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Cluster synchronization in networks of structured
communities
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Col. Lomas 4a Secc. C.P. 78216,
San Luis Potośı, S.L.P., México

Abstract

We investigate the synchronization problem for a network of subnetwork with
community structure. We consider a model with different levels of interconnec-
tion: At the first, strongly coupled adjacent nodes are modeled as a compact
unit (CU) where connections are uniformed and undirected. A second level of
connection occurs as CUs with similar dynamic behaviors from communities by
weighted and undirected interactions. Finally a third level of connection, where
directed and weighted connections between these communities form the entire
network of subnetworks. Using the Lyapunov approach we show that cluster
synchronization is possible for our network model where even though all nodes
are interconnected each community achieves complete synchronization within,
while the behavior between communities is not synchronized. Our main results
are illustrated using numerical simulations of well-known benchmark systems.

Keywords: Network of networks, Cluster synchronization, Community
structures.

1. Introduction1

Networks of subnetworks are everywhere in the real world, many natural2

and artificial systems, such as the Internet and biological networks, are clear3

examples of this type of systems. In many instances, proper operation in com-4

plex systems depend on collaborative efforts by distinct groups connected to5

each other [1–3]. A network of subnetworks is composed by a large set of inter-6

connected nodes, in which one can identify subnetworks (clusters, communities7

or groups) that share a common specific dynamical or topological classifying8

characteristic.9
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To model a complex system as a dynamical network, in most cases one10

starts with suppositions like identical dynamical nodes coupled with undirected11

and unweighted connections in statical structures. Moreover, to investigate12

its collective behavior a basic assumption is the diffusive connections condition.13

That is, when all nodes have the same value the average effect of all neighbors on14

the dynamics of a given node is zero. The diffusive requirement arises naturally15

when considering systems with a large number of elements, in that case the16

effect of all neighbors on the behavior of a given node can be approximated in17

the so-called “mean-field” sense, then the effect all nodes is average over the18

entire system [4]. For example, in a network of neurons, where the connections19

are modeled as proportional electrical synapses, one way to average the effect20

of all the neurons in a neighborhood is to require that the connection matrix21

have zero sum by rows. Another example are Kirchhoff’s circuit laws where the22

sum of voltages of all the elements in a circuit averages to zero, that is, their23

connections are diffusive.24

The overall dynamics of a network are the result of the interplay between its25

edge structure and its node dynamics, this interaction gives rise to very inter-26

esting patterns of collective behavior, such as synchronization [5]. For a pair of27

coupled systems, as well as for networks of dynamical systems, when investigat-28

ing the stability of synchronized behavior, a common approach is to linearize29

the error dynamics around the synchronized solution, in this way one obtains30

local results [6]. In contrast, global synchronization is establish if the validity31

of the results hold for the entire state space of the coupled systems [7]. The32

synchronization problem can be solved from two different perspectives: On the33

one hand, the connections between the systems can be designed to make the34

synchronized solution stable. On the other hand, controllers can be designed to35

impose a synchronized behavior, this can be achieved using control methodolo-36

gies like: activation feedback control [8], linear separation [9], or sliding mode37

control [10], among many other approaches [11].38

Recently, the basic patters of synchronization that occur in the master-slave39

configuration such as identical [12], generalized [13] or module-phase synchro-40

nization have be extended to the case of networks. For example, in Zhang et41

al [14] the module-phase synchronization of neural network with time delay is42

considered. In this sense, the outer synchronization of networks can also be43

seen as an extension of a basic synchronization pattern usually associated with44

the master-slave configuration, where an entire network of slave systems syn-45

chronizes to a system that is outside the network, basically functioning as an46

external master for the entire network [15].47

The study of networks of subnetworks has received increasing attention from48

various disciplines in recent years. These investigations can be divided into two49

main lines. The first investigates the emergence of their structural or spec-50

tral properties, where the main objective is to characterize the “community51

structure” of the complex system, i.e., identify groups of nodes that are densely52

related to each other [3, 16]. In this same line of research one can include investi-53

gations of different structural properties such as transitivity, degree distribution,54

the existence of motifs, and the spectral properties of their Laplacian matrices55
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[17–19]. The second line of research investigates their dynamical properties,56

