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Camino a la Presa San José 2055 col. Lomas 4a Sección, 78216,
San Luis Potośı, SLP, México
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Abstract

We present an unstable dissipative system capable of generate an multistable

dynamical behavior i.e. depending on its initial condition, the trajectory of

the system converge to a given basin of attraction. The proposed system

is based on the a type of piecewise linear system called unstable dissipative

systems whose main attribute is to generate trajectories with multiple wings

or scrolls. From this system we propose an structure where both the linear

part and the switching function depends on two parameters. We shown the

range of values of such parameters where the system present a multistable

behavior and where the system present trajectories with multiscrolls.
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1. Introduction

In the evolution of a complex system exists various possible (coexisting)

basins of attractions or sinks whose realization depends on its initial state.

This phenomena is usually called multistability and it is present in a wide

variety complex systems [1, 2]. What is the exact interpretation of a sink

depends on the complex system that is studied. Take as an example a social

system, where one possible meaning are the distinct forms of government

(Democracy, Oligarchy, Autocracy). How a social system transit form each

one of these can be seen as a multistable behavior. In the context of biology,

there are many examples of systems that manifest multistability phenomena.

A worth mentioned example is the cellular differentiation, which is important

to understand human development and the distinct forms of diseases. Here,

multistability is understood as a processes in which a gene regulation network

alternate along several possible cell types [3]. Another example comes from

the nonlinear chemical dynamics, where multistability is understood as the

different possible final chemical states [4]. In this context, the archetype sys-

tem is the Oregonator system, where concentrations of the reacting species

oscillate between two stable final states (bistability). Several examples can

be cited ranging from medicine [5], electronic [6], visual perception [7], super-

conducting [8], etc. All of these examples motivate the current research works

to address the challenger despite by R. Vilela Mendes in [9] of -identifying

the universal mechanism that leads to multistability and to prove rigorously

under what circumstances the phenomenon may occur. One feasible mode to

address this challenge is through the formalism of dynamical systems where
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the concepts of basin of attraction, stability, convergence among others have

a mathematical definition and let us to use some tools from stability theory

to analyze its behavior. It is worth to note that this situation is similar with

the research works some year ago where chaotic system were modeled and

interpreted from the point of view of dynamical systems. Since them var-

ious dynamical systems with a chaotic behavior have beed proposed (some

examples are the Lorenz, Chua and Rössler systems, to name a few)

In the context of dynamical systems, an attractor is defined as a sub-

set of the phase space toward the trajectories of the dynamical systems

tends to evolves (and attractors can be fixed points, limit cycles or peri-

odic, quasiperiodic, chaotic or hyper-chaotic orbits). The basin of attraction

or sink is defined as the set of all the initial conditions in the phase space

whose corresponding trajectories go to that attractor [10, 11]. The concepts

of convergent trajectories and attractor stability are usually associated with

a energy-like term called Lyapunov function. Then, with the above concepts

it can say that a multistable dynamical system is a dynamical system that,

depending on its initial condition, its trajectories solution can alternate be-

tween two or more mutually exclusive Lyapunov stable and convergent states

[5] .

Some formal definitions of multistage behavior have been proposed by

D. Angeli in [2] and Q. Hui in [12] for discontinuous dynamical systems. In

this sense, a methodology to induce a multistable behavior is by coupling

two o more dynamical systems. For example, E. Jiménez-López et al induce

a multistable in two Jerk-type dynamical systems coupled in a master-slave

system. In this direction, C.R. Hens et.al. shown that two coupled Rössler
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oscillators can achieve a type of multistability called extreme, where the num-

ber of coexisting attractors is infinite [13]. It is also been observed that by an

appropriate modification of the equations, some classical chaotic systems can

exhibit also a multistable behavior. For example, [14, 10] propose a varied

of the Duffing-Holmes system and Chua’s oscillator; shown that in a given

range of its parameter’s values this system exhibit coexisting attractors. The

experimental evidence of multistability for the Rössler oscillator have ben re-

ported by M. Patel et al in [6]. On the other hand, C. Li in [15] and D.Z.T.

