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SUMMARY

This paper deals with the design of a robust sliding mode-based extremum-seeking controller aimed at the
online optimization of a class of uncertain reaction systems. The design methodology is based on an input–
output linearizing method with variable-structure feedback, such that the closed-loop system converges to
a neighborhood of the optimal set point with sliding mode motion. In contrast with previous extremum-
seeking control algorithms, the control scheme includes a dynamic modelling-error estimator to compensate
for unknown terms related with model uncertainties and unmeasured disturbances. The proposed online opti-
mization scheme does not make use of a dither signal or a gradient-based optimization algorithm. Practical
stabilizability for the closed-loop system around to the unknown optimal set point is analyzed. Numerical
experiments for two nonlinear processes illustrate the effectiveness of the proposed robust control scheme.
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1. INTRODUCTION

Reaction systems are characterized by high nonlinearity and great uncertainty in their mathematical
description, thus often the conventional linear control schemes do not give satisfactory responses.
Most control schemes for this kind of systems are designed for regulation to known set point or
tracking reference trajectories. However, in many applications, the control objective is to optimize
a cost criterion that can be a function of unknown parameters in order to keep a performance vari-
able at its optimal value [1]. In practice, the explicit form of the performance function is very often
unavailable or is highly uncertain, for example, the kinetic models in chemical and biological reac-
tors. Additionally, the performance function can be subject to bounded time-varying disturbances
because of the effect of variation in the environmental variables as the temperature, composition
and flow of the influent, pH, and so on. [1, 2]. The perturbation-based and model-based extremum-
seeking controls are two methods to handle these kinds of online optimization problems [1, 3]. The
goal of the extremum-seeking schemes is to find operating set points, a priori unknown, such that
an objective function (subject to uncertainties) reaches its extremum value [4, 5].

The extremum-seeking control (ESC) schemes have been an active research area with distinct
application issues including, for example, the adjustment of radio telescope antennas in order to
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maximize the received signal; blade adjustment in water turbines or wind mills to maximize the
generated power, and in anti-lock braking system (ABS) control to lead the maximal value of
the tire/road friction force to be reached during emergency braking [6–10]. The most popular
approach known as nonmodel dither-based ESC methods has been applicable to diverse control
systems with local minimum (or maximum) that defines their optimal operating condition [2, 11].
These approaches consider one dynamic feedback composed of a high-frequency perturbation signal
(dither signal) combined with an adaptive extremum searching to find an unknown optimal oper-
ating condition of the plant [11]. The design of ESC algorithms has also been studied considering
a known plant structure with uncertain parameters. In this framework, [12] proposes a combina-
tion scheme of different types of gradient-based optimization methods with a parameter estimation
algorithm. An intensive research activity has been devoted to adaptive model-based ESC schemes
applied to (bio)-reaction systems (e.g., [1–5, 13, 14]). The adaptive extremum schemes are based
on parameter learning laws for the estimation of the unknown parameters and a dither signal to
ensure the convergence to a neighborhood of the optimal value [1, 2]. However, the model-based
adaptive extremum-seeking algorithms for reaction systems require prior information about (a) the
explicit form of the kinetic expressions and (b) bounds of the parameters values which, in most
(bio)-chemical processes, may be hard to obtain from available data [1–3]. Besides, the extremum-
seeking control problem has also been studied in the sliding mode control framework [6–8, 10, 15,
16]. The application of the sliding mode concepts in ESC can be found in [10]. More recently, slid-
ing mode-based ESC schemes applied to automotive systems have been proposed [6–8, 15]. In these
contributions, the main idea is to ensure that a desired output follows an increasing time function as
close as possible to its extremal value via discontinuous feedback with sliding mode motion [9, 17].
In this framework, [3] proposes a sliding mode-based ESC controller for a class of nonlinear sys-
tems with arbitrary relative degree. However, the estimation scheme requires a high-gain observer
for the estimation the time derivatives of the output signal and a normal observer for the plant states.
Nevertheless, according to the authors’ knowledge, there is no ESC scheme based on sliding mode
techniques for real-time optimization of uncertain reaction systems.

