
This is the Author's Pre-print version of the following article: A. Zavala-Río, 
I. Fantoni, S. Salazar, R. Lozano, ROBUST GLOBAL STABILIZING BOUNDED 
CONTROL OF A PVTOL AIRCRAFT WITH LATERAL COUPLING, IFAC 
Proceedings Volumes, Volume 38, Issue 1, 2005, Pages 977-982, which has 
been published in final form at: https://doi.org/10.3182/20050703-6-CZ-
1902.00819 This article may be used for non-commercial purposes in 
accordance with Terms and Conditions for Self-Archiving. 

https://doi.org/10.3182/20050703-6-CZ-1902.00819
https://doi.org/10.3182/20050703-6-CZ-1902.00819


ROBUST GLOBAL STABILIZING BOUNDED

CONTROL OF A PVTOL AIRCRAFT WITH

LATERAL COUPLING

A. Zavala-Rı́o I. Fantoni
†

S. Salazar
†

R. Lozano
†

Instituto Potosino de Investigación Cient́ıfica y Tecnológica
Apdo. Postal 2-66, 78216 San Luis Potośı, S.L.P., Mexico
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Abstract: This note provides a detailed stability analysis of a global stabilizing
control algorithm for a PVTOL aircraft with lateral coupling (ε 6= 0) and bounded
inputs. Such control approach was originally proposed considering ε = 0. The
analysis furnished here proves the robustness of the original scheme with respect
to the existence of lateral coupling. The presented methodology is based on the use
of embedded saturation functions and a result of global asymptotic stabilization
for cascade systems. Copyright c©2005 IFAC.
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1. INTRODUCTION

The recent literature shows that the planar verti-
cal take-off and landing (PVTOL) aircraft always
produces a great interest in the control commu-
nity. Indeed, its mathematical model represents a
challenge in nonlinear control design. The PVTOL
aircraft system is also extensively used to develop
and/or approximate models of flying vehicles.
This can be confirmed through numerous works
that have been recently contributed on Unmanned
Autonomous Vehicles (UAV).

The dynamical model of the PVTOL aircraft
proposed in (Hauser, et al., 1992) is given by

ẍ = −u1 sin θ + εu2 cos θ (1a)

ÿ = u1 cos θ + εu2 sin θ − 1 (1b)

θ̈ = u2 (1c)

where x, y, and θ refer to the center of mass
position and the roll angle of the aircraft with the
horizon. The variable u1 and u2 are respectively
the thrust and the angular acceleration inputs.
The constant “−1” is the normalized gravitational
acceleration and ε is a coefficient which character-
izes the coupling between the rolling moment u2

and the lateral acceleration of the aircraft.

Numerous authors have proposed control method-
ologies for the stabilization or the trajectory
tracking of the PVTOL aircraft system. A few
of them are (Hauser, et al., 1992; Lin, et al.,
1999; Olfati-Saber, 2002; Teel, 1996; Zavala-Ŕıo,
et al., 2003). In these works, the controllers have
been designed either neglecting the coupling be-
tween the rolling moment and the lateral acceler-
ation or considering the exact knowledge of this
term. In the first case, ε is regarded as so small



that ε = 0 is supposed in (1) (see for instance
(Hauser, et al., 1992, §2.4)). In the second situa-
tion, the authors mostly use a globally invertible
nonlinear coordinate transformation such that in
the new state representation such coupling effect
does not explicitly appear (Olfati-Saber, 2002).
The control designs and the stability analyses
have thus been developed for the transformed
system without considering the coupling.

From all the works previously cited, only (Zavala-
Ŕıo, et al., 2003) has developed a global stabilizing
scheme considering bounded inputs. Moreover,
the control algorithm proposed in such work takes
into account the positive nature of the thrust.

