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Abstract: In this work, we propose an outlet temperature control scheme for
counterflow heat exchangers, that takes into account and actually exploits the
analytical-stability features inherent to the open-loop dynamics. As a result, outlet
temperature regulation is achieved through a simple adaptive controller which does
not need to feedback the whole state vector and does not depend on the exact
value of the system parameters. Furthermore, positivity and boundedness (non-
saturation) of the input flow rate are additionally guaranteed through the proposed
approach, without entailing complex control algorithms or stability proofs. The
analytical developments are corroborated through experimental results. Copyright
c©2007 IFAC
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1. INTRODUCTION

Control of heat exchangers has been developed
in the literature through the application of sev-
eral techniques. For instance, based on a simple
compartmental model, partial and total lineariz-
ing feedback algorithms have been proposed in
(Alsop and Edgar 1989) and (Malleswararao and
Chidambaram 1992). Unfortunately, such tech-
niques flatten the system dynamics, neglecting
its natural analytical-stability properties, which
are consequently not exploited. Other works, like
that in (Katayama, et al. 1990) which proposes
an optimal control scheme, or that in (Lim and
Ling 1989) where a generalized predictive con-
trol algorithm is developed, make use of ARX,

ARMAX, or ARIMAX type models. Nevertheless,
since these are (numerically) adjusted through the
output response to input tests, disregarding the
natural laws that determine the process behavior,
such approaches also neglect the analytical and
stability natural properties of the system. More-
over, none of the above mentioned works take into
account the positive (unidirectional) and bounded
nature of the flow rate taken as input variable.

In this work, we propose a simple adaptive-type
algorithm for the outlet temperature regulation
of counterflow double-pipe heat exchangers taking
the opposite fluid flow rate as control input. The
proposed controller takes into account the natural
analytical-stability properties of the exchanger, as
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Fig. 1. Sketch of a counterflow heat exchanger.

well as the positive and bounded nature of the flow
rate taken as input variable.

The text is organized as follows. In Section 2,
we state the nomenclature, notation, and prelim-
inaries that support our developments. Section 3
presents the system dynamics. In Section 4, the
proposed controller is presented conventionally
taking the hot fluid outlet temperature as con-
trolled variable and the cold fluid flow rate as con-
trol input. Section 5 presents the extension to the
dual case where the cold fluid outlet temperature
is taken as controlled variable and the hot fluid
flow rate as control input. Experimental results
are presented in Section 6. Finally, concluding
remarks are given in Section 7.

2. NOMENCLATURE AND NOTATION

We introduce the following nomenclature and
notation:

F mass flow rate
Cp specific heat
M total mass inside the tube
U overall heat transfer coefficient
A heat transfer surface area
T temperature
t time
∆T temperature difference
R set of real numbers
R+ set of positive real numbers
R

n set of n-tuples (xj) with xj ∈ R

0n origin of Rn

R
n
+ set of n-tuples (xj) with xj ∈ R+

Subscripts:
u upper bound l lower bound
c cold h hot
i inlet o outlet

Let ∆T1 and ∆T2 stand for the temperature differ-
ence at each terminal side of the heat exchanger,
i.e. ∆T1 = Thi − Tco and ∆T2 = Tho − Tci

(see Figure 1). The logarithmic mean temperature
difference (LMTD) among the fluids is typically
expressed as

∆T` ,
∆T2 − ∆T1

ln ∆T2

∆T1

Nonetheless, this expression reduces to an inde-
terminate form when ∆T1 = ∆T2. Such an inde-
termination is avoided if the LMTD is taken as

∆TL ,

{

∆T` if ∆T2 6= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

(1)

This was proven in (Zavala-Ŕıo, et al. 2005),
together with the following analytical properties:

Lemma 1. (Lemma 2 and Remark 3 in (Zavala-
Ŕıo, et al. 2005)) ∆TL in (1) is continuously dif-
ferentiable at every (∆T1,∆T2) ∈ R

2
+. Moreover,

it is positive on R
2
+, while lim∆T1→0 ∆TL = 0 for

any ∆T2 ∈ R+, and lim∆T2→0 ∆TL = 0 for any
∆T1 ∈ R+. /

Lemma 2. (Lemma 3 in (Zavala-Ŕıo, et al. 2005))
∆TL in (1) is strictly increasing in its arguments,
i.e. ∂∆TL

∂∆Ti
> 0, i = 1, 2, ∀(∆T1,∆T2) ∈ R

2
+. /

Finally, the interior and boundary of a set, say B,
will be respectively denoted as int(B) and ∂B.