The aim of this work is to describe the design and application of a robust sliding mode-based ESC
scheme to achieve the online optimization of a class of uncertain reaction systems. The ESC strategy
proposed is based on the sliding mode techniques with a modelling-error estimator to compen-
sate for unknown terms related with model uncertainties and unmeasured disturbances. The design
methodology is divided in two steps: First, an ideal controller is designed from the input–output
linearizing control method for a class of minimum-phase systems and by using the ESC with slid-
ing mode techniques [9, 17]. The ideal controller allows to reach the extremum of the performance
function and converges to a neighborhood of the optimal value with sliding mode motion. In the sec-
ond step, an observer-based uncertainty estimator is used to reconstruct the unknown terms in the
ideal control law. The stabilization on the neighborhood (practical stabilizability) of the unknown
optimal set point is ensured when the estimator scheme and controller are coupled. Unlike the pre-
vious ESC schemes, the proposed approach is based upon sliding mode techniques without using
gradient-based optimization methods or dither functions and comprises a dynamic uncertain estima-
tion scheme that computes the unknown terms and external disturbances. The main difference with
respect to [18] is that the ESC strategy proposed in this work does not require a high-gain observer
for the estimation of the time derivatives for the output and a normal observer for the plant states;
all uncertainties are lumped and estimated by using modelling-error compensation techniques. The
paper is organized as follows. Section 2 introduces the class of nonlinear systems considered in this
work and the control problem formulation. Section 3 deals with the design of the robust extremum-
seeking controller and the closed-loop convergence analysis. The modifications to the basic control
law to handle model uncertainties and unmeasured disturbances are also discussed. In Section 4, two
distinct processes are used as numerical examples to illustrate the effectiveness of the robust control
scheme. The first model considers a fed-batch culture process, while the second model considers a
non-isothermal chemical reactor.
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2. PROBLEM STATEMENT

Consider the following nonlinear system

Px D f .x/C g.x/u

y D h.x/
(1)

where x 2 Rn is the dynamical state, u 2 R is the control input, and y 2 R an output signal. The
functions f W Rn ! Rn, g W Rn ! Rn and h W Rn ! R are smooth on a domain� � Rn. In order
to formulate the specific control problem, we consider the following assumptions.

Assumption 1
The system (1) has a well posed relative degree r < n with respect to the output signal y and is
minimum-phase in the usual sense of the stability of the zero dynamics [19].

Assumption 2
There exists a static performance map from the output signal y to the global cost criterion � ,
represented by

� D F.y/ (2)

which is locally smooth and has a unique maximum at y D y�, such that F.y�/ D N� with N� as the
maximum static global cost criterion value.

Assumption 3
The global cost criterion � and the output signal y are available for online measurement. However,
the static map (2) is not known analytically, and consequently, the optimal value y� is uncertain.

Thus, the control objective is to design a robust extremum-seeking scheme to achieve the prac-
tical stabilization of the system (1) around the optimum output value y� (a priori unknown or
highly uncertain) while maximizing the global cost criterion given by (2), despite uncertainty in the
dynamical model and unmeasured disturbances.

3. CONTROLLER DESIGN

The design of the robust sliding mode-based ESC scheme will be performed in two steps. In the first
design step, an “ideal” extremum-seeking controller is developed by assuming perfect knowledge
of the system (1).

Because the system (1) has a well defined relative degree and is minimum phase (Assumption 1),
let us introduce the following change of variables ´ D ˆ.x/ and with ´i D �i .x/ D Li�1f

h.x/ for
1 6 i 6 r and Lg�j .x/ D 0 for r C 1 6 j 6 n, where Lf h.x/ and Lg�.x/ represent the Lie
derivatives of the maps h and � with respect to the vector fields f and g, respectively, such that the
nonlinear system (1) can be rewritten in the following canonical form [19]:

Ṕ1 D ´2

Ṕ2 D ´3
:::

Ṕ r�1 D ´r

Ṕ r D b.´; &/C a.´; &/u

Ṕ rC1 D &rC1.´/

:::

Ṕn D &n.´/

(3)
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where ´ D Œ´1 : : : ´r � 2 Rr , & D Œ´rC1 : : : ´n� 2 Rn�r , a.´; &/ D LgL
r�1
f
h.ˆ�1.´; &//

and b.´; &/ D Lr
f
h.ˆ�1.´; &//. Once in the earlier canonical form, the following result can be

emphasized.