Njitacke et al in [16], have been observed that multistable behavior is also

present in the Butterfly Flow and memristive diode bidge-based Jerk circuit,

respectively. It is worth to mention that for some discrete-time chaotic sys-

tems have been also proved that are able to present multistable behavior

[17, 18]

In this paper we propose two methodologies to change the dynamics of

an unstable dissipative system of Type I and Type II in such form that both

types of systems generate a multistable behavior. The first methodology

consist in introduce a bifurcation parameter in the linear operator of the

UDS of Type I. With such parameter, we can change the location of the

stable and unstable manifold until the trajectories are trapped in a specific

switching surface. Once the trajectories are inside such surfaces, it can not

scape since the manifold of the neighborhood surfaces do not rise to trapped

it. In regard to our second methodology, we consider a UDS Type II and

modify the switching law without change the linear operator. With both

methodologies we can design a priori the number of multistable regions by

introducing another switching surfaces.
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We organize this paper as follows: in Section 2 we propose a definition of

a multi stable dynamical systems. In section 3, we define and describe the

main features of an UDS. Even we present in this section the conditions under

which a dynamical system is an UDS Type I or Type II system. In section

4 we present in detail our proposed methodology to induce multistability in

a UDS Type I system and in section 5 the corresponding methodology for

UDS Type II. In section 6 we present some concluding remarks.

2. Multistable dynamical system

The prototypical system that we consider in this paper is an autonomous

piece-wise lineal ordinary differential equation of the form:

χ̇ = f(χ) = Aχ+ g(χ), χ(0) = χo, (1)

where χ ∈ Rn the state variables vector, A = {aij}ni,j=1 ∈ Rn×n is the linear

operator with aij ∈ R and; g : Rn → Rn is a vector-valued function of the

form:

g(χ) =



B1 if χ ∈ S1 = {χ ∈ Rn : δ1 ≤ G1(χ) < δ2};

B2 if χ ∈ S2 = {χ ∈ Rn : δ2 ≤ G2(χ) < δ3};
...

...

Bm if χ ∈ Sm = {χ ∈ Rn : δm−1 ≤ Gm(χ) < δm};

(2)

where Bi = [bi1, . . . , bin] ∈ Rn for i = 1, . . . ,m is a set of vectors with real

entries; and S = {S1, S2, . . . , Sm} is a finite partition of the phase space

called the switching domains, which satisfy Rn =
⋃

1≤i≤r Si. Each Si is

defined by and surface Gi(χ) and δi (with 1 ≤ i ≤ m) acts as a separatrice

(or boundary) between two consecutive switching domain. In what follows

5



we call each δi the switching surfaces. Furthermore, we assume that each

Si has at least a saddle equilibria point χ∗. If v̄j ∈ Rn is an eigenvector

of the linear operator A and λj = αj + iβj its corresponding eigenvalue,

then the stable set is Es = Span{v̄j ∈ Rn : αj < 0} and the unstable set

Eu = Span{v̄j ∈ Rn : αj > 0} [19]. Stable sets form boundaries between

the basins of attraction of different attractors [20]. We assume that every

equilibria point χ∗ ∈ R of (1) is an hyperbolic saddle-focus equilibrium.

Let φt(χ) ∈ Rn the trajectory solution of (1):

Definition 2.1. An attractor (or sink) is a closed invariant set A which

has a shrinking neighborhood i.e. there is an open neighborhood U ⊂ A such

that the trajectory φt(χ) of any point χ ∈ U satisfies dist(φt(χ), A) → 0 as

t → ∞; where dist(x,A) = infx0∈A||χ, x0||. The basin of attraction of A is

the set of initial conditions whose trajectories converge to the attractor, that

is Ω(A) = {χ0 ∈ Rn : φt(χ0)→ A as t→∞}.

It is worth to mention that an attractor can be a fixed point, limit cycles,

Quasi-periodic motion or even an chaotic trajectory. Next, based on the

above definition, we propose the following definition of a multistable system:

Definition 2.2. We say that the dynamical system (1) is multistable if it

satisfy the following requirements:

1.- There exists a set {x∗ρ}mρ=1 of saddle equilibria points of (1) in Rn.

2.- The phase space can be partitioned in a finite number m of switching

domains Si (for i = 1, . . . ,m) such that each one has a single equilibria

point located at x∗i = A−1Bi, for i = 1, . . . ,m.