However, robustness of the previously proposed
algorithms have been scarcely addressed. As far
as the authors are aware, only Lin, et al. (1999)
have developed a robust control setting for the
PVTOL aircraft with respect to uncertainty of
the coupling parameter. A nominal value of ε is
however required. Their algorithm is based on
an optimal control solution. Furthermore, Teel
(1996) proposed a control law depending on the
exact value of ε and showed through numerical
simulations the robustness of his approach when
initial conditions are close enough to the origin.
Due to its dependence on the physical parameters
of the aircraft, the supposition that ε is exactly
known can be defended (see (Olfati-Saber, 2002)).
Nevertheless, its exact value can be difficult to
measure or estimate in real experiments.

In the present paper, the crucial contribution is to
demonstrate that using the control methodology
previously presented in (Zavala-Ŕıo, et al., 2003),
where ε = 0 was supposed, global stabilization is
achieved despite the presence of lateral coupling.
This corroborates the robustness of such a control
approach. The algorithm is based on the use of
the embedded saturation function methodology
proposed by Teel (1996). The closed-loop stability
analysis leans on the result stated by Sontag
(1989) for cascade systems relying on a converging
input bounded state (CIBS) property.

The paper is organized as follows. Section 2 re-
calls the approach presented in (Zavala-Ŕıo, et
al., 2003). Section 3 details the closed-loop stabil-
ity analysis including the lateral coupling. Some
experimental results are provided in Section 4.
Finally, conclusions are given in Section 5.

2. GLOBAL STABILIZATION ALGORITHM

Before recalling the control law, the reader is
invited to consult (Zavala-Ŕıo, et al., 2003) for a
detailed description of the conceptual setting un-
derlying the proposed approach. In such reference,

we have considered the PVTOL aircraft dynamics
with ε = 0, i.e

ẍ = −u1 sin θ , ÿ = u1 cos θ − 1 , θ̈ = u2 (2)

We recall the control objective, stated as the
global asymptotic stabilization of the system to-
wards (x, ẋ, y, ẏ, θ, θ̇) = (0, 0, 0, 0, 0, 0) considering
bounded inputs, i.e. 0 ≤ u1 ≤ U1 and |u2| ≤ U2

for some constants U1 > 1 and U2 > 0.

Note that the idea underlying the control algo-
rithm proposed in this article and that in (Olfati-
Saber, 2002) are similar except that the latter con-
siders unbounded inputs. Moreover, the present
approach is robust in the sense that it does not
depend on the exact value of ε, but on a partial
knowledge of it (i.e. the global stabilization objec-
tive is achieved provided that ε is small enough).

The approach is based on linear saturation func-
tions, as defined in (Teel, 1992), and a special type
of them named 2-level linear saturation functions,
whose definitions are recalled here.

Definition 1. Given positive constants L and M ,
with L ≤ M , a function σ : IR → IR is said to be a
linear saturation for (L,M) if it is a continuous,
nondecreasing function satisfying

(a) σ(s) = s when |s| ≤ L

(b) |σ(s)| ≤ M for all s ∈ IR

Definition 2. Given positive constants L+, M+,
N+, L−, M−, and N−, with L± ≤ min {M±, N±},
a function σ : IR → IR is called a 2-level linear

saturation for (L+,M+, N+, L−,M−, N−) if it
is a continuous, nondecreasing function satisfying

(a) σ(s) = s for all s ∈ [−L−, L+]
(b) −M− < σ(s) < M+ for all s ∈ (−N−, N+)
(c) σ(s) = −M− for all s ≤ −N−

(d) σ(s) = M+ for all s ≥ N+

Notice that a 2-level linear saturation for (L+,
M+, N+, L−, M−, N−) is a linear saturation
for (min{L−, L+},max{M−,M+}).
We recall the proposed control algorithm (from
(Zavala-Ŕıo, et al., 2003)): the thrust input u1 and
the rolling moment u2 are expressed by

u1 =
√

r2
1 + (1 + r2)2 (3)

u2 = σ41(θ̈d) − σ32(θ̇ − σ42(θ̇d)