3. THE SYSTEM DYNAMICS

Let us consider the following assumptions:

A1. The fluid temperatures and velocities are
radially uniform.

A2. The heat transfer coefficient is axially uni-
form and constant.

A3. Constant fluid thermophysical properties.
A4. No heat transfer with the surroundings.
A5. Fluids are incompressible and single phase.
A6. Negligible axial heat conduction.
A7. There is no energy storage in the walls.
A8. Inlet temperatures, Tci and Thi, are constant.
A9. The flow rates are axially uniform and any

variation is considered to take place instanta-
neously at every point along the whole length
of the exchanger.

A10. The hot fluid flow rate, Fh, is kept constant,
while the value of the cold fluid flow rate, Fc,
can be arbitrarily varied within a compact
interval Fc , [Fcl, Fcu], for some constants
Fcu > Fcl ≥ 0.

Under these assumptions, and taking the whole
exchanger as one bi-compartmental cell, a sim-
plified but suitable lumped-parameter dynami-
cal model for a double-pipe heat exchanger is
(see for instance (Zavala-Ŕıo and Santiesteban-
Cos 2007)):
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Ṫco =
2

Mc

[

Fc (Tci − Tco) +
UA

Cpc

∆TL

]

(2a)

Ṫho =
2

Mh

[

Fh (Thi − Tho) −
UA

Cph

∆TL

]

(2b)

where ∆TL is the LMTD (complemented) expres-
sion in (1). A physically reasonable state-space
domain for system (2) is D , {x ∈ R

2 | xj ∈

T , j = 1, 2} where T , (Tci, Thi) (see for instance
(Zavala-Ŕıo, et al. 2003)). Conventionally, the
control objective consists in the regulation of the
process (hot) fluid outlet temperature, Tho, taking
the cold fluid flow rate, Fc, as input variable with
restricted range according to Assumption A10.

Remark 1. Let y denote the open-loop state vec-
tor, i.e. y , (Tco, Tho), and let ẏ = f̄(y; θ) repre-
sent the open-loop system dynamics (2) assuming
constant flow rates, where θ is the system param-
eter vector, i.e. θ = (U , A, Cpc, Cph, Mc, Mh, Fc,
Fh) ∈ R

8
+. Considering Lemma 1, one sees (from

(2)) that f̄ is continuously differentiable in (y; θ)
on D×R

8
+. Then, the system solutions, y(t; y0, θ)

with y0 , y(0) ∈ D, do not only exist and are
unique, but are also continuously differentiable
with respect to initial conditions and parameters,
for all y0 ∈ D and all θ sufficiently close to
any nominal parameter vector θ0 ∈ R

8
+ (see for

instance (Khalil 1996, §2.4)). .

In (Zavala-Ŕıo and Santiesteban-Cos 2007), it was
shown that, considering constant flow rates, the
system dynamics (2) possesses a unique equilib-
rium point (T ∗

co, T
∗

ho) ∈ D, where

(

T ∗

co

T ∗

ho

)

=

(

1 − P P

RP 1 − RP

)(

Tci

Thi

)

,

(

gc(Fc)

gh(Fc)

)

(3)

with R ,
FcCpc

FhCph
,

P ,















1 − S

1 − SR
if R 6= 1

UA

UA + FcCpc

if R = 1

and S , e
UA

(

1
FhCph

−
1

FcCpc

)

.

Claim 1. gh in (3) is a one-to-one strictly decreas-
ing continuously differentiable function of Fc.