3.- Exist at least two attractors Ai and Aj, bounded by two switching sur-

faces such that Ω(Ai) ∩ Ω(Aj) = ∅

6



3. Chaotic attractors based on Unstable Dissipative Systems

We consider the following family of affine linear systems:

χ̇ = Aχ+B(χ) (3)

where χ = (x1, x2, x3)
> ∈ R3 is the state vector, the real matrix A ∈ R3×3

is the linear operator; and B : R3 → R3 is a vector-valued function. In

particular, we assume that (3) is described by the jerk type equation [21]:

A =


0 1 0

0 0 1

−α −β −γ

 , B(χ) =


0

0

ασ(χ)

 ; (4)

where α, β, γ ∈ R and σ(χ) : R3 → R is the following piecewise-constant

and continuous from the right function called the switching law:

σ(χ) =



b1 if χ ∈ S1 = {χ ∈ R3 : δ1 ≤ v>χ < δ2}

b2 if χ ∈ S2 = {χ ∈ R3 : δ2 ≤ v>χ < δ3}
...

...

bm if χ ∈ Sm = {χ ∈ R3 : δm−1 ≤ v>χ < δm}

(5)

with bi ∈ R and Si = {χ ∈ R3 : δi−1 ≤ v>χ < δi} (for i = 1, . . . ,m;)

are the switching domains, with v ∈ R3 (with v 6= 0) a constant vector

and δ1 ≤ δ2 ≤ · · · ≤ δη the switching surfaces. Without loss of generality,

we assume that the planes v>χ = δi (for i = 1, 2, . . . ,m) are defined with

v = [1, 0, 0]> ∈ R3. The role of the switching function σ is to specify

which system is active at a given switching surface, that is, if σ(χ) = βk for

k ∈ I = {1, . . . ,m}, then the affine linear system that governs the dynamics

in the switching region Sk is: χ̇ = Aχ+ [0, 0, aβk]
>.
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In particular, we assume that each switching domain contains an single

saddle equilibrium point located at x∗ρ = A−1Bρ, with ρ ∈ {1, . . . ,m}. With

the above assumptions we ensure that for any initial condition χ0 ∈ R3, the

orbit φ(χ0) of the system (3)-(4) is trapped in the region Sρ by an one-spiral

trajectory called scroll or wing. When the flux reach to the the plane x1 = δτ

(with τ 6= ρ), it crosses to the region Sτ , where it is again trapped in a new

scroll with equilibrium point x∗τ = A−1Bτ . In this context, the system (3)-

(4) can display various multi-scroll attractors as a result of a combination

of several unstable one-spiral trajectories [22], where the switching between

regions is governed by the switching function (5).

Definition 3.1. [22] Let {x∗ρ}mρ=1 a set of equilibrium points of the system

(1). We say that the system (5) is a multi-scroll system with the minimum

of equilibrium points, if each x∗ρ observes oscillations around it and for any

initial condition χ0 ∈ Si, the orbit φ(χ0) generates an attractor between the

switching surfaces.

In what follows, we assume that the eigenspectra Λ = {λ1, λ2, λ3} of

the linear operator A ∈ R3×3 has the following features: a) at least one

eigenvalue is a real number and; b) at least two eigenvalues are complex

numbers. Furthermore, we consider that the sum of the real part of each

element of Λ is negative. A dynamical system of the form (3) that satisfy

the above requirements is called an Unstable Dissipative System (UDS) [1].

Definition 3.2. Let Λ = {λ1, λ2, λ3} the eigenspectra of the lineal operator

A, such that
∑3

i=1 Re{λi} < 0, with λ1 a real number and λ2, λ3 two complex

numbers. The system (3) is said to be an UDS Type I if λ1 < 0; and it is

Type II if λ1 > 0.

8



The above definition imply that the UDS Type I is dissipative in one of

its components but unstable in the other two, which are oscillatory. The

converse is the UDS Type II, which are dissipative and oscillatory in two of

its components but unstable in the other one. The following result ( based

on the results in [21]) provide conditions to guaranteed that the system (3)

is UDS Type I or Type II for a general lineal operator A = {αij} ∈ R3, with

αij ∈ R for i, j = 1, 2, 3.