that is, each subnetwork is form by node with identical or similar dynamical57

properties [20]. In this case the main concern is to describe the nature of their58

collective motion. For example, the emergence of different patterns of synchro-59

nized behavior [21]. In this context, cluster synchronization refers to the case60

where a network can be divided into several groups, inside of them the nodes61

synchronize with each other; while between nodes of different groups there is62

no synchronization. In [22] the emergence of cluster synchronization has been63

investigated in terms of the structure and number of identical oscillators on64

lattices of two and three dimensions. The different forms of cluster synchroniza-65

tion in terms of its structure was completely characterized in [23] for networks66

of identical nodes. The cluster synchronization problem for nonidentical nodes67

was investigated for a dynamical network with two clusters of nonidentical nodes68

in [24]. While [25] considered the case of nonlinearly coupled subnetworks for69

nonidentical nodes. The cluster synchronization problem of Boolean networks70

was solved from the control perspective in [26]. Also using the controller de-71

sign approach a solution for the cluster synchronization problem on networks72

of identical nodes with time delays was proposed in [27] by designing adaptive73

controllers. In this paper, for a particular class of complex networks we investi-74

gate the synchronization problem using Lyapunov stability theory [28], in this75

way we derive sufficient condition to guarantee cluster synchronization in a net-76

work of structured communities. An advantage of using Lyapunov analysis is77

that nonlinearities, uncertainties and other considerations like those generated78

by time delays can be included in the analysis, which other tools like the graph79

stability approach [29], or the Master Stability Function (MSF) [6] are unable to80

take into consideration. Additionally, by using the Lyapunov theory approach81

we derive analytical instead of numerical arguments to establish the stability of82

the synchronized solution.83

Considering the structural complexity of real world networks the assumption84

that all node in the network are coupled in the same way is difficult to justify.85

For that reason we proposed a model that remarks the existence of different86

types of couplings for different levels of organization. Our model of a network87

of subnetworks has three different levels of organization with distinct coupling88

characteristics at each level. At the first one, the connection is tight, adjacent89

nodes are coupled bidirectionally and uniformly, the groups at this level are90

called “compact units” (CUs). Within each CU we assume that all nodes are91

identical and with exactly the same coupling structure. Due to this assumption,92

the stability of its collective dynamics can easily be determine using previous93

results like the λ2 criterion [28, 30]. At the second level of organization, the94

CUs that share dynamical characteristics are coupled together into communi-95

ties. Each subnetwork at this level, is formed by the weighted connection of96

CUs. Under the assumption that each CU in the community is identically syn-97

chronized, its behavior is that of an isolated node, then the collective behavior98

of the community can be analyzed as a weighted network as in [7]. Finally,99

at the third level of organization, the entire network is formed as a directed100

and weighted connection of different communities. At this level of organiza-101
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tion, we investigate the emergence of cluster synchronization. That is, complete102

identical synchronization within each community, while the dynamics between103

communities remains unsynchronized.104

The remainder of the paper is organized as follows: In Section 2, our model105

of a network of networks is presented. In Section 3, the stability of the cluster106

synchronization is investigated and our main results are presented. While in107

Section 4, numerical simulations are used to illustrate the cluster synchroniza-108

tion in networks of chaotic oscillators. Finally, in Section 5 conclusions and109

closing remarks are given.110

2. A model for a network of networks111

We consider a network with N nodes grouped in M communities each with112

Nk subnetworks called CUs. To make the network description clearer, we start113

at the internal most level. We assume that each CU in the network consists114

r identical n-dimensional systems linearly and diffusively coupled. Thus, the115

state equation of a CU within a community is given by116

ψ̇i(t) = f(ψi(t)) + g
r∑

j=1

aijΓψj(t), for i = 1, 2, . . . , r (1)117

where ψi(t) = [ψi1(t), ψi2(t), · · · , ψin(t)]
⊤ ∈ Rn is the state vector of i-th node;118

f : Rn → Rn is at least locally Lipschitz and describes the dynamics of an119

isolated node. The constant g > 0 denotes the uniform coupling strength of the120