+ σ31(θ̇ − σ43(θ̇d) + θ − θd))
(4)

where r1, r2 and θd are defined as follows

r1 = −kσ12(ẋ + σ11(kx + ẋ)) (5)

r2 = −σ22(ẏ + σ21(y + ẏ)) (6)

θd = arctan(−r1, 1 + r2) (7)

with k in (5) a constant satisfying

0 < k < 1 (8a)



the functions σij(·) in (5) and (6) are twice differ-
entiable 2-level linear saturations for given (L+

ij ,

M+

ij , N+

ij , L−
ij , M−

ij , N−
ij ) such that

Bu1
,

√

(kM12)
2

+
(

1 + M−
22

)2
< U1 (8b)

M+

22 < 1 (8c)

Mi1 <
Li2

2
,∀i = 1, 2 (8d)

with Mij , max{M−
ij ,M+

ij } and Lij , min{L−
ij ,

L+

ij}, i = 1, 2, j = 1, 2, and the functions σmn(·)
in (4) are linear saturations for given (Lmn,Mmn)
such that

M41 + M32 < U2 (9a)

M41 + 2M42 + 2M31 < L32 (9b)

M41 + M42 + 2M43 + 2Bθd
< L31 (9c)

with Bθd
, arctan

(

kM12

1−M+

22

)

. Further, defining

r̄1 , −σ12(ẋ + σ11(kx + ẋ)) = r1

k , the first and
second time-derivatives of θd, used in (4), are
given by

θ̇d = k

(

r̄1ṙ2 − (1 + r2) ˙̄r1

u2
1

)

(10)

θ̈d = k

(

r̄1r̈2 − (1 + r2)¨̄r1

u2
1

)

− 2u̇1θ̇d

u1

(11)

while those of r̄1 and r2, and u̇1 by

˙̄r1 = −σ′
12(s12)ṡ12

ṙ2 = −σ′
22(s22)ṡ22

¨̄r1 = −σ′′
12(s12)ṡ

2
12 − σ′

12(s12)s̈12

r̈2 = −σ′′
22(s22)ṡ

2
22 − σ′

22(s22)s̈22

u̇1 =
k2r̄1

˙̄r1 + (1 + r2)ṙ2

u1

(12)

with σ′
ij(sij) =

dσij

dsij
, σ′′

ij(sij) =
d2σij

ds2
ij

,

s12 = ẋ + σ11(s11)
s22 = ẏ + σ21(s21)
ṡ12 = ax + σ′

11(s11)ṡ11

ṡ22 = ay + σ′
21(s21)ṡ21

s̈12 = ȧx + σ′′
11(s11)ṡ

2
11 + σ′

11(s11)s̈11

s̈22 = ȧy + σ′′
21(s21)ṡ

2
21 + σ′

21(s21)s̈21

s11 = kx + ẋ

s21 = y + ẏ

ṡ11 = kẋ + ax , ax = −u1 sin θ

ṡ21 = ẏ + ay , ay = u1 cos θ − 1

s̈11 = kax + ȧx , ȧx = −u1θ̇ cos θ − u̇1 sin θ

s̈21 = ay + ȧy , ȧy = −u1θ̇ sin θ + u̇1 cos θ

where the accelerations (ẍ and ÿ) have been
replaced by their expressions in (2) every time
they appeared in the derivation procedure (recall
that ε = 0 was originally supposed). Subsequently,
‖ · ‖ will represent the standard Euclidean vector

norm i.e. ‖ξ‖ =
[
∑n

i=1
ξ2
i

]1/2
, ∀ξ ∈ IRn.