Proposition 3.3. Consider the family of affine lineal systems (3), the lineal

operator A given by the jerk system (4) with α, β, γ ∈ R and let {a, b, c}

a set of non zero real numbers called control parameters. If α = c(a2 + b),

β = a2 + b + 2ac and γ = c− 2a with b, c > 0 and a < c/2, then the system

(3)-(4) is UDS Type I; on the other hand, if b > 0 and a, c < 0 and a > c/2,

then the system is UDS Type II

Proof. The characteristic polynomial of the lineal operator (4) is:

p(λ) = λ3 + γλ2 + βλ+ α

= λ3 + (c− 2a)λ2 + (a2 + b+ 2ac)λ+ (ca2 + cb)

= (λ+ c)(λ2 − 2aλ+ (a2 + b))

The roots of p(λ) gives the following expressions for the eigenspectra Λ =

{λ1, λ2, λ3} of (4): λ1 = −c and λ2,3 = a ± i
√
b. Note that λ1 < 0 and∑3

i=1 Re{λi} = −c + 2a < 0 if a < c/2 and c > 0. Then, according to

Definition (??) the system (3)-(4) is UDS Type I. On the other hand, if

a, c < 0, then λ1 > 0 and the above summatory is still negative since a > c/2

, which implies that the system is UDS Type II.
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Figure 1: Projection of the UDS Type I into the (x1, x2) plane with control parameters

a = 0.12501, b = 1.5625 and c = 1.25; and switching law (9) . The dashed lines mark the

division between the switching surfaces and the red dot indicates the initial position at

χo = (3.5, 0.5, 0)>.

Example 1: In order to illustrate, we consider the dynamical system (3)

with control parameters a = 0.12501, b = 1.5625 and c = 1.25. Then,

according to the Proposition (3.3), the last row of the lineal operator (4) is

defined by the following elements: α = 1.9727, β = 1.2656 and γ = 1. With

this selection of control parameters, the eigenvalues of A are λ1 = −1.25 and

λ2,3 = 0.125± i1.25, which according to Definition 3.2, the system is an UDS

Type I . We define the switching law as:

σ(χ) =


2 if χ ∈ S1 = {χ ∈ R3 : x1 > 1}

0 if χ ∈ S2 = {χ ∈ R3 : −1 < x1 ≤ 1}

−2 if χ ∈ S3 = {χ ∈ R3 : x1 ≤ −1}

(6)
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Figure 2: Projection of the UDS Type II into the (x1, x2) plane with control parameters

a = −0.3494, b = 5.9469 and c = −0.0988; and switching law (9) . The dashed lines mark

the division between the switching surfaces and the red dot indicates the initial position

at χo = (3.5, 0.5, 0)>.

Then, the equilibrium points for this system are χ∗1 = (2, 0, 0), χ∗2 =

(0, 0, 0) and χ∗3 = (−2, 0, 0). In Figure (1) we depicts the time series of the

state variables x1, x2, x3 and the projection of the UDS into the phase-space,

where we use the switching law (9) and initial condition χo = (3.5, 0.5, 0)>.

It is worth to note that Definition (3.1) is satisfied.

Example 2: As a second example, we consider the following control pa-

rameters a = −0.3494, b = 5.9469 and c = −0.0988. Then, according

to the results of the Proposition (3.3), α = −0.6, β = 6 and γ = 0.6.

With this selection of parameters the eigenvalues of A are λ1 = 0.0988 and

λ2,3 = −0.3494± 2.4386i, which according to Definition 3.2, the system is an
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UDS Type II . In particular, for this second example we define the following

switching law:

σ∗(χ) =

 0 if χ ∈ S1 = {χ ∈ R3 : −1 ≤ x1 ≤ 1}

7 if χ ∈ S2 = {χ ∈ R3 : x1 < −1}
(7)

In Figure (2) we illustrate the UDS dynamics for the initial conditions

χ0 = (−1.1, 0, 0)>.

4. Induced multistability in a UDS Type I system

Based on the previous description of an UDS, in this section we consider

the system (3)-(4) with:

A =


0 1 0

0 0 1

−kα −kβ −1

 , B(χ) =


0

0

kασ(χ)

 ; (8)

where k ∈ R+ is a new parameter introduced in the system. In particular, if

k = 1, α = 1.9727 and β = 1.2656 (that is, according to Proposition 3.3, the

control parameters are a = 0.12501, b = 1.5625 and c = 1.25 ), the system

(3)- (8) satisfy the requirements of Definition (3.2). In Figure (1) we observe

that the UDS display varios scrolls in three distinct switching domains. In

this section we use the parameter k as a bifurcation parameter whose role

is to modify the location of the stable Es and unstable Eu manifolds. In

this sense, k change the dynamical behavior of the UDS Type I system from

mono-stable to a single scroll dynamics. It is worth to note that by changing

k, the switching surfaces and the equilibria points remains unchanged.
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χ01 = [− 3, 4, 0]⊺ χ02 = [0. 2, 4, 0]⊺ χ03 = [2, 4, 0]⊺

Figure 3: Projection of the UDS Type I into the (x1, x2) plane with α = 1.9727, β = 1.2656

and γ = 1, switching law (6) and k = 7 . The black dots indicates the initial condition at:

χ01 = (−3, 3, 0)>, χ02 = (0.5,−3.1, 0)> and χ03 = (3,−3, 0)>.