Theorem 1 ([19])
The following input–output linearizing feedback control law

u D
1

LgL
r�1
f
h.x/

h
�Lrf h.x/C �

i

will make the system (1) linear and controllable of the form

Ṕ i D ´iC1i D 1; : : : ; r � 1

Ṕ r D �

P& D �.´; &/

where P& D �.´; &/ represents the zero dynamics and � is an external reference input. Let us now
give a brief review of the sliding mode-based ESC methods proposed in [9, 17]. Consider the system
of the form (1) satisfying the Assumptions 2 and 3. A switching function s.t/ is defined as

s.t/ D �.t/ � gs.t/

where gs.t/ is an increasing signal satisfying Pgs.t/ D � > 0. The following variable structure
feedback is proposed

� D 	sgn
�

sin.



˛
s/
�
I	; ˛ > 0 (4)

Then the derivative of the switching function is

ds.t/

dt
D P�.t/ � Pgs.t/ D F

0.y/ Py � �

where F 0.y/ D @F .y/
@y

denotes the partial derivative of the global cost criterion � D F.y/.
If there exists a constant c such that the so-called reaching condition holds

.s.t/ � c/
d

dt
.s.t/ � c/ < 0 (5)

then the sliding mode takes place at s.t/ D c [9]. On the sliding mode s.t/ D c, the cost criterion
�.t/ increases with the increase of the reference signal gs.t/, because y.t/ D gs.t/C c) Py.t/ D
Pgs.t/, and the system moves towards the critical point y�. In [9], it is shown that there exists a
series of c0s that guarantee the convergence of the aforementioned sliding mode reaching, while the
system trajectory is outside of a vicinity defined as

Yı D ¹y 2 Rjy� � ı 6 y 6 y� C ıº (6)

where ı is a positive constant. Additionally, if the system enters the vicinity where the reaching
condition does not hold, then

1. It either converges to the maximum inside the vicinity (6) with oscillations,
2. Or it moves through the vicinity, goes outside, and switching among sliding modes, s.t/ D c0.

The convergence of the sliding mode-based ESC proposed in [9, 17] can be summarized in the
following result.

Theorem 2 ([9])
Consider the system (1) with the cost criterion (2) satisfying Assumptions 2 and 3, and the output
dynamics governed by the variable structure feedback (4); then the closed-loop system converges
to the vicinity (6) in a finite time, if the parameters of the controller are chosen to satisfy �

�
< ˛

2ı
.

Based on the aforementioned results, the follows variable-structure controller is proposed such that
the system (1) converges close to the optimal set-point y�.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
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Proposition 1
Consider the system (1) and suppose that Assumptions 1–3 are satisfied. Then the variable-structure
control law

u D
1

LgL
r�1
f
h.x/

h
�Lrf h.x/C 	sgn

�
sin.




˛
s/
�i
I	; ˛ > 0 (7)

where s.t/ D �.t/ � gs.t/ with Pgs.t/ D � > 0, will converge to the vicinity (6) in a finite time,
while �

�
< ˛

2ı
.

Proof
Replacing u from (7) in (3) yields

Ṕ r D 	sgn
h
sin.