3. ROBUST GLOBAL STABILIZATION
ALGORITHM

Theorem 1. Consider the PVTOL aircraft dy-
namics (1) with input saturation bounds U1 > 1
and U2 > 0. Let the input thrust u1 be defined
as in (3),(5),(6), with constant k and parame-
ters (L+

ij , M+

ij , N+

ij , L−
ij , M−

ij , N−
ij ) of the twice

differentiable 2-level linear saturation functions
σij(·) in (5) and (6) satisfying inequalities (8), and
the input rolling moment u2 as in (4),(7), with
parameters (Lmn,Mmn) of the linear saturation
functions σmn(·) in (4) satisfying inequalities (9).
Then, provided that k and ε are sufficiently small,

(i) global asymptotic stabilization of the closed-
loop system (1),(3)–(7) towards (x, ẋ, y, ẏ,

θ, θ̇) = (0, 0, 0, 0, 0, 0) is achieved, with
(ii) 0 < 1 − M+

22 ≤ u1(t) ≤ Bu1
< U1 and

|u2(t)| ≤ M41 + M32 < U2, ∀t ≥ 0.

Proof. Property (ii) of the statement is a direct
consequence of the definitions of u1, u2, r1, and
r2. Its proof is consequently straightforward. The
proof of property (i) is divided in four parts. The
first part shows that θd, θ̇d, and θ̈d are (uniformly
or ultimately) bounded signals whose (uniform or
ultimate) bounds are directly influenced by the
parameter k. This is essential within the closed-
loop stability analysis which is developed in the
remaining stages of the proof. The second part
shows that for any initial condition vector ζ(0) ∈
IR6, with ζ , (x, ẋ, y, ẏ, θ, θ̇)T , (provided that k is
sufficiently small) there exists a finite time t′ ≥ 0
after which the system trajectories evolve within
a positively invariant set (containing the origin of
IR6) where every linear saturation function σmn(·)
in (4) is equal to its argument. As a consequence,
by defining z = (z1, z2, z3, z4)

T , (x, ẋ, y, ẏ)T and
e = (e1, e2)

T , (θ − θd, θ̇ − θ̇d)
T , the closed-

loop dynamics get (from t′ on) a state-space
representation of the form

ż = f(z, e) (13a)

ė = g(e) (13b)

with f(04, 02) = 04 and g(02) = 02, 0n denoting
the origin of IRn, where e = 02 is a globally
asymptotically stable (GAS) equilibrium state of
subsystem (13b). From the expressions in (3)–
(12), it is not hard to see that (zT , eT )T = 06 ⇐⇒
ζ = 06. The third part of the proof shows that
(provided that k and ε are sufficiently small)
the trajectories of subsystem (13a) exist and are
bounded for any bounded e converging to 02

asymptotically in time. Consequently, according
to the result stated in (Sontag, 1989), system (13)
has (zT , eT )T = 06 as a GAS equilibrium state if
z = 04 is itself a GAS equilibrium state of

ż = f(z, 02) (14)



Such a stability property of system (14) is shown
to be satisfied in the fourth part of the proof.

1st and 2nd parts. These are thoroughly devel-
oped within the proof of Theorem 1 in (Zavala-
Ŕıo, et al., 2003). Due to space limitations, the
reader is invited to consult such reference. For the
development of the subsequent stages, two facts
shown therein shall be retained:

F1. for all t ≥ t′, every linear saturation function
σmn(·) in (4) is equal to its argument;

F2. |θ̈d(t)| ≤ kE2, ∀t ≥ t′, for some initial-
condition-independent constant E2 > 0. 1

3rd part. As a consequence of fact F1, under the
state-space representation adopted above, u2 in
(4) becomes (from t′ on)

u2 = θ̈d − 2e2 − e1 (15)

while subsystem (13b) takes the form

ė = Ae (16)

with A =

(

0 1
−1 −2

)

. Since A is Hurwitz, e = 02

is a GAS equilibrium state of subsystem (13b).
Thus, e(t) is indeed bounded and converges to
02, i.e. ∃Be = Be(‖e(t′)‖) such that ‖e(t)‖ ≤ Be,
∀t ≥ t′, and ‖e(t)‖ → 0 as t → ∞. Furthermore,
subsystem (13a) can be expressed as

ż1 = z2 (17)