Example 3: In order to illustrate, we consider the system given in Example

1. If k < 7, the system display three scrolls as we shown in Figure (1).

However, if k > 7, the manifolds direction change in such a way that for

a given initial condition, the trajectories can not display many scrolls as

before. Instead, the trajectory remains trapped in a single switching domain

i.e becomes multistable as we can see in Figure (3), where we have used

the following three distinct initial condition: χ01 = (−3, 3, 0)> ∈ S3, χ02 =

(0.5,−3.1, 0)> ∈ S2 and χ03 = (3,−3, 0)> ∈ S1.

Next, we vary the initial condition of the UDS Type I (3)-(8) on the

(x1, x2) plane in order to identify the basin of attraction Ω(Ai) of each at-

tractor Ai (for i = 1, 2, 3) . In Figure (4) we shown the three basins of

attractions in the region x1 ∈ [−10, 10], x2 ∈ [−10, 10] and x3 = 0. The

color of each dot plotted in such a Figure represent the mean value (over 150
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Figure 4: Three basins of attraction Ω(Ai) (for i = 1, 2, 3) generated with the switching

law (6) in x1 ∈ [−10, 10], x2 ∈ [−10, 10] and x3 = 0. Green dots are used for initial

conditions that becomes trapped in S1, red dots for S2 and blue dots for S3.

iterations ). A green dot means that for such initial condition, the system

is trapped in the switching domain S1 = {χ ∈ R3 : x1 > 1}. In similar

way, the red dot correspond to basins of attraction in the switching domain

S2 = {χ ∈ R3 : −1 < x1 ≤ 1} and blue dots to S3 = {χ ∈ R3 : x1 ≤ −1}.

Example 4: It is worth to mention that it is possible to extend the number of

final states of the UDS Type 1 by increasing the number of switching domains

of the systems. The key idea is to design appropriately the switching law by

introducing more planes over x1 [22]. In order to illustrate we change the
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Figure 5: Projection of the UDS Type I into the (x1, x2) plane with α = 1.9727, β = 1.2656

and γ = 1, switching law (9) and k = 7 . The black dots indicates the initial condition.

switching law (6) as follows:

σ(χ) =



−5 if χ ∈ Ŝ1 = {χ ∈ R3 : x1 ≤ −4}

−3 if χ ∈ Ŝ2 = {χ ∈ R3 : −4 < x1 ≤ −2}

−1 if χ ∈ Ŝ3 = {χ ∈ R3 : −2 < x1 ≤ 0}

1 if χ ∈ Ŝ4 = {χ ∈ R3 : 0 < x1 ≤ 2}

3 if χ ∈ Ŝ5 = {χ ∈ R3 : 2 < x1 ≤ 4}

5 if χ ∈ Ŝ6 = {χ ∈ R3 : 4 < x1}

(9)

In Figure (5) we shown the behavior of the system (3)-(8) with the same

parameter values as in our previous example but with the switching law (9).

We shown the dynamics of the system with the following initial conditions:

χ01 = (−6, 4, 0)>, χ02 = (−3, 4, 0)>, χ03 = (−1, 4, 0)>, χ04 = (1, 4, 0)>,

χ05 = (3, 4, 0)> and χ06 = (5, 4, 0)>.
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Figure 6: Six basins of attraction B̂(Si), for i = 1, . . . , 6 of the function (9) in x1 ∈

[−10, 10], x2 ∈ [−10, 10] and x3 = 0. Blue dots are used for initial conditions in B̂(S1),

red for B̂(S2), magenta for B̂(S3), orange for B̂(S4), violet for B̂(S5) and green for B̂(S6).

On the other hand, in Figure (6) we shown the six basin of attraction

Ω(Ai) (for i = 1, . . . , 6) generated with the switching law (9) and where we

vary the initial condition in the range x1 ∈ [−10, 10], x2 ∈ [−10, 10] and

x3 = 0.

