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Abstract

We introduce a family of multimodal logistic maps with a single pa-

rameter. The maps domain is partitioned in subdomains according
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to the maximal number of modals to be generated and each subdo-

main contains one logistic map. The number of members of a family

is equal to the maximal number of modals. Bifurcation diagrams and

basins of attraction of the fixed points are constructed for the family

of chaotic logitic maps.
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1 Introduction

There are several mature topics in nonlinear science. The study of chaotic

maps is one of these, where many considerable results have opened paths on

chaos theory and impacted interdisciplinary areas; the classical result of pe-

riod three implies chaos by Li and Yorke [1] is very important since it has had

significant implication in understanding population dynamics [2]. As a con-

sequence of maturity [3, 4], there is an active new area regarding applications

on technology, such as dc-dc converters [5, 6] and chaotic cryptography (e.g.,

for image encryption [7, 8, 9, 10, 11, 12]), the latter with a high potential in

secure communication research [13].

The basic ideas for studying chaos can be understood by analyzing one-

dimensional maps, i.e. the iterative maps of a single variable. Many systems

dynamics can be described by one-dimensional unimodal maps, e.g. the

logistic and tent maps. These systems have been extensively studied [1] and

implemented experimentally [14, 15]. A unimodal map is a continuous one-

dimensional function R → R with a single critical point c0 monotonically

increasing on one side of c0 and decreasing on the other. The dynamics of
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the system is governed by the function

xn+1 = f(xn, β), (1)

where xn is the system state after n iterations and β is the bifurcation pa-

rameter. The time series {x0, x1, x2, ...} of Eq. 1 corresponds to a map orbit

starting from initial condition x0.

In this work, we present a simple generation of multimodal chaotic maps

based on the logistic map, i.e. we define a family of maps whose domain

is partitioned according to the maximal number of modals to be generated.

Chaotic code generators have received a considerable attention due to engi-

neering applications, especially for potential applications in mobile commu-

nication systems. Several approaches for the pseudo-random number code

design exist using unimodal chaotic maps. Multimodal chaotic maps are

expected to be useful for increasing security of chaotic communication sys-

tems. We also show that the family of chaotic maps with a maximal number

of modals includes chaotic maps with less modals than that number.

The rest of the paper is organized as follows. In Section 2 we discuss the

logistic map scaled to very little or very big intervals. Section 3 is devoted

to the generation of multimodal chaotic maps based on the logistic map. A

numerical example is given in Section 4. Finally, Section 5 represents main

conclusions of this work.
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2 Scaled chaotic maps

Here we introduce a class of scaled logistic maps based on the bi-parametric

equation proposed by Verhulst in 1838 [16]

dN

dt
= α

(

1 − N

γ

)

N, (2)

where N(t) is the state of the system at time t, α is the intrinsic growth rate,

and γ is the carrying on capacity. We then construct a bi-parametric family

of logistic maps fα,γ : I → I on the interval I = [a, b] ⊂ R as

fα,γ(x) = α(1 − x/γ)x, (3)

where α and γ are the system parameters, and the interval I is determined

by the roots of the system Eq. 3. Thus, the length of the interval I is

given by the parameter γ ∈ R, with a = 0 and b = γ. The map given by

Eq. 3 is unimodal with critical point c0 = γ/2 ∈ I; fα,γ monotone increases

on the left of c0 and monotone decreases on the right of c0. The maximal

value of the parameter (α = 4) is determined when fα,γ maps [a, b] → [a, b].

The orbits Φα,γ(x0) = {xj : xj = f j
α,γ(x0), j ∈ N} can be obtained for any

γ ∈ R, the length of interval I the capacity parameter is defined only by γ.