Proof. Continuous differentiability of gh with re-
spect to Fc follows from the arguments given in
Remark 1. Hence, from (3), g′h(Fc) = dgh

dFc
(Fc) is

given by

g′h(Fc) =



















CpcS [1 + γ − eγ ] ∆Ti

CphFh (1 − SR)
2 if R 6= 1

−
CpcU

2A2∆Ti

2CphFh (UA + CphFh)
2 if R = 1

where γ , UA
CpcFc

− UA
CphFh

and ∆Ti , Thi − Tci.

Thus, from Formula 4.2.30 in 1 (Abramowitz and
Stegun 1972), we see that g′h(Fc) < 0, ∀Fc > 0,
showing that gh(Fc) is strictly decreasing on its
domain. This, in turn, corroborates its one-to-one
character. 2

Observe that through Claim 1, two important
facts are concluded: 1) T ∗

ho is restricted to a
reachable steady-state space defined by Rh ,

[gh(Fcu), gh(Fcl)], and 2) any value of T ∗

ho ∈ Rh

is uniquely defined by a specific flow rate value
F ∗

c ∈ Fc (see Assumption A10), which in turn
defines a unique value of T ∗

co according to (3).

4. THE PROPOSED CONTROLLER

The analysis developed in (Zavala-Ŕıo and San-
tiesteban-Cos 2007), considering constant flow
rates, showed that the vector field in (2) has a
normal component pointing to the interior of D at
every point on its boundary. Consequently, for all
initial state vectors in D, the system trajectories
remain in D globally in time, and are bounded
since D is bounded. Moreover, D was proven to
contain a sole invariant composed by a unique
equilibrium point (T ∗

co, T
∗

ho). Therefore, every tra-
jectory of (2) converges to (T ∗

co, T
∗

ho). The idea
is then to propose a dynamic controller such that
the closed-loop dynamics keep the same analytical
features, with Fc forced to evolve within int(Fc),
and forcing the existence of a sole invariant com-
posed by a unique equilibrium point (T ∗

co, T
∗

ho, F
∗

c )
where T ∗

ho = Thd. This is achieved through the
following control scheme.

Proposition 1. Consider the dynamical system (2)
with Fc ∈ Fc. Let the value of Fc be dynamically
computed as follows

Ḟc = kηc(Fc) (Tho − Thd) (4)

for any Thd ∈ int(Rh), where

ηc(Fc) , (Fc − Fcl)(Fcu − Fc)

and k is a sufficiently small positive constant.
Then, for any initial closed-loop (extended) state
vector (Tco, Tho, Fc)(0) ∈ D × int(Fc): Tho(t) →
Thd as t → ∞, with Fc(t) ∈ int(Fc), ∀t ≥ 0, and
(

Tco, Tho

)

(t) ∈ D, ∀t ≥ 0. /

1 Formula 4.2.30 in (Abramowitz and Stegun 1972) states

the following well-known inequality: e
x

> 1 + x, ∀x 6= 0.
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Proof. Let x denote the closed-loop (extended)
state vector, i.e. x , (Tco, Tho, Fc), and let
ẋ = f(x) represent the closed-loop system dy-
namics. Based on Lemma 1, one can verify that
f1(Tci, Tho, Fc) > 0, ∀(Tho, Fc) ∈ T × int(Fc),
f1(Thi, Tho, Fc) < 0, ∀(Tho, Fc) ∈ T × int(Fc),
f2(Tco, Tci, Fc) > 0, ∀(Tco, Fc) ∈ T × int(Fc),
f2(Tco, Thi, Fc) < 0, ∀(Tco, Fc) ∈ T × int(Fc),
and f3(Tco, Tho, Fcl) = f3(Tco, Tho, Fcu) = 0,
∀(Tco, Tho) ∈ D. This shows that there is no point
on the boundary of D×Fc where the vector field
f have a normal component pointing outwards.
Consequently, for any initial extended state vector
in D × int(Fc), the close-loop system solution
cannot leave the system state-space domain D ×
int(Fc). Moreover, it is clear that the points on
∂D × int(Fc) cannot even be approached. On the
other hand, from (4) and the observations noted
in the last paragraph of §3 above, one can easily
see that the closed-loop system has a unique equi-
librium point x∗ = (T ∗

co, T
∗

ho, F
∗

c ) in D × int(Fc),
where T ∗

ho = Thd and F ∗

c takes the unique value on
Fc through which T ∗

ho can adopt the desired value
Thd. Besides, letting x∗

l ,
(

gc(Fcl), gh(Fcl), Fcl

)

and x∗

u ,
(

gc(Fcu), gh(Fcu), Fcu

)