CU; Γ ∈ Rn×n is a zero-one diagonal matrix describing the internal coupling121

between nodes in the CU; while its external coupling configuration of the CU is122

given by the matrix A = {aij} ∈ Rr×r, which is constructed as follows: if there123

exist an edge between nodes i and j (with i ̸= j), then aij = aji = 1, otherwise124

aij = aji = 0. Additionally, to satisfy the diffusive coupling condition, the125

diagonal elements of A are given by126

aii = −
r∑

j=1,j ̸=i

aij = −
r∑

j=1,j ̸=i

aji, for i = 1, 2, . . . , r (2)127

We assume that the CU is connected, therefore A is symmetric, irreducible, and128

has zero as an eigenvalue of multiplicity one with all other eigenvalues strictly129

negative, which can be ordered as follows [28]:130

0 = λ1 ≥ λ2 ≥ . . . ≥ λr (3)131

Defining x(t) = [ψ1(t)
⊤, ψ2(t)

⊤, . . . , ψr(t)
⊤]⊤ ∈ Rnr as the state variable for132

the CU. In shorthand notation (1) becomes133

ẋ(t) = F (x(t), g,Γ,A ) (4)134

where F : Rnr → Rnr describes the dynamics within the CU.135

For simplicity, in the remainder we will impose the following assumptions:136
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A1. All CUs have the same connection structure and the same number of137

nodes,138

A2. Within the CU all nodes have the same dynamical descriptions and only139

differ in their initial conditions.140

At the second level of organization, the CUs are grouped into a community in141

the following manner: if two CU have the same dynamical description, then they142

belong to the same community, otherwise they must be in different communities.143

The connection structure of the k-th community is taken to be a weighted144

network of Nk CUs. Accordingly the state equation of the k-th community145

within the network is given by146

ẋ
[k]
i (t) = F [k](x

[k]
i (t), g[k],Γ[k],A [k]) +

Nk∑
j=1

c
[k]
ij Γ̂

[k]
ij x

[k]
j (t), (5)147

for i = 1, 2, . . . , Nk where x
[k]
i (t) ∈ Rnr is the state variable of the i-th CU in148

the k-th community. The connection between the states of the i-th and j-th149

CUs within the k-th community are described by the zero-one diagonal matrix150

Γ̂
[k]
ij = diag(γ⊤1 , γ

⊤
2 , · · · , γ⊤r ) ∈ Rnr×nr (6)151

where a nonzero entry of the vectors γp =
[
γq+(p−1)

]
∈ Rn (q = 1, 2, ..., n,152

p = 1, 2, · · · , r) indicates that the q-th state of the p-th node of the i-th CU is153

coupled to the q-th state of the p-th node in the j-th CU, both within the k-th154

community.155

In the same sense as above, we assume that the states that are connected156

between any two CUs are the same for the entire community, i.e., Γ̂
[k]
ij = Γ̂,∀i, j.157

The matrix C [k] =
[
c
[k]
ij

]
∈ RNk×Nk describes which CUs are connected in158

the following manner: if there exist a connection between the i-th and the j-th159

CUs with i ̸= j, then c
[k]
ij = c

[k]
ji > 0, otherwise c

[k]
ij = c

[k]
ji = 0. The diagonal160

elements of the matrix C [k] are161

c
[k]
ii = −

Nk∑
j=1,j ̸=i

c
[k]
ij = −

Nk∑
j=1,j ̸=i

c
[k]
ji , for i = 1, 2, · · · , Nk (7)162

As such, C [k] is zero row sum by rows and columns, i.e., the coupling between163

the CUs in the community is diffusive, therefore the eigenvalues of C [k] can be164

ordered as in (3) [28].165

An example of our proposed structure is shown in Figure 1. In this case the166

network has one community of N1 = 10 CUs, each one represented by a gray167

octagon with dotted lines representing their weighted connections. In turn, each168

CU has r = 13 nodes, represented here by dots with solid lines representing the169

uniform connection between the nodes.170
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Figure 1: A schematic illustration of network with one community of ten CUs with thirteen
nodes each (M = 1, N1 = 10 and r = 13).