˛
s.t//

i
Because the zero dynamics is asymptotically stable (Assumption 1), then from Theorems 1 and 2,
and considering the fact that the system (3) is in cascade form, it follows that the control law (7)
achieves the convergence of the output y at the ı-vicinity Yı in a finite time interval. �

3.1. Extremum-seeking under uncertain vector fields

The aforementioned linearizing ESC feedback cannot be implemented directly, because (7) requires
perfect knowledge of the uncertain terms associated with the modelling errors and the external
disturbances of the system. In what follows, the ideal control law is modified to account these
uncertainties. To this end, let us define a function for lumping the uncertain terms as follows: � �
‚.´; &; u/ D a.´; &/C b.´; &/u. We make the following assumption with respect to the uncertain
function.

Assumption 4
The function � � ‚.´; &; u/ is locally smooth bounded, and its time derivative denoted by
„.´; �; &; u/ is also bounded. Then once the uncertain function � is defined, it is possible to rewrite
the system (3) in the following extended state-space representation:

Ṕ i D ´iC1i D 1; : : : ; r � 1

Ṕ r D �

P� D „.´; �; &; u/

P& D �.´; &/

(8)

where � is interpreted as an augmented state whose dynamics can be reconstructed from measure-
ments of the input and the output signals [20, 21]. (a) It can be proved that the solution of system
(3) is a projection of the solution of system (8); (b) A feature of system (8) is that the uncertainties
have been lumped into an uncertain function ‚.´; &; u/ that can be estimated by an unmeasurable
but observable state � [20, 21]. Thus, if system (8) is stabilized, then system (3) will be also stabi-
lized as well as its equivalent system (1). Some works have focused on the robust stabilization of
nonlinear systems via output feedback (e.g., [20, 22, 23] ), where the main idea consists in designing
a high-gain Luenberger-like observer as an uncertainty estimator. By following this idea, because
´ D Œ´1; : : : ; ´r �

0 2 Rr represents the observable states [19], the problem of estimating ´ can be
addressed by using a high-gain observer. Thus, the dynamics of the states .´; �/ can be reconstructed
from the measurements of the output signal y D h.x/ D ´1 in the following way [20, 21]

PÓi D Ó iC1 C �
i
i .´1 � Ó1/i D 1; : : : ; r � 1

PÓr D O�C �
r
r.´1 � Ó1/

PO� D �rC1
rC1.´1 � Ó1/

(9)
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where ( Ó , O�) denotes the estimate for ´ and the lumped uncertainty state �, respectively. The observer
parameters 
0is are chosen such that the polynomial 
rC1pr C 
r�2pr�1 C : : : C 
1 D 0 is Hur-
witz, and � > 0 is a positive parameter (high-gain observer). Then the following variable-structure
control law can drive the trajectories of the system (1) arbitrarily close to the optimal set point y�:

u D
1

�

h
�O�C 	sgn

�
sin.




˛
s/
�i

(10)

where � represents the well known terms in the Lie derivatives defined in (7). In this work, we
assume that � is bounded away from zero. Here, note that the control parameters 	; � > 0 are
associated with the speed of convergence of the robust ESC taking into account the restriction �

�
<

˛
2ı

[9, 17]. In this way, the resulting robust ESC scheme comprises the variable structure feedback
(10), where the uncertain terms lumped in � are computed by the dynamic uncertain estimator (9).
The following result is based on stability results of feedback linearizable uncertain systems under
the action of a high-gain observer-based uncertain estimator [21–23]. Let us consider the following
definition related with the practical stability concept [22, 23].

Definition 1 ([22])
One system is practically stabilizable at x�, if for any set † � M containing x� and such that
its closure cl.†/ is compact, there exists a control law (practical stabilizer) which renders this set
the stable attractor of the system within some neighborhood ı.†/ of †, and moreover, any system
trajectory beginning in ı.†/ enters † in a finite time interval.

Proposition 2
Consider the uncertain nonlinear system (1) and suppose (i) the Assumptions 1–4 are satisfied; (ii)

0is is chosen such that the polynomial 
rC1pr C 
r�2pr�1 C : : :C 
1 D 0 is Hurwitz; (iii) � > 0
is a positive parameter (high-gain observer); and (iv) �

�
< ˛

2ı
holds. Then the variable-structure

control scheme (9–10) achieves the practical stabilization around to the optimal set point y�.