ż2 = −kσ12(z2 + σ11(kz1 + z2)) + R1(z, e) (18)

ż3 = z4 (19)

ż4 = −σ22(z4 + σ21(z3 + z4)) + R2(z, e) (20)

where R1(z, e) = −u1[sin(e1 + θd) − sin θd] +
εu2 cos(e1 + θd) and R2(z, e) = u1[cos(e1 + θd) −
cos θd] + εu2 sin(e1 + θd). Let us note that from
(15), fact F2, and the facts that | sin(e1 + θd) −
sin θd| ≤ |e1|, | cos(e1 + θd) − cos θd| ≤ |e1|, |e1| ≤
‖e‖, and |2e2 + e1| = |(1, 2)e| ≤ ‖(1, 2)T ‖ ‖e‖ =√

5‖e‖, we have

|Ri(z, e)| ≤ εkE2 + B′‖e‖ (21)

i = 1, 2, where B′ , Bu1
+
√

5ε (see (8b)). Let us
further note that due to the smoothness properties
of every term in system (16)–(20), global existence
and uniqueness of the system state trajectories
follow if they are proved to be bounded (see for
instance (Khalil, 2002, Thrm. 3.3)). Boundedness
of e(t) has already been shown. That of z(t) is
proved next.

Let us first analyze the vertical motion dynamics,
i.e. equations (19) and (20). Notice from (20) and
(21) that

|ż4(t)| ≤ M22 + εkE2 + B′Be (22)

1 A worst-case estimation of such a constant, E2, is given

in the proof of Theorem 1 in (Zavala-Ŕıo, et al., 2003).

∀t ≥ t′ (where the fact that ‖e(t)‖ ≤ Be, ∀t ≥ t′,
for some Be, has been considered). Inequality
(22) shows that the absolute value of the vertical
acceleration is bounded by a (positive) constant.
Therefore, z3(t) and z4(t) exist and are bounded
at any finite time. Now, since ‖e(t)‖ → 0 as
t → ∞, for any positive δ, there exists a time
t1 ≥ t′ such that ‖e(t)‖ ≤ δ, ∀t ≥ t1. Take

δ <
γ − εkE2

B′
(23)

where

γ , min{L21, L22 − 2M21, kL11, k(L12 − 2M11)}
(24)

and suppose that k and ε satisfy

εkE2 < γ (25)

Let us define the function V1 = z2
4 . Its derivative

along the system trajectories is given by

V̇1 = 2z4ż4

= 2z4 [−σ22(z4 + σ21(z3 + z4)) + R2(z, e)]

(26)

Notice from (21) that, for all t ≥ t1, |R2(z, e)| ≤
εkE2 + B′δ. Suppose for the moment that z4 >

M21+εkE2+B′δ > 0. Under such an assumption,
we have z4 + σ21(·) > εkE2 + B′δ > 0. Then,
according to Definition 2, either σ22(·) ∈ (0, L+

22]
implying (from (20)) ż4 = −z4−σ21(·)+R2(z, e) <

M21 + εkE2 +B′δ− z4 < 0, or σ22(·) ∈ (L+

22,M
+

22]
entailing ż4 = −σ22(·) + R2(z, e) < εkE2 + B′δ −
L+

22 < 0, since, from (23) and (24), εkE2 + B′δ <

γ ≤ L21 ≤ M21 < L22

2
< L+

22. Hence,

z4 > M21 + εkE2 + B′δ > 0 =⇒ ż4 < 0 (27)

Similarly, if z4 < −M21 − εkE2 − B′δ < 0, which
implies z4 + σ21(·) < −εkE2 − B′δ < 0, then
either σ22(·) ∈ [−L−

22, 0) entailing ż4 = −z4 −
σ21(·) + R2(z, e) > −M21 − εkE2 − B′δ − z4 > 0,
or σ22(·) ∈ [−M−