Let χ[k](t) = [x
[k]
1 (t)⊤, x

[k]
2 (t)⊤, . . . , x

[k]
Nk

(t)⊤]⊤ ∈ RnrNk be the state variable171

for the k-th community of the network. Then, (5) can be expressed as172

χ̇[k](t) = F [k](χ(k)(t), g[k],Γ[k],A [k], Γ̂,C [k]) (8)173

where F [k] : RnrNk → RrnNk describes the dynamics of the k-th community.174

For simplicity, in what follows we will use the following shorthand notation,175

F [k](χ[k](t)), for the dynamics of the k-th community.176

At the third level, the entire network of networks is constructed as a directed177

and weighted connection of communities. Then, we have the following state178

equation179

χ̇[i](t) = F [i](χ[i](t)) +
M∑
j=1

Dijχ
[j](t), for i = 1, 2, · · · ,M. (9)180

where Dij ∈ RnrNi×nrNj is the coupling matrix between the i-th and the j-th181

communities within the network. In vector form, the dynamics of the entire182

network can be written as:183

χ̇(t) = F(χ(t)) +Dχ(t) (10)184

where the state variable of the entire network is χ(t) = [χ[1](t)⊤, . . . , χ[M ](t)⊤]⊤ ∈185

RnN , and F(χ(t)) =
[
F [1](χ[1](t))⊤, . . . ,F [M ](χ[M ](t))⊤

]⊤
: RnN → RnN de-186

scribes the dynamics of the isolated communities. While, the interconnections187

between the communities is described by D = [Dij ] ∈ RnN×nN .188

Notice that the N nodes of the network are divided into M communities189

each with Nk CUs, which in turn have r nodes. In other words, the number of190

nodes is191

N = r
M∑
k=1

Nk, with Nk ≥ 1, ∀k (11)192
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Figure 2: A schematic illustration of a network of networks with two communities (M = 2,
N1 = 4, and N2 = 5).

Additional, since each node is a n-dimensional dynamical system, the coupling193

matrix between the i-th and j-th communities are of dimension nrNi × nrNj ,194

which in general, are rectangular. While, the diagonal blocks of D (Dkk ∈195

RnrNk×nrNk , k = 1, . . . ,M) are square. As a result, the coupling matrix D is196

square but not symmetric.197

As mention above, all CUs have the same dimension, then the coupling198

between different communities can be rewritten as199

Dij = Dij ⊗ Γ̂ (12)200

where ⊗ is the Kronecker product, the entries of Dij =
[
d
[ij]
kl

]
∈ RNi×Nj , are201

such, that d
[ij]
kl > 0 indicates that the k-th CU of the i-th community is coupled202

to the l-th CU of the j-th community, otherwise d
[ij]
kl = 0. Note that in our203

model, we assume that if two CUs are connected, then they are coupled in the204

same way and by the same states.205

An example of this network of networks structure is shown in Figure 2. There206

are two communities: one of five CUs, represented by octagons, and the other207

with four CUs, which are represented by pentagons. The solid lines describe208

the connection between CUs in the same community, and the arrows represent209

the directed and weighted connections between different communities.210

In the following Section, the conditions for cluster synchronization in our211

network of networks model (10) are derived.212

3. Stability analysis of cluster synchronization213

A network of uniformly, linearly and diffusively coupled identical dynami-214

cal systems with a state equation description given by (1) is said to achieved215

complete (asymptotic) synchronization to the solution216

ψ1(t) = ψ2(t) = · · · = ψr(t) = s(t) (13)217
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If for any initial condition in the neighborhood of the synchronization solution218

s(t), one has that219

lim
t→∞

∥ψi(t)− s(t)∥ = 0, for i = 1, 2, · · · , r. (14)220

where s(t) ∈ Rn satisfies the dynamics of an isolated node ṡ(t) = f(s(t)).221

There are different methods to establish the stability of s(t) as a solution of222