Proof
From Proposition 1, it follows that the control law (7) achieves the convergence of output signal
y.t/ at the ı-vicinity Yı D ¹y 2 Rjy� � ı 6 y 6 y� C ıº and consequently achieves the output
stabilization around the optimal set point y�. Now, with respect to the high-gain observer-based
uncertain estimator (9), we have the following. Let us consider the following estimation error vector
e 2 RrC1 whose components are defined by

ei .t/ D �
rC1�i .´i � Ó i /1 6 i 6 r

erC1.t/ D � � O�

By replacing . Ṕ ; P�/ and . Ó ; O�/ from (8), (9), respectively, and from straightforward algebraic
manipulation, it follows that the dynamics of the estimation error is governed by

Pe.t/ D �A.
/e.t/C Bˆ2.´; �; &;N.�
�1/e; u/

where A.
/ D

0
BBBB@
�
1 1 0 � � � 0
�
2 0 1 � � � 0
:::

:::
:::
: : :

:::

�
r 0 0 � � � 1
�
rC1 0 0 � � � 0

1
CCCCA and B D

2
64
0
:::

1

3
75 2 RrC1,

N.L/ D diag
�
��r ; : : : ; ��1; 1

�
and ˆ2.´; �; &;N.��1/e; u/ is a continuous and bounded func-

tion. Now, with respect to the function ˆ2, it is clear that if ˆ2.�/ D 0 the estimation error system
reduces to the nominal dynamics of the estimation

Pe.t/ D �A.
/e.t/

For � > 0 and because 
0is is chosen such that A.
/ is Hurwitz, the system Pe.t/ D �A.
/e.t/ is
asymptotically stable (limt!1 e.t/ D 0). From the robust observer Lemma about the stability of
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feedback linearizable uncertain systems under the action of a high-gain observer-based uncertain
estimator [22, 23], it is well known that there exists a positive number ��, depending mainly on
the magnitude of „.´; �; &; u/, such that this nonlinear term ˆ2 will be negligible with respect to
the nominal dynamics of the estimation error. Then for a given compact set of the initial condition
I � RrC1 and for all � > ��, there exists a region of attraction @�.y�/ around y�, with � > 0 for
the closed-loop system (9–10). Hence, the controller (9–10) drives the trajectories of the system (1)
arbitrarily close (practical output stabilization) to the ı-vicinity Yı . �

4. NUMERICAL VERIFICATION

In this section, the aforementioned ESC design methodology is illustrated via numerical simulations
for two uncertain reaction systems.

4.1. Fed-batch culture process

In the first example, we consider a biomass culture process occurring within a fed-batch bioreactor,
where the microorganisms X grow by consuming a substrate S . Such a bioreaction can be written
as follows:

S
�X

# X

The growth rate is denoted by �X , where � W RC ! R is a smooth function of the substrate and
the symbol# indicates that the biomass X is an autocatalyst. The following dynamical model can
be obtained from a mass balance in the bioreactor:

PS D
u

V
.Sf � S/ � k1�.S/X (11)

PX D �.S/X �
u

V
X (12)

PV D u (13)

The state vector x D ŒS;X; V �T 2 R3C whose components represent the concentrations of substrate,
biomass, and volume of the culture medium in the vessel, respectively; the inflow rate is the control
input u; Sf denotes the inlet substrate concentration; and k1 > 0 is a yield coefficient. Let us
consider the following properties on the specific growth rate �:

Property 1
� 2 C1.†/, where † D

®
S 2 R

ˇ̌
0 6 S 6 Sm

¯
with Sm < 1; and there exists a value S� 2 †

such that � 6 �.S�/,� 2 R 8S 2 †, with � <1 as the upper bound of �.

Property 2 (Concavity property)
The first derivative of � with respect to S , denoted by �0, satisfies as follows: (a) �0 > 08 QS < S�;
�0 D 0 at QS D S� and (b) �0 < 0 8 QS > S�, where QS 2 †.

