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Abstract

In this work, an outlet temperature control scheme for double-pipe heat exchangers
is proposed. Compared to previously proposed approaches, the algorithm developed
here takes into account and actually exploits the analytical and stability properties
inherent to the open-loop dynamics. As a result, outlet temperature regulation is
achieved through a simple controller which does not need to feed back the whole
state vector and does not depend on the exact value of the process parameters.
Moreover, the proposed approach guarantees positivity and boundedness of the
input flow rate without entailing a complex control algorithm. The analytical de-
velopments are corroborated through simulation and experimental results.

Key words: Double-pipe heat exchangers; temperature control; global regulation;
bounded positive input; saturation

1 Introduction

Because of their numerous applications in industrial processes, heat exchangers
have been the subject of many studies including, among others: steady-state,
transient, and frequency response analysis (Abdelghani-Idrissi and Bagui 2002,
Abdelghani-Idrissi et al. 2002, Bartecki 2007); open-loop qualitative behav-
ior characterization (Zavala-Ŕıo and Santiesteban-Cos 2007, Zavala-Ŕıo et al.
2003); numerical simulation (Papastratos et al. 1993, Zeghal et al. 1991);
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state reconstruction (Astorga-Zaragoza et al. 2007, Bagui et al. 2004); pa-
rameter identification (Chantre et al. 1994, Ghiaus et al. 2007); fault diag-
nosis/detection (Persin and Tovornik 2005, Loparo et al. 1991); and feed-
back control (Alsop and Edgar 1989, Malleswararao and Chidambaram 1992,
Katayama et al. 1990, Lim and Ling 1989, Ramı́rez et al. 2004, Gude et al.
2005, Maidi et al. 2008, Wellenreuther et al. 2006). Among these topics, the
lastly mentioned one has played an important role in the solution formulation
to cope with the operation conditions imposed to current industrial processes.
In particular, unexpected behaviors that deteriorate the closed-loop perfor-
mance and/or prevent the pre-specified convergence goal are undesirable or
unacceptable. Thus, a control scheme prepared to avoid such unexpected or
undesirable phenomena is always preferable.

Control of heat exchangers has been developed in the literature through the
application of several techniques. For instance, based on a simple compart-
mental model, partial and total linearizing feedback algorithms have been
proposed in (Alsop and Edgar 1989) and (Malleswararao and Chidambaram
1992). Unfortunately, such techniques compensate for the system dynamics,
neglecting its analytical and stability natural properties. This gives rise to
complex control algorithms that depend on the exact knowledge of the system
model structure and parameters, and on the accurate measurement of all the
process states.

Other works, like that in (Katayama et al. 1990), which proposes an optimal
control scheme, or that in (Lim and Ling 1989), where a generalized predic-
tive control algorithm is developed, make use of ARX, ARMAX, or ARIMAX
type models. Nevertheless, since these are (numerically) adjusted through the
output response to input tests, disregarding the natural laws that determine
the process behavior, such approaches also neglect the analytical and stability
natural properties of the system. Besides, the efficiency of such control meth-
ods is highly dependent on an accurate parameter identification of the involved
models. Moreover, the estimations resulting from the performed identification
method could differ among the regions of the system state-space domain (in
view of the linear-discrete character of such models in contrast with the actual
nature of the system dynamics).

More recently, a min-max model predictive control scheme was applied to a
heat exchanger in (Ramı́rez et al. 2004). Nevertheless, such a design method-
ology generally gives rise to control algorithms that suffer a large computation
burden due to the numerical min-max problem that has to be solved at ev-
ery sampling time. The use of hinging hyperplanes reduced this disadvantage
in (Ramı́rez et al. 2004), but complicated the controller design procedure.
Furthermore, works like that in (Gude et al. 2005), where conventional P,
PI, and PID algorithms were tested, that in (Maidi et al. 2008) where a PI
fuzzy controller was proposed, or that in (Wellenreuther et al. 2006), where a
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multi-loop controller tuned using game theory was considered, lack of formal
stability proofs and/or stability region estimations.

On the other hand, as far as the authors are aware, previous works on con-
trol design for double-pipe heat exchangers do not simultaneously consider
the positive (unidirectional) and bounded nature of the flow rate taken as
input variable. Such controllers could eventually try to force the actuators to
go beyond their natural capabilities, undergoing the well-known phenomenon
of saturation. In a general context, the presence of such a nonlinearity is not
necessarily disadvantageous as long as it is taken into account in the control
design and/or the closed loop analysis. Otherwise, it may give rise to undesir-
able effects as pointed out for instance in (Slotine and Li 1991, §5.2). Thus,
control design considering those input constraints turns out to be important in
order to avoid such unexpected or undesirable closed-loop system behaviors.