(1). In [28] the error dynamics are linearized around s(t) and diagonalized in223

terms of the eigenvalues of A ∈ Rr×r, resulting on the λ2 criterion for stability224

of the synchronized solution.225

An isolated CU of the form (1) achieves complete synchronization if the226

coupling strength g, satisfies the following condition227

g ≥
∣∣∣∣ αλ2

∣∣∣∣ (15)228

where λ2 is the largest nonzero eigenvalue of A , and α < 0 is constant lower229

bound that satisfies the Lyapunov inequality230

[Df(s(t)) + αΓ]
⊤
P + P [Df(s(t)) + αΓ] ≤ −Q (16)231

where Df(s(t)) is the Jacobian of the node dynamics evaluated at s(t), P =232

P⊤ > 0 and Q = Q⊤ > 0 are positive define matrices [28].233

In the remainder of the manuscript we assume the following:234

A3. The uniform coupling strength g in all CUs is large enough to satisfy the235

condition (15).236

In the same sense, the isolated k-th community (5) is said to achieved com-237

plete (asymptotic) synchronization to the solution238

x
[k]
1 (t) = x

[k]
2 (t) = · · · = x

[k]
Nk

(t) = S[k](t) (17)239

If for any initial condition in the neighborhood of S[k](t)240

lim
t→∞

∥x[k]i (t)− S[k](t)∥ = 0, for i = 1, 2, · · · , Nk. (18)241

where S[k](t) =
[
s(t)⊤, . . . , s(t)⊤

]⊤ ∈ Rnr is the synchronized solution of the242

k-th community and satisfies the dynamics of an isolated CU of the k-th com-243

munity Ṡ[k](t) = F [k](S[k](t), g[k],Γ[k],A [k]).244

The stability of the solution S[k](t) for the weighted community of CUs can245

be establish following a similar procedure as in [7]. That is, from the weighted246

coupling matrix C [k] we obtain the unweighted matrix B[k] =
{
b
[k]
ij

}
∈ RNk×Nk

247

in the following manner:248

b
[k]
ij = b

[k]
ji =

{
1, c

[k]
ij ̸= 0

0, c
[k]
ij = 0

, and b
[k]
ii = −

Nk∑
j=1,i̸=j

b
[k]
ij (19)249
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for i, j = 1, 2, · · · , Nk.250

The dynamics associated with the unweighted coupling matrix B[k] corre-251

spond to the state equation252

ẋ
[k]
i (t) = F [k](x

[k]
i (t), g[k],Γ[k],A [k]) + c̃

Nk∑
j=1

b
[k]
ij Γ̂

[k]
ij x

[k]
j (t) (20)253

with c̃ > 0 the corresponding uniformed coupling strength. Therefore, the254

unweighted community (20) achieves complete synchronization if it is coupled255

with a c̃ satisfies the condition256

c̃λ2(B
[k]) ≤ α (21)257

where λ2(B[k]) is the largest nonzero eigenvalues of B[k] and α < 0 is a constant258

lower bound that satisfies the Lyapunov inequality259

[DF [k](S[k]) + αΓ̂)]⊤P + P [DF [k](S[k]) + αΓ̂)] ≤ −Q (22)260

where DF [k](S[k]) is the Jacobian of the community dynamics evaluated at S[k].261

Condition (21) can be expressed in terms of the entries of the weighted262

matrix C [k] as follows:263

Theorem 1. The community of CUs (5) achieves the complete synchroniza-264

tion, if the elements of the matrix C [k] satisfy265

c
[k]
ij >

∣∣∣∣ α

λ2(B[k])

∣∣∣∣ , (i ̸= j) i, j = 1, 2, · · · , Nk (23)266

Proof: Consider the error matrix Q[k] = c̃B[k] − C [k], whose entries are267

q
[k]
ij = c̃b

[k]
ij − c

[k]
ij , (i ̸= j), and (24)268

q
[k]
ii =

Nk∑
l=1
l ̸=i

(
c
[k]
il − c̃b

[k]
il

)
(25)269

for i, j = 1, 2, · · · , Nk. Under the restriction c
[k]
ij > c̃ the diagonal entries of Q[k]