A major difficulty in the monitoring and control of bioprocesses is the lack of reliable and sim-
ple sensors for following the evolution of the key state variables and parameters such as biomass
and specific growth rate. In fact, a typical situation in bioreactor applications is when the biomass
concentration is not available for online measurement while the product gaseous outflows rate (e.g.,
CO2 in fermentation processes) is easier to measure online [1]. Now, it is well known that the
product outflow rate can be modeled as follows [24]:

Q D k2�.S/X (14)

where Q is the product gaseous outflow rate and k2 > 0 is a yield coefficient. We assume that only
the product gaseous outflow rate and the substrate concentration are available for online monitoring,
that is, the specific growth rate � and the biomass concentration X are not available for online
measurement.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2017)
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Hence, the control objective is to design of a control law with u as the control action such that
the biomass production VX achieves its maximum at the end of the fed-batch operation. It is well
known from [24] that the maximum biomass production will be achieved if the specific growth rate
is kept at the optimum value S� (Property 2). In many biotechnological processes, the inlet substrate
concentration Sf can be subject to load disturbances; then we need to design a robust ESC despite
uncertainties in the growth kinetics and load disturbances in the inlet composition. The bioreactor
system can be rewritten in the affine control form (1), where

f .x/ D

2
4�k1�.S/X�.S/X

0

3
5

g.x/ D

2
4 Sf �S

V

�X
V
1

3
5

and h.x/ D S . It is well known that in conventional operating conditions (S.t/ ¤ Sf ), the system
has a well defined relative degree r D 1. Now, we can define a function for lumped the uncertainties
of the bioreaction system as follows:

�.t/ , �k1�X C u.Sf � NSf /

where NSf is a constant such that it provides a nominal value of the inlet substrate concentration Sf
( NSf ¤ 0 2 R). Thus, Sf will be a piecewise constant and uncertain function varying around the
nominal value NSf , that is, Sf D NSf C�Sf .

Hence, a robust ESC is proposed as

POS D O�C
u

V
. NSf � OS/C �
1.S � OS/

PO� D �2
2.S � OS/

u D
V

NSf

h
�O�C 	sgn

�
sin
�

˛
s
��i (15)

where s.t/ D Q.t/ � gs.t/ with Pgs D � > 0.
The simulation results are shown in Figures 1–3, considering the nominal values from [5]. The

controller parameters are set to the following values: 	 D 0:5, 
1 D 1, 
2 D 2, � D 2:5, ˛ D 0:5,
and � D 0:5. Global performance of the robust controller (15) for load disturbances in the inlet
substrate concentration Sf is shown in Figure 1. In the same figure, we can see that the substrate
concentration converges to the unknown optimal set-point, while the specific growth rate lies on
its maximum value N�. Figure 1(c) shows the corresponding control input profile where we can see
a large control effort for last 50 h. Many biotechnological processes can be subject to adaptive
mechanisms by microorganisms, as response to variations in the environmental variables such as
dissolved oxygen, temperature, and pH. This behavior is illustrated here by small changes in the
kinetic parameters around the nominal values reported in [5]. In Figure 2, the controller performance
is shown for the corresponding changes in the unknown optimal value for substrate concentration
S� each 20 h (dashed line). The corresponding control input behavior is presented in Figure 2(c)
where a large control effort is shown close to 90–100 h. In these simulations, the ability of the ESC
scheme (15) to adapt the control action is shown in order to track the true optimal set point. Finally,
in Figure 3, the asymptotic convergence of the high-gain observer-based uncertainty estimator 3.1
is shown.