In this work, a simple control scheme for the process (hot) fluid outlet tem-
perature regulation of double-pipe heat exchangers is proposed, taking the
cold fluid (coolant) flow rate as control input. The proposed algorithm takes
into account the analytical and stability natural properties of the exchanger,
as well as the positive and bounded nature of the flow rate taken as input
variable. The resulting controller does not depend on the exact knowledge of
the system parameters, does not need to feed back all the process states, and
guarantees stabilization to the desired outlet temperature for any initial con-
dition within the system state-space domain. The analytical developments are
corroborated through simulation and experimental results.

The text is organized as follows. In Section 2, the nomenclature, notation, and
preliminaries that support the developments are stated. Section 3 presents the
standing assumptions as well as the system dynamics and some of its analytical
properties. In Section 4, the proposed controller is presented and the closed-
loop stability analysis is developed. Simulation and experimental results are
shown in Section 5. Finally, conclusions are given in Section 6.

2 Nomenclature and notation

Throughout the paper, the system variables and parameters are denoted as
follows:

F mass flow rate [kg/s]
Cp specific heat [J/(◦C · kg)]
M total mass inside the tube [kg]
U overall heat transfer coefficient [J/(◦C · m2 · s)]
A heat transfer surface area [m2]
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Fig. 1. Counter/parallel-flow (full/dashed arrows resp.) double-pipe heat exchanger

T temperature [◦C]
t time [s]
∆T temperature difference [◦C]
R set of real numbers
R+ set of positive real numbers
R

n set of n-tuples (xj) with xj ∈ R

0n origin of R
n

R
n
+ set of n-tuples (xj) with xj ∈ R+

Subscripts:
u upper bound l lower bound
c cold h hot
i inlet o outlet

Let ∆T1 and ∆T2 stand for the temperature difference at each terminal side
of the heat exchanger, i.e.

∆T1 ,











Thi − Tco if α = 1

Thi − Tci if α = −1
and ∆T2 ,











Tho − Tci if α = 1

Tho − Tco if α = −1

where

α ,







1 if counter flow

−1 if parallel flow

see Fig. 1. The logarithmic mean temperature difference (LMTD) among the
fluids is typically expressed as (see for instance (Zavala-Ŕıo et al. 2005) and
references therein):

∆T` ,
∆T2 − ∆T1

ln ∆T2

∆T1

Nonetheless, this expression reduces to an indeterminate form when ∆T1 =
∆T2, which is specially problematic in the counter flow case. Such an indeter-
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mination is avoided if the LMTD is taken as

∆TL ,











∆T` if ∆T2 6= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

(1)

This was proved in (Zavala-Ŕıo et al. 2005), together with the following ana-
lytical properties.

Lemma 1 (Lemma 2 and Remark 3 in (Zavala-Ŕıo et al. 2005)) ∆TL in Eq.
(1) is continuously differentiable at every (∆T1, ∆T2) ∈ R

2
+. Moreover, it is

positive on R
2
+, while lim∆T1→0 ∆TL = 0 for any ∆T2 ∈ R+, and lim∆T2→0 ∆TL =

0 for any ∆T1 ∈ R+. /

Lemma 2 (Zavala-Ŕıo et al. 2005, Lemma 3) ∆TL in Eq. (1) is strictly in-
creasing in its arguments, i.e. ∂∆TL

∂∆Ti
> 0, i = 1, 2, ∀(∆T1, ∆T2) ∈ R

2
+. /

Finally, the interior and boundary of a set, say B, will be respectively denoted
as int(B) and ∂B.

3 The system dynamics

The following assumptions are considered:

A1. The fluid temperatures and velocities are radially uniform.
A2. The overall heat transfer coefficient is axially uniform and constant.
A3. Constant fluid thermophysical properties.
A4. No heat transfer with the surroundings (adiabatic operation).
A5. Fluids are incompressible and single phase.
A6. Negligible axial heat conduction.
A7. There is no energy storage in the walls.
A8. Inlet temperatures, Tci and Thi, are constant.
A9. The flow rates are axially uniform and any variation is considered to

take place instantaneously at every point along the whole length of the
exchanger.

A10. The hot fluid flow rate, Fh, is kept constant, while the value of the cold
fluid flow rate, Fc, can be arbitrarily varied within a compact interval
Fc , [Fcl, Fcu], for some positive constants Fcl < Fcu.