270

are positive, q
[k]
ii > 0 for i = 1, 2, · · · , Nk, and taking the absolute value of the271

off-diagonal elements to be
∣∣∣q[k]ij

∣∣∣ = ∣∣∣c̃− c
[k]
ij

∣∣∣. Then,272

∣∣∣q[k]ii

∣∣∣ ≥ Nk∑
j=1
i ̸=j

∣∣∣q[k]ij

∣∣∣ (26)273

Therefore, Q[k] ≥ 0 is a positive semidefinite matrix, if274

c
[k]
ij > c̃, (i ̸= j) i, j = 1, 2, · · · , Nk (27)275
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It follows that c̃B[k] ≥ C [k], which can be expressed in terms of their eigenvalues276

as λj(c̃B[k]) ≥ λj(C [k]) for all j = 1, 2, · · · , Nk. Since the matrices are negative277

semidefinite the largest nonzero eigenvalues of B[k] is λ2(B[k]) and one has278

λ2(C
[k]) ≤ λ2(c̃B

[k]) = c̃λ2(B
[k]) (28)279

Using the previous synchronization result and (21), the condition (23) is ob-280

tained. ■281

In the same sense as before, we have the following assumption:282

A4. The entries of the community coupling matrix c
[k]
ij in all communities sat-283

isfy the condition (23).284

At the interconnected communities level, the objective is to achieve cluster285

synchronization, in the sense that any CUs within the same community are286

identical synchronized, i.e.,287

lim
t→∞

∥x[k]i (t)− S[k]∥ = 0, for i = 1, 2, · · · , Nk (29)288

while CUs form different communities remain unsynchronized, that is,289

lim
t→∞

∥S[k](t)− S[l](t)∥ ≠ 0 fork, l = 1, 2, · · · ,M with k ̸= l. (30)290

where S[k](t) and S[l] are the synchronous solutions of k-th and l-th community,291

respectively.292

In order to have cluster synchronization for our network of networks model293

(10), the following assumptions are required294

A5. The same-input condition. The matrices Dij ∈ RNi×Nj that represent295

the connection between i-th and j-th communities (with i ̸= j) is said to296

satisfy same-input condition, if their elements satisfy297

d
[ij]
kl = d

[ij]
ml , with i ̸= j and k ̸= m (31)298

for k,m = 1, 2, · · · , Ni and l = 1, 2, · · · , Nl.299

A6. The diagonal condition. The matrices Dii ∈ RNi×Ni are diagonal300

matrices that show the input strengths of each community, which satisfy301

the following302

d
[ii]
kk = −

M∑
j=1
i ̸=j

Ni∑
l=1

d
[ij]
kl (32)303

for i = 1, 2, · · · ,M .304

According to (31) and (32), it is easy to show that the sum by rows of D is305

zero, so we have S[k](t) is a synchronized solution for the k-th community even306

under external coupling.307

Now, we can give the following result:308

10



Theorem 2. Consider a network of networks (10), where each community with-309

out external coupling achieve the complete synchronization, and the synchronous310

states of different community are different. If each non-diagonal block Dij with311

i ̸= j satisfies the eqs. (31) and diagonal blocks Dii ∈ RNi×Ni satisfy (32) and312

the following313

Dii ≤ dkINi (33)314

where dk is a negative constant such that315

ω[k]
pq + dk ≤ 0 (34)316

where ω
[k]
pq is a lower bound constant to ensure the complete synchronization317

of k-th community without external coupling. Then, the network of network318

achieves the cluster synchronization.319

Proof: At first, consider the synchronization error for any pair of CUs within320

the same community we defined as321

e[k]pq (t) = x[k]q (t)− x[k]p (t) (35)322

for p ̸= q and p, q = 1, 2, · · · , Nk and k = 1, 2, · · · ,M .323

The time derivative of this synchronization error is given by324

ė[k]pq (t) =F
[k](x[k]q (t))− F [k](x[k]p (t))

+ d[kk]qq Γ̂x[k]q (t)− d[kk]pp Γ̂x[k]p (t)

+
M∑
l=1
k ̸=l

Nj∑
j=1
p ̸=j

(d
[kl]
qj − d

[kl]
pj )Γ̂x

[l]
j

(36)325

Using the eqs. (31) and (32), we obtain326

ė[k]pq (t) =F
[k](x[k]q (t))− F [k](x[k]p (t)) + d[k]pq Γ̂e

[k]
pq (t) (37)327

Since the coupling satisfies the same-input condition we have d
[k]
pq = d

[kk]
qq = d

[kk]
pp .328

Consider the candidate Lyapunov function329

Vk(t) = e[k]⊤pq e[k]pq , (38)330

the time derivative of the equation (38) along the trajectory of (37) is given by331