4.2. Nonisothermal chemical reactor

As the second example, we consider the well known van de Vusse reaction system occurring into a
nonisothermal continuous stirred tank reactor (CSTR) [25]. The reaction network for this reaction
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Figure 1. Closed-loop response for the fed-batch culture with load disturbances in the inlet substrate
concentration Sf .
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Figure 2. Closed-loop response for the fed-batch culture for different nominal kinetic parameters with the
corresponding changes in the optimal set point S� every 20 h (dashed line in (a)).
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Figure 3. Performance of the uncertain dynamical estimator for (a) load disturbances in the inlet substrate
concentration Sf ; (b) different nominal kinetic parameters with the corresponding changes in the optimal

set point S�.

system is given by

A! B ! C

2A! D

From mass and energy balance in the CSTR, we can formulate the following dynamical model for
the system

PCA D D.CAf � CA/ � k1.T /CA � k3.T /C
2
A

PCB D �DCB C k1.T /CA � k2.T /CB

PT D �
1

�mCP
HR.CA; CB ; T /CD.Tf � T /C

u

�mCPV

(16)

where HR.CA; CB ; T / D k1.T /4H1CA C k2.T /4H2CB C k3.T /4H3C
2
A and ki .T / D

kioexp
h
� Ei
TC273

i
for i D 1; 2; 3. If we focus on the isothermal operation of the reactor, that is,
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PNT D 0, we can calculate the equilibrium coordinate NCB as a function of the reactor temperature as

NCB D
k1. NT / NCA

D C k2. NT /

Now, by solving PNCA D 0 for NCA and replacing in the aforementioned expression, we have the
following ‡:

NCB D
k1.T /

D C k2.T /

"
�
D C k1.T /

2k3.T /
C

p
.k1.T /CD/2 C 4k3.T /DCAf

2k3.T /

#
(17)

In previous work [25], [25], it has been shown that the static equilibrium profile of the desired
product B as a function of the reactor temperature exhibits a unique maximum for one specific-
temperature value T � (Figure 7). In this work, we consider that the concentration of the desired
product CB and the reactor temperature T are available for online measurement; and the flux-heat
is the control action. Thus, the control objective is to design a robust ESC to regulating the reactor
temperature around to the optimal and uncertain setpoint T �, despite unknown chemical reaction
kinetics and load disturbances in the inlet flow. Then the system (16) can be written in the control
affine form (1), where the state vector is given by x D ŒCA; CB ; T �0 2 � � R3C with

f .x/ D

2
4 D.CAf � CA/ � k1.T /CA � k3.T /C

2
A

�DCB C k1.T /CA � k2.T /CB
� 1
�mCP

�
k1.T /4H1CA C k2.T /4H2CB C k3.T /4H3C

2
A

�
CD.Tf � T /

3
5

g.x/ D

2
4 0

0

� 1
�mCPV

3
5

and h.x/ D T . The relative degree of the CSTR (16) with respect to the output signal y D T is
r D 1; then the system satisfies the Assumptions 1–4. Now, we can define the uncertain function as

� D �
1

�mCP

�
k1.T /4H1CA C k2.T /4H2CB C k3.T /4H3C

2
A

�
CD.Tf � T /

Hence, a robust ESC is proposed as

POT D O�C
u

�CPV
C �
1.T � OT /

PO� D �2
2.T � OT /

u D �mCPV
h
�O�C 	sgn

�
sin
�

˛
s
��i (18)

where s.t/ D CB.t/ � gs.t/ with Pgs D � > 0.
The simulation results are shown in Figures 4–7, considering the nominal values from [25]. The

controller parameters are set to the following values: 	 D 12:5, 
1 D 1, 
2 D 2, � D 2:5, ˛ D 5,
and � D 1:5. The performance of the closed-loop system relative to the unknown optimal set point
for distinct initial conditions is shown in Figure 7. The controller performs very well for different
initial conditions and is able to lead the trajectories close to optimal set point. The closed-loop profile
for the concentration of the component and the reactor temperature are shown in Figure 4. It is clear
that the closed-loop dynamics is close to the desired optimal set point. The required control action is
given in Figure 4(c). Figure 5 shows the controller performance for load disturbances in the influent
flow. We can see that the closed-loop system is able to reach the optimal profile despite external
disturbances. So as to illustrate the performance of the dynamical estimator described in 3.1, in

‡Note that the system displays multiple equilibria, but the one of interest will be the positive equilibrium point.
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Figure 4. Closed-loop response for the van de Vusse reactor. The dotted lines represent the optimal set point.
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Figure 5. Closed-loop response for the van de Vusse reactor with load disturbances in the inlet flow (Tf ,
CAf and F ) (a).
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Figure 6. Performance of the uncertain dynamical estimator. The down graph corresponds with the load
disturbances in the inflow rate.

