ t+T

t
|x̄(τ)|2

(
inf
|ξ| = 1

ξ>Q(τ, yτ )ξ
|ξ|2

)
dτ

≥
∫ t+T

t

pM

pm

(
inf
|ξ| = 1

ξ>Q(τ, yτ )ξ
|ξ|2

)
dτ |x̄(t + T )|2

≥ µpM

pm
|x̄(t + T )|2

which implies that
∫ t0+T

t0

pMµ

pm
|x̄(t)|2 dt + V1(t0, x̄(t0))− V1(t0 + T, x̄(t0 + T )) ≥

∫ ∞

t0

pMµ

pm
|x̄(t)|2 dt

(
T

pM

pm
+

2pm

µ

)
|x̄(t0)|2 ≥

∫ ∞

t0

|x̄(t)|2 dt (36)

It follows from [10, Lemma 3] that the origin of ˙̄x = A(yt)x̄ is globally exponentially stable, uniformly
in yt. Moreover, defining

c :=

√
max

{(
T

pM

pm
+

2pm

µ

)
,

pM

pm

}
(37)

we have

|x̄(t)| ≤ 2ce1/2 |x̄◦| e
− 1

2c2
(t−t◦)

. (38)

5.4 Proof of Claim 3

The proof follows naturally from the proof of Claim 2. Consider the positive definite function

V2(t, z) := z>1 P (t)z1 +
1
γ
|z2|2 ; (39)

its total derivative along the solutions of ż = F (t, z)z yields V̇2(t, z) = V̇1(t, z) ≤ 0 which implies that
pm |x̄(t)|2 + (1/γ)

∣∣θ̄(t)∣∣2 ≤ |z(t)|2 ≤ pM |x̄(t◦)|2 + (1/γ)
∣∣θ̄(t◦)

∣∣2. It follows that the system is UGS, in
particular, it satisfies

|z(t)| ≤ cz0 |z(t◦)| ∀ t ≥ t◦ ≥ 0

with cz0 as defined in (29). The first part of the claim follows observing that (36) still holds for the
trajectories of ż = F (t, z)z hence, (28) holds with

cz1(µ, T ) :=
√

T
pM

pm
+

2pm

µ
.

Notice that for each fixed T , c(µ, T ) → 0 as µ →∞.
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5.5 Proof of Claim 4

Let r > 0 be an arbitrary number and define R := cz0r. Consider the system ż = F (t, z)z with
initial conditions satisfying |z◦| < r; then, we have that |z(t)| < R for all t ≥ t◦. Consider the function
V3 : R≥0 ×BR → R≥0 defined as

V3(t, z) = V2(t, z)− ε

(∫ ∞

t
e(t−τ) |Ψ(x(τ))z2|2 dτ + z>1 Ψ(x(t))z2

)
. (40)

Under Assumption 2 we have that

−
∫ ∞

t
e(t−τ) |Ψ(x(τ))z2|2 dτ ≤ −µψe−Tψ |z2|2

hence, in view of the boundedness of x(t) and the Lipschitz property of Ψ we have that V3 is positive
definite for sufficiently small ε; moreover, there exist positive numbers α1, α2 such that

α1 |z|2 ≤ V3(t, z) ≤ α2 |z|2 .

On the other hand, the time derivative of V3 along the trajectories of ż = F (t, z)z yields

V̇3(t, z) = V̇2(t, z)− εe−T
µ2

ψ

Tψ
|z2|2 − εz>1 [

˙︷ ︷
Ψ(x(t))z2 − γΨ(x(t))Pz1 ] (41)

− ε[ (A− LC)z1 + (Ψ(z1 + x(t))−Ψ(x(t)) )z2 ]Ψ(x(t))z2 . (42)

Under the regularity assumptions made on x(t), Ψ etc., and considering that |z(t)| < R, it follows that
there exists a number cR such that

V̇3(t, z(t)) ≤ − εe−Tψ
µ2

ψ

Tψ
|z2(t)|2 + εcR[ |z1(t)| z2(t) + |z2(t)| ] (43)

≤ −
(

εe−Tψ
µ2

ψ

Tψ
− ε

2

)
|z2(t)|2 + (c2

R + 1) |z1(t)|2 (44)

which, defining cθ :=
(

εe−Tψ
µ2

ψ

Tψ
− ε

2

)
is equivalent to

∫ ∞

t◦
cθ |z2(t)|2 dt ≤ V3(t◦, z(t◦)) + (c2

R + 1)c2
z1

∫ ∞

t◦
|z1(t)|2 dt . (45)

The result follows with

cz2(Tψ, µψ) :=

√
α2 + (c2

R + 1)c2
z1

cθ
.

Notice that cz2(Tψ, µψ, µ) → 0 as µψ →∞ and µψ →∞.

5.6 Proof of Proposition 2

The proof follows from the developments of the previous section. In the first case, the synchroniza-
tion error dynamics is given exactly by (8) and (12) whose origin has been showed to be uniformly
semiglobally practically asymptotically stable. In the second case, the synchronization error dynamics
corresponds to equations (8) and, instead of (12),

˙̄θ = −γΨ(x̄ + x(t))>P (t)x̄ γ > 0 .

In this case, b2 in (24b) is zero and therefore, the calculations involved in the proof of Proposition 1 hold
for all |z| ≥ 0. In the case of the high-gain observer, notice that the synchronization may be achieved
from any initial errors. In the third case, the synchronization dynamics is given simply by equation (8)
with θ̄ ≡ 0 and the result follows from the proof of Claim 2 for sufficiently large µ.

10



6 Conclusion

We presented an adaptive observer scheme for detectable systems which guaranteed uniform semiglobal
practical asymptotic stability. In particular, we have shown that under certain persistency of excitation
conditions the estimation errors tend to an arbitrarily small neighborhood of the origin. Our scheme
applies naturally to the problem of master-slave synchronization in the case of parameter uncertainty
of the master system.
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