V̇k(t) = e[k]⊤(t)
pq

[
F [k](x[k]q (t))− F [k](x[k]p (t))

]
+ e[k]⊤(t)

pq

[
d[k]pq Γ̂e

[k]
pq

]
(39)332

To proof that Vk(t) is negative definitive. Notice that with assumptionsA.3 and333

A.4, the community has strong enough coupling strength to achieve internally334

complete synchronization. Therefore, there exist a constant ωpq such that335

V̇k(t) ≤ e[k]pq (t)
⊤[ωpqInr + d[k]pq Γ̂]e

[k]
pq (t) (40)336
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Thus, if ωpqInr + d
[k]
pq Γ̂ ≤ 0, which satisfies when ωpq + d

[k]
pq ≤ 0 and we obtain337

V̇k(t) ≤ 0. Then, e
[k]
pq for p, q = 1, 2, · · · , Nk and k = 1, 2, · · · ,M are stable338

around zero. Consequently, the k-th community achieve the complete synchro-339

nization even under inter-community coupling.340

Now, we consider the error between communities, then according to the as-341

sumptions A.3 and A.4 along with the previous proof, each community achieve342

the complete synchronization even under external coupling, i.e., on the syn-343

chronization manifold one can say the trajectories of each community network344

collapse to those a single solution S[k]. Also, according to the definition of345

community, these solutions are different for each community S[k] ̸= S[l] for346

k ̸= l. Then, we define the error synchronization between communities as347

E[kl] = S[k] − S[l], and the time derivative of this error is348

Ė[kl] =Ṡ[k] − Ṡ[l] = F [k](S[k])− F [l](S[l]) (41)349

and as F [k](S[k]) ̸= F [l](S[l]) holds for all k ̸= l. We have that error between350

communities is not stable at zero. Therefore, the network of networks achieves351

cluster synchronization. ■352

Note that each coupling matrix determines if the organization levels are syn-353

chronized or not, A [k] determines if there is complete synchronization at each354

CU, while C (k) determines the conditions to achieve complete synchronization355

at the k-th community. Finally, if D satisfies conditions in A.5, A.6 from The-356

orem 2 the entire network achieves cluster synchronization. Since our results357

are based on Lyapunov’s theory they are inherently conservative. However, the358

flexibility of this approach allows for the relatively easy extension our results to359

other types of network models, like the ones that consider nonlinearities or even360

time delays in their connections [31].361

4. Numerical simulation362

In this section, we present numerical examples to illustrate the effectiveness363

of our theoretical results.364

We consider a network of ninety nodes coupled into eighteen CUs with five365

nodes each. Here the communities are determine in terms of node dynamical366

description, therefore there are three communities of N1 = 6 Lorenz [28], N2 = 8367

Chen [4], and N3 = 4 Lu systems [21], respectively as shown in Figure 3. Here368

we take the node dynamics to be in their chaotic regime and be given by the369

following equations:370

• Lorenz system:371 ψ̇i1

ψ̇i2

ψ̇i3

 =

 10(ψi2 − ψi1)
28ψi1 − ψi1ψi3 − ψi2

ψi1ψi2 − 8
3ψi3

 (42)372
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Figure 3: A network with three communities.