Notice that for γ = 1 Eq. 3 is the classical logistic map with IL = [0, 1]. If

γ > 1 the closed intervals Ig > IL; otherwise, this implies the closed intervals

Is < IL. The relevance of γ is to yield small or large closed intervals I, where

the chaotic map lies. Hence, above arguments provide us with the bases for

multimodal maps by considering a family of small chaotic maps fα,γ : Is → Is

and the closed interval IL, note that the interval Isis chosen arbitrarily. That

is, if 2 ≤ ‖IL‖/‖Is‖ = k ∈ N, it is possible to define a k-modal chaotic map

by moving the map fα,γ, k times, as will be illustrated in the next Section.
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3 Multimodal chaotic maps

We are interested in constructing a monoparametric family F of maps fβ

capable of displaying an arbitrary number of modals on the interval I =

[a, b] ⊂ R, to do so we will give the definition of a multimodal map as a

generalization of the unimodal map [17]. A multimodal map f : I → I,

is a smooth map with a finite number of critical points, all of them local

maximum or local minimum. This definition can be found in [18], where the

multimodal maps are constructed by polynomials with negative Schwarzian

derivative and without attracting periodic orbits. The theory of multimodals

maps is studied in [19]. Here, we are interested in the definition given in [20]

for a particular type of multimodal maps.

Definition 1. A map fβ is k-modal, if it is continuous, has k critical points

denoted by c0, c1 . . . ck−1 in I, monotone increases on the left of

each ci and monotonically decreases on the right of each ci, (i =

{0, 1, 2, . . . , k}).

We say that f is a k-modal map if it can be written as a composition of

k unimodal maps f1, f2, . . . , fk with the following propesties:

• fi : Ii → I has an unique critical point (a maximum);

• f(ci) = f(cj), for i 6= j;

• ⋃k

i=1
Ii = I.

Definition 2. A monoparametric family F is an ensemble of k modal maps

fβ determined by parameter β, where each map reproduces a different

m-modal map (m = {1, 2, . . . , k}).
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The orbits Φβ(x0) = {xn : xn = fn
β (x0), n ∈ N} are derived for each

value of the parameter β ∈ J ⊂ R, where the interval J is closed, from zero

to a value defined by fβ(ci) = b, (i = {1, 2, . . . , m}).
Next, a quadratic map fβ is introduced such that m modals exist at a

sub-interval I = [a, b] ⊂ IL. The number k defines the maximal number of

modals in the family F , the interval IL is partitioned between k subintervals

Îj = [dj, dj+1) ⊂ IL of equal length, so that fβ is a piecewise function formed

by k unimodal maps Qj . This implies that the first unimodal map Q0 = fγ

has the carrying on capacity γ = 1/k and the quadratic map fβ is defined in

the first interval Î0 = [d0 = a, d1) by the unimodal map Q0. The quadratic

map fβ is given in others intervals Î1 = [d1, d2), Î2 = [d2, d3), . . . , Îk−1 =

[dk−1, dk = b] as a result of moving the unimodal map Q0 into them. The

quadratic map fβ has its critical points ci such that fβ(ci) = 1/k. Since

fβ : IL → [0, 1/k], one more condition is required so that the image of IL

under (fβ) is equal to IL, then it needs to be multiplied by k in order to

obtain fβ : IL → IL. Under the above arguments, the bifurcation parameter

becomes β = β(α, k, γ).

The parameterized family F of maps fβ is defined by the following piece-

wise function

fβ(x) = β(dr+1 − x)(x − dr), for x ∈ [dr, dr+1), (4)

where dr = r/k (r = {0, 1, 2, . . . , k − 1}). Note that β ∈ J = [0, αk/γ].

The last interval is considered a closed interval in Eq. 4. Notice that I =

∪k−1

r=0 [dr, dr+1) and ∩k−1

r=0 [dr, dr+1) = ∅. For example, let k = 2 be the desired

value for the number of modals. Hence, a bimodal map is derived, where IL

is divided in two subintervals Î0 = [0, 0.5) and Î1 = [0.5, 1], which determine
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the carrying on capacity γ = 0.5. Then, r = 0, 1 and the family F contains

two members:

(1) One bimodal map obeying β = α(k − r)/γ = (4)(2)/0.5 = 16, with

r = 0, such that

f16(x) =







16(1

2
− x)x for x ∈ [0, 0.5);

16(1 − x)(x − 1

2
) for x ∈ [0.5, 1].