Figure 7. Closed-loop performance of the van de Vusse reactor. The solid line represents the unknown
equilibrium profile; the dotted lines are the closed-loop trajectories for distinct initial conditions. [Colour

figure can be viewed at wileyonlinelibrary.com]
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Figure 6 is shown the corresponding profiles. We can see that this estimation algorithm is able to
predict the uncertainties associated with modelling error and external disturbances. Compared with
previous contributions for extremum-seeking control for reaction systems (e.g., [25] and [5]), the
proposed ESC scheme (9 and 10) is able to reach the online optimization of the plant despite high
uncertainties and external disturbances, but the control action still presents a large control effort.
This drawback needs to be looked into more deeply in the context of experimental implementation.

An important issue in the frame of a practical implementation of the proposed ESC scheme is
the appropriate selection of the control parameters. In our case, it is important to find an adequate
balance between the convergence rate and the accuracy of the ESC scheme. For instance, it is pos-
sible to increase the convergence rate to the optimal neighborhood by adjusting the parameters 	
and �. However, these parameters also affect the size of the ı-vicinity by the restriction imposed in
Theorem 2. In fact, the ı-vicinity size is restricted by 2ı < 	˛��1. On the other hand, the high-
gain observer-based estimators might be highly sensitive to process noise [26]. In fact, in practical
implementations, it may destabilize the closed-loop system by amplifying the process noise with a
gain on the order O.�2/. In a previous contribution, it has been shown that the estimation schemes
based on high-gain observers have a structure of a second-order filter (see transfer function (8) in
[27]). By following this idea, it is possible to attenuate the process noise by an adequate choice of
the observer parameters 
0i and � . However, in practical implementations, the characterization of
the dominant frequency of the process disturbance with a fine tuning of the estimation parameters
is required; this issue might be addressed in a future contribution.

5. CONCLUSION

In this paper, an extremum-seeking algorithm for a class of uncertain reaction systems is pro-
posed, which is robust with respect to unmodeled dynamics and unmeasured disturbances. A design
methodology is proposed by using the input–output linearizing method with sliding mode tech-
niques, coupled with a dynamic modelling-error estimator to compensate for unknown terms. Unlike
previous sliding mode-based ESC algorithms, the proposed control scheme guarantees robustness
against modeling errors, parametric variations, and external perturbations. The practical stabiliz-
ability of the uncertain reactive systems around to the optimal set-point has been discussed for the
closed-loop system. Numerical simulation for two different reaction systems shows that the ESC
control algorithm yields good uncertain set-point tracking as well as disturbances rejection.

NOMENCLATURE

c arbitrary constants
CA concentration of A
CAf concentration of A in the inlet flow
CB concentration of B
CP calorific capacity
D dilution rate
e estimation error
f; g vector fields
F performance map
gs increasing signal
h output map
HR heat reaction
ki .T / kinetic coefficients
k1; k2 yield coefficients
n order of the system
Q product gaseous outflow rate
r relative degree
Rn n-dimensional real number space
s switching function
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S substrate concentration
Sf substrate concentration in inlet flow
sgn sign function
NSf nominal value for inlet substrate concentration
t time
T temperature
Tf temperature of the inlet flow
u control input
V volume
x dynamic state
X microorganisms concentration
y output signal
y� critical value of y
Yı ı-vicinity around of y�

´ new coordinates
˛; 	; � control parameters
� known terms in the Lie derivatives
�, ı small positive constants
� uncertainties
O� estimation of �
‚ function for lumping the uncertainties

0is; � observer parameters
� specific growth rate
N� upper bound of �
� external reference input
� global cost criterion
N� maximum global cost criterion
„ time derivative for ‚
�m density
ˆ coordinates transformation
� domain in Rn
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