Under these assumptions, and taking the whole exchanger as one bi-compart-
mental cell, a suitable lumped-parameter dynamical model for a double-pipe
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heat exchanger is (see for instance (Zavala-Ŕıo and Santiesteban-Cos 2007)):

Ṫco =
2

Mc

[

Fc (Tci − Tco) +
UA

Cpc

∆TL(Tco, Tho)

]

(2a)

Ṫho =
2

Mh

[

Fh (Thi − Tho) −
UA

Cph

∆TL(Tco, Tho)

]

(2b)

where ∆TL(·, ·) is the LMTD (complemented) expression in Eq. (1), considered
a function of (Tco, Tho). A physically reasonable state-space domain for the
system in Eqs. (2) is

D ,











{(To1, To2) ∈ R
2 | Tci < Toj < Thi , j = 1, 2} if α = 1

{(To1, To2) ∈ R
2 | Tci < To1 < To2 < Thi} if α = −1

(see for instance (Zavala-Ŕıo and Santiesteban-Cos 2007, Zavala-Ŕıo et al.
2003)).

The control objective consists in the regulation of the process (hot) fluid outlet
temperature Tho, towards a (pre-specified) desired value Thd, through the cold
fluid flow rate Fc as input variable, taking into account the restricted range
and unidirectional nature of such an input flow rate (according to Assumption
A10). The use of a simple model, like Eqs. (2), for the control design aiming at
the achievement of such an objective is desirable (Masada and Wormley 1982,
Xia et al. 1991). Indeed, a high order process dynamics representation would
end up in a complex scheme with complicated expressions (Alsop and Edgar
1989) and would involve temperature measurements of intermediate points
throughout the exchanger which are not always available. In particular, the
model in Eqs. (2) has been used for control design for instance in (Alsop and
Edgar 1989) and (Malleswararao and Chidambaram 1992). It has actually been
used as a suitable dynamics representation of double-pipe heat exchangers for
numerous purposes, as pointed out in (Zavala-Ŕıo and Santiesteban-Cos 2007).

Remark 1 Notice that by considering ∆TL a function of (Tco, Tho) on D,
continuous differentiability and positivity hold for all (Tco, Tho) on D, and
0 (zero) may be considered the value that ∆TL takes at any (Tco, Tho) on
∂D such that ∆T1(Tco, Tho) · ∆T2(Tco, Tho) = 0 (see Lemma 1 in Section 2).
Furthermore, strict monotonicity in its arguments holds as (applying the chain
rule): ∂∆TL

∂Tho
> 0 and ∂∆TL

∂Tco
< 0, ∀(Tco, Tho) ∈ D (see Lemma 2 in Section 2). .

Remark 2 Let y denote the open-loop state vector, i.e. y , (Tco, Tho)
T , and

let ẏ = f̄(y; θ) represent the open-loop system dynamics in Eqs. (2) assuming
constant flow rates, where θ ∈ R

p
+ (for some positive integer p) is the system

parameter vector. Considering Lemma 1, it can be seen (from Eqs. (2)) that f̄

is continuously differentiable in (y; θ) on D×R
p
+. Then, the system solutions
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y(t; y0,θ), with y0 , y(0) ∈ D, do not only exist and are unique, but are also
continuously differentiable with respect to initial conditions and parameters,
for all y0 ∈ D and all θ sufficiently close to any nominal parameter vector
θ0 ∈ R

p
+ (see for instance (Khalil 1996, §2.4)). .

In (Zavala-Ŕıo and Santiesteban-Cos 2007), it was shown that, considering
constant flow rates, the system dynamical model in Eqs. (2) possesses a unique
equilibrium point (T ∗

co, T
∗

ho) ∈ D, where









T ∗

co

T ∗

ho









=









1 − P P

RP 1 − RP

















Tci

Thi









,









gc(Fc)

gh(Fc)









(3)

with R = FcCpc

FhCph
,

P =























1 − S

1 + (−S)βR
if R − α 6= 0

UA

UA + FcCpc

if R = α = 1

S = exp
(

αUA
FhCph

− UA
FcCpc

)

, and β , α+1
2

.

Claim 1 gh in Eq. (3) is a one-to-one strictly decreasing continuously differ-
entiable function of Fc.

Proof. See Appendix A.1. 2

Remark 3 Observe that through Claim 1, two important facts are concluded:
1) T ∗

ho is restricted to a reachable steady-state space defined by

Rh , [gh(Fcu), gh(Fcl)]

2) Any value of T ∗

ho ∈ Rh is uniquely defined by a specific flow rate value F ∗

c ∈
Fc (Assumption A10), which in turn defines a unique value of T ∗

co according
to Eq. (3). .