• Chen system:373 ψ̇i1

ψ̇i2

ψ̇i3

 =

 35(ψi2 − ψi1)
−7ψi1 − ψi1ψi3 − 28ψi2

ψi1ψi2 − 3ψi3

 (43)374

• Lu systems:375 ψ̇i1

ψ̇i2

ψ̇i3

 =

 36(ψi2 − ψi1)
20ψi2 − ψi1ψi3

ψi1ψi2 − 3ψi3

 (44)376

The structure of each CUs is taken to be a 5-regular graphs and to satisfy377

A.3 have the minimum coupling strength of each CUs within the communities.378

In this case, for CUs in the first community is g1 = 1, for CUs in the second379

community is g2 = 0.84 and the for the CUs in the third community is g3 =380

0.368. Moreover using Theorem 1 we obtain the critical values for the entries381

of C [k] with k = 1, 2, 3 as follows:382

c
[1]
ij > 2.67 for i ̸= j,with i, j = 1, . . . , 6

c
[2]
ij > 2.58 for i ̸= j,with i, j = 7, . . . , 14

c
[3]
ij > 0.46 for i ̸= j,with i, j = 15, . . . , 18

(45)383

Finally, the inter communities coupling matrices Dij are384

D12 =

0 0 0.43 0 0 0.4 0.3 0.2
0 0 0.43 0 0 0.4 0.3 0.2
0 0 0.43 0 0 0.4 0.3 0.2
0 0 0.43 0 0 0.4 0.3 0.2
0 0 0.43 0 0 0.4 0.3 0.2
0 0 0.43 0 0 0.4 0.3 0.2

 D13 =

0 0 0.25 0
0 0 0.25 0
0 0 0.25 0
0 0 0.25 0
0 0 0.25 0
0 0 0.25 0

385
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(a) Evolution of the error synchronization in the first community.

(b) Evolution of the error synchronization in the second commu-
nity.

(c) Evolution of the error synchronization in the third commu-
nity.

Figure 4: Synchronization errors within each community
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386

D21 =


0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0
0.18 0.28 0.16 0 0.14 0

 D23 =


0 0 0 0.2
0 0 0 0.2
0 0 0 0.2
0 0 0 0.2
0 0 0 0.2
0 0 0 0.2
0 0 0 0.2
0 0 0 0.2

387

388

D31 =

[
0 0 0 0.25 0.25 0
0 0 0 0.25 0.25 0
0 0 0 0.25 0.25 0
0 0 0 0.25 0.25 0

]
D32 =

[
0 0.27 0 0.3 0 0.28 0.19 0.3
0 0.27 0 0.3 0 0.28 0.19 0.3
0 0.27 0 0.3 0 0.28 0.19 0.3
0 0.27 0 0.3 0 0.28 0.19 0.3

]
389

Then, to satisfy Theorem 2, we have D11 ≤ 1.58IN1 , D22 ≤ 0.96IN2 and390

D33 ≤ 1.85IN3 .391

The results of the numerical simulation are presented in the following Fig-392

ures. In Figure 4, the dynamics at each community are shown, the ninety nodes393

are uncoupled until the ten second mark in the simulation, then each community394

achieves internal complete synchronization as the error dynamics within each395

community go to zero. In Figure 5, we show the error synchronization between396

the i-th and j-th communities Eij . Since the network of networks achieves clus-397

ter synchronization the communities are not identically synchronized, as such398

the errors e
(k)
ij converge to zero while the errors between communities E12, E13399

and E23 do not.400

5. Conclusions401

Our proposed model of a network of networks is inspired by biology, is based402

on the organization of cells groups, where structure is determine by dynamical403

description of the components as is the case in the pancreatic islet and poten-404

tially in the arrangement of neuronal cells. In this complex system, the study405

of alternative forms of coordination are importance. Therefore, the present in-406

vestigation of cluster synchronization is a step in understanding the complex407

patterns of synchrony observed in real-world systems. Our proposal consists on408

modeling complex systems as networks with three different levels of organiza-409

tion, we consider that nodes form small structures with strong local couplings,410

these compact groups connect with different weights to form communities, which411

interact with each other through directed and weighted connections to form our412

network of subnetworks. Using this hierarchical structure is particularly impor-413

tant on networks where the number of nodes is high and their dynamics are non414

identical, because it allows us to analyze different forms of collective behavior415

with well-establish tools. In the results show, that cluster synchronization is416

achieved by placing relatively simple restrictions on the coupling structure, that417

is, between communities of dynamically different nodes, the coupling needs to418

satisfy the same-input and diagonal conditions, while within each community,419

the coupling must be strong enough to satisfy local synchronization conditions420

like the λ2 criterion.421
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(a) Synchronization errors between first and second communities

(b) Synchronization errors between first and third communities

(c) Synchronization errors between second and third communi-
ties

Figure 5: Synchronization errors between communities
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