(see (3)), with
gh(Fcl) = max{T ∗

ho ∈ Rh} and gh(Fcu) =
min{T ∗

ho ∈ Rh} (see §3), we have that f(x∗

l ) =
f(x∗

u) = 03. Actually, x∗

l and x∗

u are the only
equilibrium points on the boundary of D × Fc.
The Jacobian matrix of f , i.e.

∂f

∂x
=

















∂f1

∂x1

∂f1

∂x2

2(Tci − Tco)

Mc

∂f2

∂x1

∂f2

∂x2
0

0 kηc(Fc) kη′

c(Fc)(Tho − Thd)

















where η′

c(Fc) = dηc

dFc
(Fc) = Fcu + Fcl − 2Fc,

∂f1

∂x1
= −

2Fc

Mc

+
2UA

McCpc

∂∆TL

∂Tco

∂f1

∂x2
=

2UA

McCpc

∂∆TL

∂Tho

∂f2

∂x1
= −

2UA

MhCph

∂∆TL

∂Tco

∂f2

∂x2
= −

2Fh

Mh

−
2UA

MhCph

∂∆TL

∂Tho

(Lemma 1 is being considered), evaluated at x∗

l

and x∗

u, i.e. ∂f
∂x

∣

∣

∣

x=x∗
l

and ∂f
∂x

∣

∣

∣

x=x∗u

, have eigen-

values k(Fcu − Fcl)(gh(Fcl) − Thd) > 0 and
k(Fcl − Fcu)(gh(Fcu) − Thd) > 0, respectively.
Then x∗

l and x∗

u are repulsive and consequently
the points on D × ∂Fc cannot be asymptoti-
cally approached from the interior of the system
state-space domain either. Consequently, for any
x0 ∈ D × int(Fc), x(t;x0) ∈ D × int(Fc), ∀t ≥ 0
(or equivalently, Fc(t) ∈ int(Fc), ∀t ≥ 0, and

(Tco, Tho)(t) ∈ D, ∀t ≥ 0). Now, let us consider

the Jacobian matrix of f at x∗, i.e. ∂f
∂x

∣

∣

∣

x∗
. Its

characteristic polynomial is given by P (λ) = λ3 +

a2λ
2 + a1λ + a0, where a2 ,

[

2Fc

Mc
+ 2Fh

Mh
−

2UA
McCpc

∂∆TL

∂Tco
+ 2UA

MhCph

∂∆TL

∂Tho

]

x=x∗
, a1 ,

[

4FcFh

McMh
+

4FcUA
McMhCph

∂∆TL

∂Tho
− 4FhUA

MhMcCpc

∂∆TL

∂Tco

]

x=x∗
, and a0 ,

kā0 with ā0 ,

[

4UAηc(Fc)(Tci−Tco)
McMhCph

∂∆TL

∂Tco

]

x=x∗
.

From these expressions and Lemma 2, one can
see that a2 > b2 , 2Fcl

Mc
+ 2Fh

Mh
> 0, a1 >

b1 , − 4FhUA
MhMcCpc

[

∂∆TL

∂Tco

]

x=x∗
> 0, and 0 <

ā0 < b̄0 ,
4UAηc

(

Fcl+Fcu
2

)

(Tci−Thi)

McMhCph

[

∂∆TL

∂Tco

]

x=x∗

(where the fact that ηc(Fc) ≤ ηc

(

Fcl+Fcu

2

)

, ∀Fc ∈
Fc, has been taken into account). Furthermore,
let us consider that k satisfies k ≤ b1b2

b̄0
=

8FhCph(FclMh+FhMc)
MhMcCpc(Fcu−Fcl)2(Thi−Tci)