22,−L−
22) implying ż4 = −σ22(·)+

R2(z, e) > L−
22 − εkE2 −B′δ > 0, since, from (23)

and (24), εkE2 + B′δ < γ ≤ L21 ≤ M21 < L22

2
<

L−
22. Thus,

z4 < −M21 − εkE2 − B′δ < 0 =⇒ ż4 > 0 (28)

Therefore, from (27) and (28), we see that |z4| >

M21 + εkE2 + B′δ =⇒ sign(z4) 6= sign(ż4) ⇐⇒
V̇1 < 0. This proves that, for any z(t1) ∈ IR4, there
is a time t2 ≥ t1 such that |z4(t)| ≤ M21 + εkE2 +
B′δ, ∀t ≥ t2. Then, for all t ≥ t2, we have |z4 +
σ21(·)| ≤ |z4| + M21 ≤ 2M21 + εkE2 + B′δ < L22,
since, from (23) and (24), εkE2+B′δ < γ ≤ L22−
2M21. Consequently (according to property (a) of
Definition 2) (20) becomes ż4 = −z4 − σ21(z3 +
z4)+R2(z, e) (from t2 on). Let us now define q1 ,

z3 + z4 and the function V2 , q2
1 . The derivative

of V2 along the system trajectories is given by
V̇2 = 2q1q̇1 = 2q1 [−σ21(q1) + R2(z, e)]. Following
a similar reasoning that the one developed above
for the analysis of (26), one sees that |q1| > εkE2+



B′δ =⇒ sign(q1) 6= sign(q̇1) ⇐⇒ V̇2 < 0.
Hence, for any z(t1) ∈ IR4, there is a time t3 ≥ t2
such that |q1(t)| ≤ εkE2+B′δ, ∀t ≥ t3. Therefore,

(z3(t), z4(t)) ∈ S1 ,
{

(z3, z4) ∈ IR2 |
|z4| ≤ M21 + εkE2 + B′δ,

|z3 + z4| ≤ εkE2 + B′δ
}

(29)

∀t ≥ t3. Notice that S1 is a compact subset of
IR2. So far, existence and boundedness of z3(t)
and z4(t) for all t ≥ t′ are concluded.

Let us now analyze the horizontal motion dy-
namics, i.e. equations (17) and (18). Notice from
(18) and (21) that |ż2(t)| ≤ kM12 + εkE2 +
B′Be, ∀t ≥ t′, showing that z1(t) and z2(t)
exist and are bounded at any finite time. Let
us define the function V3 = z2

2 . Its derivative
along the system trajectories is V̇3 = 2z2ż2 =
2z2 [−kσ12(z2 + σ11(kz1 + z2)) + R1(z, e)]. Follow-
ing a similar procedure that the one developed
above for the analysis of (26), one sees that |z2| >

M11 + εE2 + B′δ
k =⇒ sign(z2) 6= sign(ż2) ⇐⇒

V̇3 < 0. This proves that, for any z(t1) ∈ IR4, there
is a time t4 ≥ t1 such that |z2(t)| ≤ M11 + εE2 +
B′δ
k , ∀t ≥ t4. Then, for all t ≥ t4, we have |z2 +

σ11(·)| ≤ |z2| + M11 ≤ 2M11 + εE2 + B′δ
k < L12,

since, from (23) and (24), εkE2 + B′δ < γ ≤
k(L12 − 2M11). Consequently (according to prop-
erty (a) of Definition 2) (20) becomes ż2 = −kz2−
kσ11(kz1 + z2)+R1(z, e) (from t4 on). Let us now
define q2 , kz1 + z2 and the function V4 , q2

2 .
The derivative of V4 along the system trajectories
is V̇4 = 2q2q̇2 = 2q2 [−kσ11(q2) + R1(z, e)]. Fol-
lowing a similar reasoning that the one developed
above for the analysis of (26), one sees that |q2| >

εE2 + B′δ
k =⇒ sign(q2) 6= sign(q̇2) ⇐⇒ V̇4 < 0.