(2) One unimodal map obeying β = α(k − r)/γ = (4)(1)/0.5 = 8, with

r = 1, such that

f8(x) =







8(1

2
− x)x for x ∈ [0, 0.5);

8(1 − x)(x − 1

2
) for x ∈ [0.5, 1].

The fixed points of the k-modal map are given by the following equation

x∗ =
β(dr+1 + dr) − 1 ∓

√

(β(dr+1 + dr) − 1)2 − 4β2dr+1dr

2β
(5)

with

β ≥ k(2r + 1 + 2
√

r2 + r) ⇒ β ∈ J = [0, 16].

Theorem. A k-modal chaotic map implies m-modal chaotic maps with 0 <

m < k and k, m ∈ N.

Proof. The proof can be sketched as follows. A k-modal chaotic map has

k critical points given by cr = (dr + dr+1)/2 = (2r + 1)/(2k) with

r ∈ {0, 1, 2, . . . k−1}. Moreover, the maximum value L occurs at these

critical points

fβ(cr) = β(dr+1 − cr)(cr − dr) = L. (6)
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Fig. 1: Family F of quad-, tri-, bi-, and unimodal logistic maps. Note that

the interval IL = [0, 1] is mapped by every fβ to the corresponding interval

∪m−1

r=0
[dr, dr+1].

The bifurcation parameter β is responsible for the maximum values

of L. If L is restricted to take only the discrete values dr+1, then

fβ : [0, dr+1] → [0, dr+1], remember that dr+1 ≤ 1. From Eq. 6,

β = α(r + 1)k. So, it is possible to build m-modal chaotic maps

considering β = αmk for a k-modal chaotic map fβ. Note, for the

logistic map the results hold only for α = 4.

4 Numerical example

Without loss of generality, we arbitrarily consider a particular case of a quad-

modal chaotic map, i.e. k = 4. The monoparametric family F of multimodal
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chaotic maps fβ can be described as

fβ(x) = β































(1/4 − x)x, for x ∈ [0, 1/4);

(1/2 − x)(x − 1/4), for x ∈ [1/4, 1/2);

(3/4 − x)(x − 1/2), for x ∈ [1/2, 3/4);

(1 − x)(x − 3/4), for x ∈ [3/4, 1],

(7)

where β ∈ J = [0, 64], this interval is determined by k = 4, γ = 0.25,

and α = 4 (the required values to map the function f into itself). Then,

r = 0, 1, 2, 3 and the family F consists of the following four members:

(1) The quadmodal map f64 for r = 0.

(2) The trimodal map f48 for r = 1.

(3) The bimodal map f32 for r = 2.

(4) The unimodal map f16 for r = 3.

Figure 1 shows the family F of the multimodal logistic chaotic maps:

f64 : [0, 1] → [0, 1], f48 : [0, 1] → [0, 0.75], f32 : [0, 1] → [0, 0.5], and f16 :

[0, 1] → [0, 0.25]. The critical points are located at c0 = 0.125, c1 = 0.375,

c2 = 0.625, and c3 = 0.875. The eight fixed points for the quadmodal

chaotic map are {0, 0.2344, 0.2681, 0.4663, 0.5402, 0.6941, 0.8223, 0.9121}.
As one goes to the next map, the number of fixed points decreases by two.

The trimodal chaotic map has six fixed points: {0, 0.2292, 0.2756, 0.4536,

0.5625, 0.6667}, the bimodal chaotic map has four fixed points: {0, 0.2188,

0.2950, 0.4238}, and the unimodal chaotic map has only two fixed points:

{0, 0.1875}.
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Fig. 2: Three-dimensional phase diagrams showing stretching-and-folding struc-

ture of the quadmodal chaotic map. Note that the projection on plane (xn,xn+1)∈
IL × IL corresponds to the quadmodal map shown in Fig. 1.
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Fig. 3: Bifurcation diagram for the quadmodal logistic map in Eq. 7.