. Observe that under

this consideration we have that kā0 < kb̄0 ≤
b1b2 < a1a2, i.e. a0 < a1a2 which is a necessary
and sufficient condition for the three roots of P (λ)
to have negative real part (see for instance Exam-
ple 6.2 in (Dorf 2001)). Thus, x∗ is asymptotically
stable. Its attractivity is global on D × int(Fc) if
{x∗} is the only invariant in D × int(Fc), which
is the case for a small enough value of k. Indeed,
from boundedness of D × int(Fc) and its positive
invariance with respect to the closed-loop system
dynamics, every solution x(t;x0 ∈ D × int(Fc))
has a nonempty, compact, and invariant positive
limit set L+, and x(t;x0) → L+ as t → ∞,
∀x0 ∈ D × int(Fc) (see Lemma 3.1 in (Khalil
1996)). Then, the global attractivity of x∗ on
D × int(Fc) is subject to the absence of periodic
orbits on D × int(Fc) (implying L+ = {x∗}). A
sufficiently small value of k renders the closed loop
a slowly varying system (see §5.7 in (Khalil 1996)).
Then, the 3rd-order closed-loop dynamics can be
approximated by the 2nd-order system (2) with
(quasi) constant Fc. Since under such represen-
tation no closed orbits can take place (according
to (Zavala-Ŕıo and Santiesteban-Cos 2007)), we
deduce the absence of periodic solutions of the
closed-loop (3rd-order) system on D × int(Fc).
Thus, we conclude that Tho(t) → Thd as t → ∞.
2

Remark 2. Observe that the proposed approach
does not need to feedback the whole extended
state vector. No measurements of Tco are required
for its implementation. Furthermore, the exact
knowledge of the accurate values of the system
parameters is not needed. This characterizes the
proposed algorithm as a sort of adaptive con-

troller that gives rise to a control signal evolving
within its physical limits, avoiding lower-bound
and upper-bound input saturation. .
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Remark 3. Notice, from the proof of Proposition

1, that k ≤
8FhCph(FclMh+FhMc)

MhMcCpc(Fcu−Fcl)2(Thi−Tci)
may be

taken as an a priori control gain tuning criterion.
However, it is worth to note that such a condition
is not necessary and that it generally turns out to
be conservative. .

5. THE DUAL CASE

From a general viewpoint, the control objective
may be stated as the regulation of the outlet
temperature of one of the fluids of a counterflow
heat exchanger, taking the flow rate of the other
fluid as control input. The specific case consid-
ered throughout the precedent sections may be
taken as the conventional case (see for instance
(Alsop and Edgar 1989, Malleswararao and Chi-
dambaram 1992)). Nevertheless, the dual case,
where the cold fluid outlet temperature is the
variable to be regulated, taking the flow rate of
the hot fluid as control input, may be considered
as well. For such a case, a dual Assumption A10
shall be stated as follows:

A10’. The cold fluid flow rate, Fc, is kept constant,
while the value of the hot fluid flow rate, Fh,
can be arbitrarily varied within a compact
interval Fh , [Fhl, Fhu], for some constants
Fhu > Fhl ≥ 0.

Observe that in this setting, T ∗

co and T ∗

ho in (3)
may be rather considered functions of Fh, i.e.
T ∗

co = (1 − P )Tci + PThi , ḡc(Fh) and T ∗

ho =
RPTci + (1 − RP )Thi , ḡh(Fh). Furthermore,
following a procedure similar to the one developed
in the proof of Claim 1, it can be shown that ḡc

is a strictly increasing function of Fh. Hence, we
conclude two important facts: 1) T ∗

co is restricted
to a reachable steady-state space defined by Rc ,

[ḡc(Fhl), ḡc(Fhu)], and 2) any value of T ∗

co ∈ Rc

is uniquely defined by a specific flow rate value
F ∗

h ∈ Fh, which in turn defines a unique value
of T ∗

ho = ḡh(F ∗

h ). Thus, following a procedure
similar to the one developed in Section 4 for
the conventional case, it is possible to prove the
following proposition for its application in the
dual case.