Hence, for any z(t1) ∈ IR4, there is a time t5 ≥ t4

such that |q2(t)| ≤ εE2 + B′δ
k , ∀t ≥ t5. Therefore,

(z1(t), z2(t)) ∈ S2 ,

{

(z1, z2) ∈ IR2 |

|z2| ≤ M11 + εE2 +
B′δ

k
,

|z1 + z2| ≤ εE2 +
B′δ

k

}

(30)

∀t ≥ t5. Note that S2 is a compact subset of IR2.
Therefore, existence and boundedness of z1(t) and
z2(t) for all t ≥ t′ are concluded. Finally, from
(29) and (30) we see that z(t) ∈ S12 , S1 × S2,
∀t ≥ t′′ , max{t3, t5}, S12 being a compact subset
of IR4. Existence and boundedness of z(t) for all
t ≥ t′ are therefore concluded.

4th part. As a consequence of fact F1, system
(14) takes the form

ż1 = z2 (31)

ż2 = −kσ12(z2 + σ11(kz1 + z2)) + εθ̈d cos θd

(32)

ż3 = z4 (33)

ż4 = −σ22(z4 + σ21(z3 + z4)) + εθ̈d sin θd (34)

A careful reading of the 3rd part of the proof
shows that if e1 = e2 = δ = Be = 0 is taken, the
analysis holds with t1 = t′. Then z(t) ∈ S ,

{

z ∈
IR4 | |z2| ≤ M11 + εE2, |z1 + z2| ≤ εE2, |z4| ≤
M21 + εkE2, |z3 + z4| ≤ εkE2

}

, ∀t ≥ t′′, for some

finite time t′′ ≥ t′, S being a compact subset of IR4

containing the origin. Consequently, for all t ≥ t′′,
we have |z4+σ21(·)| ≤ |z4|+M21 ≤ 2M21+εkE2 <

2M21 + γ ≤ L22, |z3 + z4| ≤ εkE2 < γ ≤ L21,
|z2 +σ11(·)| ≤ |z2|+M11 ≤ 2M11 +εE2 < 2M11 +
γ
k ≤ L12, and |z1 + z2| ≤ εE2 < γ

k ≤ L11 (see
(25) and (24)). Hence, the 2-level linear saturation
functions σij(·) in equations (32) and (34) are
equal to their argument. Consequently, for all
t ≥ t′′, system (31)–(34) becomes

ż1 = z2

ż2 = −k2z1 − 2kz2 + εθ̈d cos θd

ż3 = z4

ż4 = −z3 − 2z4 + εθ̈d sin θd

(35)

On the other hand, σ′
ij(·) = 1 and σ′′

ij(·) = 0 for
every σ′

ij(·) and σ′′
ij(·) in equations (12). Therefore

r̈1 = 2k(θ̇du1 cos θd + u̇1 sin θd) + k2u1 sin θd

r̈2 = 2(θ̇du1 sin θd − u̇1 cos θd) − (u1 cos θd − 1)

(36)

(recall that e = 02, hence θ = θd and θ̇ = θ̇d,
is being considered). Since u1 sin θd = −r1 and
u1 cos θd = 1 + r2, and from the expressions of θ̇d

in (10) and u̇1 in (12), the equations in (36) are
actually equivalent to

r̈1 = −2kṙ1 − k2r1

r̈2 = −2ṙ2 − r2

(37)

Let ρ , (r1, ṙ1, r2, ṙ2)
T . Observe from (11) and

(37) that θ̈d is a function of ρ, θ̈d = θ̈d(ρ), with
θ̈d(04) = 0. From this and equations (37), one sees
that system (35) may be represented as

ż = f1(z, ρ) = A′z + εR(ρ) (38a)