4 The proposed controller

The analysis developed in (Zavala-Ŕıo and Santiesteban-Cos 2007), consider-
ing constant flow rates, showed that the vector field in Eqs. (2) has a normal
component pointing to the interior of D at every point on ∂D. Consequently,
for all initial state vectors in D, the system trajectories remain in D globally in
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time, and are bounded since D is bounded. Moreover, D was proven to contain
a sole invariant composed by a unique equilibrium point (T ∗

co, T
∗

ho). Therefore,
every trajectory of the dynamical model in Eqs. (2) converges to (T ∗

co, T
∗

ho). The
idea is then to propose a dynamic controller such that the closed-loop dynam-
ics keeps the same analytical features, with Fc forced to evolve within int(Fc),
and forcing the existence of a sole invariant composed by a unique equilibrium
point (T ∗

co, T
∗

ho, F
∗

c ) where T ∗

ho = Thd, the (pre-specified) desired value (accord-
ing to the control objective, stated in Section 3). This is achieved through the
following control scheme.

Proposition 1 Consider the dynamical system in Eqs. (2) with Fc ∈ Fc. Let
the value of Fc be dynamically computed as follows

Ḟc = kη(Fc) (Tho − Thd) (4)

for any Thd ∈ int(Rh), where

η(Fc) , (Fc − Fcl)(Fcu − Fc)

and k is a sufficiently small positive constant. Then, for any initial closed-loop
(extended) state vector (Tco, Tho, Fc)(0) ∈ D× int(Fc): Tho(t) → Thd as t → ∞,

with Fc(t) ∈ int(Fc), ∀t ≥ 0, and
(

Tco, Tho

)

(t) ∈ D, ∀t ≥ 0. /

Proof. See Appendix A.2. 2

Remark 4 Observe that the proposed approach does not need to feed back
the whole extended state vector. No measurements of Tco are required for its
implementation. Furthermore, the exact knowledge of the accurate values of
the system parameters is not needed. Such features characterize the proposed
algorithm as a simple controller that gives rise to a control signal evolving
within its physical limits. This way, undesirable phenomena, such as wind-up,
are avoided. .

Remark 5 Notice, from the proof of Proposition 1, that inequality (A.1), i.e.

k ≤
8FhCph(FclMh+FhMc)

MhMcCpc(Fcu−Fcl)2(Thi−Tci)
, may be taken as an a priori control gain tuning

criterion. The right-hand-side expression may be calculated using available
system parameter (average) estimations; one may trust that a value of k quite
smaller than the calculated bound would satisfy inequality (A.1). Further,
one could in general expect that upper and lower bound reliable estimations
of each parameter are available, e.g. Cph ∈ [Cphl, Cphu], Cpc ∈ [Cpcl, Cpcu],
Mh ∈ [Mhl,Mhu], Mc ∈ [Mcl,Mcu], Fh ∈ [Fhl, Fhu] (the inlet temperatures are

assumed to be measurable); then by choosing k ≤
8FhlCphl(FclMhl+FhlMcl)

MhuMcuCpcu(Fcu−Fcl)2(Thi−Tci)
,

the satisfaction of inequality (A.1) is ensured. Notice, however, that such a
condition is not necessary and that it might be conservative. .
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Remark 6 Observe that the proposed approach may be equivalently ex-
pressed as a simple integral action over the error signal e , Tho − Thd scaled
by the non-linear flow-rate-varying gain κ(Fc; k) , kη(Fc), i.e.

Fc(t) =
∫ t

0
κ(Fc(s); k)e(s)ds + Fc(0)

Further, each of the involved terms plays an important role in the achieve-
ment of the control objective. For instance, the error term, Tho − Thd in Eq.
(4), defines the unique closed-loop equilibrium point, (T ∗

co, T
∗

ho, F
∗

c ), naturally
locating it such that T ∗

ho = Thd. Notice that this is done without the ne-
cessity to a priori know the corresponding value of F ∗

c and in spite of any
eventual modelling inaccuracy. On the other hand, through the non-linear
flow-dependent term η(Fc) in Eq. (4), the control variable is forced to evolve
within its physical limits. Indeed, observe that for any Fc(0) ∈ int(Fc), Fc is
not able to go beyond the lower and upper bounds of Fc since, at Fcl or Fcu,
Fc stops evolving. Moreover, due to the repulsive (unstable) nature of the con-
sequent equilibrium points, x∗