Figure 2 illustrates the stretching and folding structure of the quadmodal

chaotic map f64 in a three-dimensional phase space.

Then, beyond β = 16 the dynamics continues being chaotic until a new

fixed point appears at β = 12+8
√

2 cascade of period-doubling bifurcations

β = 12 + 8
√

2, 20 + 8
√

6, and 28 + 16
√

3, as seen on Fig. 3.

Notice that the monoparametric family F is generated by the discrete

values of β = 16, 32, 48, 64 with fixed α = 4. However, since α is the bifur-

cation parameter for the logistic map, it should be allowed to take any value

in the interval [0,4], meaning that β would be able to vary in an interval

J ⊂ R to produce a family Fβ that contains F . The bifurcation diagram

of the quadmodal logistic map in terms of β is shown in Fig. 3. To illus-

trate our meaning, let us consider the first equation of fβ in Eq. 7 given by
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Fig. 4: Basins of attraction of each fixed point of the system given by Eq. 7. (b),

(c), and (d) stand for the close up indicated in (a).
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φÎ0
(x) = β(1/4−x)x. As the parameter β varies from 0 to 16, the bifurcation

diagram of map φÎ0
looks like that of the standard logistic map when the bi-

furcation parameter α varies from 0 to 4 (Fig. 3), i.e. the control parameter

β is scaled by four. When 0 < β < 4, the dynamics settles down at zero in-

dependently of the initial condition, meanwhile for 4 < β < 12 the dynamics

will stabilize on the value of (β − 1)/β. When 12 < β < 4 + 4
√

6, the map is

periodic of the period two. The cascade of the period-doubling bifurcations

starts at β = 4 + 4
√

6 and terminates in chaos at β ≈ 14.28. Then, beyond

β = 16 the dynamics continues being chaotic until a new fixed point appears

at β = 12+8
√

2 giving rise to a new cascade of period-doubling bifurcations

and the mechanism repeats itself after a chaotic interval at β = 12 + 8
√

2,

20 + 8
√

6, 28 + 16
√

3, as seen on Fig. 3.

In our example, the quadmodal map has eight fixed points and every

fixed points has its own basin of attraction, entirely disconnected from the

basins of attraction of the other fixed points. Figure 4 (a) shows the global

basin of attraction of the eight fixed points consists of intricate nested of

basin of attraction of each fixed point. If we increase the number of modal

then the number of fixed point increase and this intricate nested of basins of

attraction. Different basins of attraction appear as we explore higher values

of β. Figure 4 (a) shows the global basin of attraction, while Figs. 4 (b)-(d)

display different enlarged regions of Fig. 4 (a). Following a color scheme, we

plot all points leading to the first fixed point in blue, to the second fixed

point in red, to the third, fourth, fifth, and so on until eighth fixed point in

pink, green, brown, light blue, purple, and orange, respectively.
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5 Conclusions

Exploiting the versatility of multimodal logistic maps, we proposed a family

of chaotic logistic maps which incorporates the carrying on capacity param-

eter γ, logistic map parameter α, and the number of modals k in a single

parameter β, that is the bifurcation parameter for the family. This parame-

ter determines the family F for β, which takes specific discrete values. Once

a k-modal chaotic map is defined, it is possible to generate a less than k-

modal map just by controlling the bifurcation parameter β. The multimodal

logistic maps display very interesting stretching-and-folding structures and

their bifurcation diagrams reproduce scaled bifurcations of the classical lo-

gistic map. The basins of attraction of each fixed point of the family were

constructed in terms of the bifurcation parameter. We believe the family of

chaotic maps will in the future enrich many present chaos applications, in

particular, chaotic cryptography and radars. Research in this direction has

already begun and results are expected to be reported fairly soon.
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