5. Induced multistability in UDS Type II

In order to generate multistability behavior in the UDS Type II, we first

consider the system (3) with:

A =


0 1 0

0 0 1

α −pα −α

 , B(χ) =


0

0

ασ∗(χ)

 ; (10)
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Figure 7: Projection of the UDS Type II into the (x1, x2) with the switching law (11) and

α = 0.6 and p = 10 . The black dots indicates the initial condition at: χ01 = (−1.1, 0, 0)>

and χ02 = (1.1, 0, 0)>.

with p is a modular bifurcation parameter and where we modify the switching

law (7).

Example 5: by introducing a new switching domain to the function 7 as

follows:

σ∗(χ) =


−7 if χ ∈ S1 = {χ ∈ R3 : x1 > 1}

0 if χ ∈ S2 = {χ ∈ R3 : −1 ≤ x1 ≤ 1}

7 if χ ∈ S3 = {χ ∈ R3 : x1 < −1}

(11)

In Figure (7) we shown the behavior of the system (3)-(8) with α = 0.6,

p = 10 and with the following initial conditions: χ01 = (−1.1, 0, 0)> and

χ02 = (1.1, 0, 0)>. On the other hand, in Figure (8) we shown the basin of
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Figure 8: The basins of attraction B̂(Si), for i = 1, . . . , 6 of (10) generated with the

switching function (11) in x1 ∈ [−10, 10], x2 ∈ [−10, 10] and x3 = 0. Blue dots are used

for initial conditions in B̂(S1) and red for B̂(S2).

attraction for the the attractors of (10).

Example 6:

In this example we shown how we can generate attractors in x2-dimension

by modifying the vector-valued function of (10) as follows:

B(χ) =


−f(χ)

0

σ(χ) + pαf(χ)

 ; (12)

where p is the modular bifurcation parameter used in the lineal operator

A, σ(·) is a switching law (11) and f(χ) is the following piecewise constant
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χ01 = [− 1. 1, 2, 0]⊺

χ02 = [1. 1, 2, 0]⊺
χ03 = [− 1. 1, − 2, 0]⊺

χ04 = [1. 1, − 2, 0]⊺

Figure 9: Projection of the UDS Type II into the (x1, x2) plane with α = 0.7; p = 10 and,

vector-valued function B given in (10).

function:

f(χ) =

 −1.4 if χ ∈ S1 = {χ ∈ R3 : x2 ≤ 0}

1.4 if χ ∈ S2 = {χ ∈ R3 : x2 > 0}
(13)

The role of the function f(·) is to split the direction x2 to each one of the

switching surfaces Si. In Figure (9) we shown the coexisting attractors gener-

ated in each switching surface with the initial conditions: χ01 = (−1.1, 2, 0)>,

χ02 = (1.1, 2, 0)>, χ03 = (−1.1,−2, 0)> and χ04 = (1.1,−2, 0)>. Addition-

ally, in Figure (10) we show the basin of attraction of the UDS Type II by

varying the initial conditions in the range x1 ∈ [−10, 10], x2 ∈ [−10, 10] and

x3 = 0.
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Figure 10: Basins of attraction onto the plane x1 ∈ [−10, 10], x2 ∈ [−10, 10] and x3 = 0.

Each dot represent a given initial condition and its color is the bassin of attractions in

which the UDS converge with such initial condition.

6. Concluding remarks

We propose two methodologies to change the dynamics of an unstable

dissipative system of Type I and Type II in such form that both types of

systems generate a multistable behavior. The first methodology consist in

introduce a bifurcation parameter in the linear operator of the UDS of Type I.

With such parameter, we can change the location of the stable and unstable

manifold until the trajectories are trapped in a specific switching domain.

Once the trajectories are inside such domain, it can not scape since the

manifold of the neighborhood domains do not rise to trapped it. In regard

to our second methodology, we consider a UDS Type II and modify the

switching law without change the linear operator. With this methodology we

20



can design a priori the number of attractors by introducing another switching

domains.
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two coupled Rössler oscillators,” Physical Review E - Statistical, Non-

linear, and Soft Matter Physics, vol. 89, no. 2, 2014.

[7] S. J. Gershman, E. Vul, and J. B. Tenenbaum, “Multistability and Per-

ceptual Inference,” Neural Computation, vol. 24, no. 1, pp. 1–24, 2012.

[8] P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P.
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