ρ̇ = g1(ρ) = A′ρ (38b)

with A′ =









0 1 0 0
−k2 −2k 0 0
0 0 0 1
0 0 −1 −2









and R(ρ) =

(

0 , θ̈d cos θd , 0 , θ̈d sin θd

)T

. Notice that R(04) =

04 (since θ̈d(04) = 0), and consequently f1(04, 04) =
g1(04) = 04. Since A′ is a Hurwitz matrix, ρ = 04

is a GAS equilibrium state of subsystem (38b).
Then, ρ(t) is bounded and converges to 04, i.e.
∃Bρ = Bρ(‖ρ(t′′)‖) such that ‖ρ(t)‖ ≤ Bρ,



∀t ≥ t′′, and ‖ρ(t)‖ → 0 as t → ∞. Now,
from (11) and (37), one can verify that ‖R(ρ)‖ =
|θ̈d(ρ)| ≤ r(‖ρ‖)‖ρ‖ for some function r(‖ρ‖) > 0.
Then ‖R(ρ)‖ ≤ r(Bρ)Bρ and ‖R(ρ(t))‖ → 0
as t → ∞. Since the states of GAS linear time
invariant systems with bounded inputs exist and
are bounded globally in time (see for instance
(Khalil, 2002, §4.9)), system (38) has (zT , ρT )T =
08 as a GAS equilibrium state if z = 04 is itself
a GAS equilibrium state of ż = A′z, according to
(Sontag, 1989). Therefore, since A′ is a Hurwitz
matrix, the proof follows. 2

4. EXPERIMENTAL RESULTS

Numerical results with several values of ε 6= 0 are
shown in (Zavala-Ŕıo, et al., 2003, §4). Here, we
present some preliminary experimental results ob-
tained when the control strategy proposed above
is applied to a real prototype: the four-rotor Dra-
ganflyer III helicopter. In this device, the front
and rear motors rotate counter-clockwise while
the other two rotate clockwise. When the yaw and
roll angles are set to zero, this helicopter reduces
to a PVTOL system. We have used a Futaba Skys-
port 4 radio for transmitting the control signals;
these are referred as the throttle (u1) and the
pitch (u2) control inputs. They are constrained
in the radio to satisfy 0.66V < u1 < 4.70V and
1.23V < u2 < 4.16V. In order to measure the
configuration (x, y, θ) of the mini helicopter, we
have used a 3D tracker system (POLHEMUS).
The computation of the control inputs requires
the knowledge of various angular and linear ve-
locities. We have obtained the angular velocity by
means of a gyro Murata ENV-05F-03. Linear ve-
locities were approximated as q̇ = qt−qt−T

T where
T is the sampling period (T = 0.05 sec, in our
experiment). The initial conditions and desired
configuration were (x0, y0, θ0) = (0, 30 cm, 0.1 rad)
and (xd, yd, θd) = (0, 50 cm, 0). In order to ease
the displacement of the helicopter altitude, small
step inputs were gradually added to yd around the
reference value (50 cm) between 10 sec and 80 sec.
In Fig. 1, we can see that the altitude y follows the
reference. Concerning the position x, we observe
a small deviation (2 cm) due to, among others,
uncertainties and cable connections between the
PC and the mini helicopter. The angle θ con-
verges to zero and the control inputs are bounded.
In all the figures, we note that the signals are
corrupted by noise due to mechanical gears of
motors and propellers. Furthermore, uncertainties
in the responses are also caused by the difficulty
to adjust gains and couplings existing in the four-
rotor helicopter, which have not been taken into
account in the analysis. However, the preliminary
experimental results presented here show that the
control strategy works on a real experiment.
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Fig. 1. System states and control inputs (— real
data, · – · reference)

5. CONCLUSIONS

In this work, robustness of a global stabilizing
control for the PVTOL aircraft with bounded
inputs has been addressed. The control approach,
which takes into account the positive nature of the
thrust, had been recently published considering
ε = 0. Here, it has been proved that such algo-
rithm achieves the global stabilization objective
even with (small enough) ε 6= 0. The analysis
developed is based on the use of embedded sat-
urations and a result of global asymptotic stabi-
lization for cascade systems.
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