Proposition 2. Consider the dynamical system (2)
with Fh ∈ Fh. Let the value of Fh be dynamically
computed as follows

Ḟh = kηh(Fh) (Tcd − Tco)

for any Tcd ∈ int(Rc), where

ηh(Fh) , (Fh − Fhl)(Fhu − Fh)

and k is a sufficiently small positive constant.
Then, for any initial closed-loop (extended) state
vector (Tco, Tho, Fh)(0) ∈ D × int(Fh): Tco(t) →
Tcd as t → ∞, with Fh(t) ∈ int(Fh), ∀t ≥ 0, and
(

Tco, Tho

)

(t) ∈ D, ∀t ≥ 0. /

Fig. 2. Bench-scale pilot plant

Fig. 3. Closed-loop response of Tco

6. EXPERIMENTAL RESULTS

In order to verify the effectiveness of the pro-
posed controller, experiments were carried out
on a bench-scale pilot plant consisting of a com-
pletely instrumented double-pipe heat exchanger;
see Figure 2. The plant operates as a water-cooling
process, with the hot water flowing through the in-
ternal tube and the cooling water flowing through
the external pipe. However, by the way it is instru-
mented, in our experiments, the exchanger worked
in its dual mode, i.e. with the hot fluid flow rate,
Fh, taken as control input, and the cold fluid
outlet temperature, Tc, being the controlled vari-
able. The inlet temperatures were kept constant
at Tci = 301.5 K (measured with a SIKA glass
thermometer) and Thi = 343.1 K (measured via
an Engelhard Pyro-Controle Pt-100 temperature
transmitter). The flow rates were measured via
Platon flowmeters. The cold fluid flow rate was
fixed at Fc = 5 × 10−3 kg/sec. The hot fluid
flow rate, Fh, was (arbitrarily) made vary between
Fhl = 5×10−3 kg/sec and Fhu = 17×10−3 kg/sec.
The cold fluid outlet temperature, Tco, was mea-
sured using an Engelhard Pyro-Controle Pt-100
temperature transmitter. The controller gain and
initial condition were fixed at k = 0.22 [1/(kg · K)]
and Fh(0) = 6 × 10−3 kg/sec. The desired outlet
temperature was defined as Tcd = 322 K.

Figures 3 and 4 respectively show the evolu-
tion of the controlled outlet temperature, Tco,
and the control variable, Fh. Observe that the
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Fig. 4. Control signal Fh

Fig. 5. Response of Tco under PI control

Fig. 6. PI control signal Fh

control objective is achieved avoiding input sat-
uration. For comparison purposes, a conven-
tional PI controller, Fh(t) = kP (Tcd − Tco(t)) +

kI

∫ t

0
(Tcd−Tco(τ))dτ , was implemented with kP =

0.22 [kg/(sec · K)] and kI = 0.22 [kg/(sec2 · K)].
Figures 5 and 6 respectively show the closed-
loop outlet temperature response and the hot
fluid flow rate under the PI control law. Observe
that an oscillating response is obtained, and that
lower-bound and upper-bound input saturation
are not avoided. Of course, a different tuning
could produce better results, but it is important
to note that under a conventional PI algorithm,
convergence and saturation avoidance cannot be
in general guaranteed for any initial conditions,
as it is the case for the proposed controller with a
suitable control gain.

7. CONCLUSIONS

In this work, a bounded positive adaptive-type
control scheme for the outlet temperature global
regulation of counterflow heat exchangers has
been proposed. The algorithm avoids lower-bound
and upper-bound input saturation, guaranteeing
sign invariance of the control variable, which
agrees with the unidirectional nature of the cor-
responding flow rate. Moreover, the proposed
scheme does not need to feedback the whole
closed-loop state vector and does not depend on
the exact knowledge of the system parameters.
Experimental results corroborated the theoretical
developments.
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Zavala-Ŕıo, A., and R. Santiesteban-Cos (2007).
Reliable compartmental models for double-
pipe heat exchangers: An analytical study.
Applied Mathematical Model. To appear.
DOI: 10.1016/j.apm.2006.06.005

150