l
and x∗

u
, appearing on the boundary of D×Fc,

such limit values of Fc, i.e. Fcl and Fcu, cannot even be asymptotically ap-
proached. Finally, a sufficiently small control gain, k in Eq. (4), gives rise to a
slowly-varying input that (slowly) leads (gc(Fc), gh(Fc)) (see Eq. (3)) towards
the desired location. The outlet temperature trajectories (Tco, Tho) naturally
approach such a relocating equilibrium point. The overall phenomena guaran-
tee the global stabilization of the closed-loop system trajectories towards the
desired (unique) equilibrium point, whatever initial conditions (Tco, Tho, Fc)(0)
take place in D × int(Fc). .

5 Closed loop tests

In order to verify the effectiveness of the proposed controller, experiments
were carried out on a bench-scale pilot plant consisting of a completely in-
strumented double-pipe heat exchanger; 1 see Fig. 2. The plant operates as a
water-cooling process —with the hot water flowing through the internal tube
and the cooling water flowing through the external pipe— and may be config-
ured in either counter or parallel flow configuration. Engelhard Pyro-Control
Pt-100 temperature transmitters measure the temperatures at one extreme of
the pipes (the one coinciding with the hot fluid outlet in both flow configura-
tions) while RIY-Moore temperature transmitters measure the temperatures
at the other extreme (the one coinciding with the hot fluid inlet in both flow
configurations). The current signals produced by the transmitters (in the range

1 A study on the calculation of the system parameters and model validation of such
an experimental device (where the dynamical model in Eqs. (2) was validated) has
been developed in (Méndez-Ocaña 2006).
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Fig. 2. Bench-scale pilot plant

of 4–20 mA) are fed to current-to-voltage converters, and the resulting voltage
signals are then read through a data acquisition card (AT-MIO-16E-1 by Na-
tional Instruments). Both fluid flow rates are measured via Platon flowmeters,
and the cold fluid flow rate is regulated through a pneumatic valve (Research
Control Valve by Badger Meter, Inc.). A monitoring interface, designed using
LabVIEWr, displays the controlled output Tho and the manipulated variable
Fc.

For the developed experimental tests, the inlet temperatures were kept con-
stant at Tci = 30 ◦C and Thi = 66 ◦C. The hot fluid flow rate was fixed at
Fh = 16.7 × 10−3 kg/s. The cold fluid flow rate Fc was made vary between
Fcl = 0.8 × 10−3 kg/s and Fcu = 10.8 × 10−3 kg/s, respectively the lower and
upper input bounds.

Closed loop tests were also performed through numerical simulations, tak-
ing the same input bounds, hot fluid flow rate, and inlet temperature values
of the experimental plant, specified above. The parameters of the simulated
exchanger were defined as: U = 1050 J/(◦C · m2 · s), A = 0.014 m2, Mc =
0.134 kg, Mh = 0.015 kg, Cpc = 4174 J/(◦C · kg), and Cph = 4179 J/(◦C · kg).
These were taken from (Astorga-Zaragoza et al. 2007) and actually correspond
to the estimated (average) parameters of the above-mentioned experimental
setup (see Footnote 1). Two modelling cases were simulated: 1) one consid-
ering the whole exchanger as a single bi-compartmental cell with Eqs. (2)
as dynamic model, and 2) another one considering a 20-bi-compartmental-
cell 40th order dynamics, every cell modelled using Eqs. (2), appropriately
interconnecting the outlet and inlet temperatures of each compartment to the
corresponding contiguous one (see for instance (Alsop and Edgar 1989) or
(Weyer et al. 2000)).
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Fig. 3. Simulation results in counter (left) and parallel (right) flow configurations
with k = 0.9 [1/(◦C · kg)]

5.1 Simulation results

Numerical tests considering both —counter and parallel— flow configurations
were run. In all the performed simulations, the controller gain and the cold
fluid flow rate initial value were fixed at k = 0.9 [1/(◦C · kg)] and Fc(0) =
0.9 × 10−3 kg/s. Actually, by assuming that Fc(t) = 0.9 × 10−3 kg/s, ∀t ≤ 0,
the exchanger initial temperatures were defined according to the corresponding
equilibrium (or steady-state) profile (see for instance (Zavala-Ŕıo and San-
tiesteban-Cos 2007)). In particular, (Tco, Tho)(0) = (65.16, 64.1) [◦C] in the
counter flow case, and (Tco, Tho)(0) = (63.6, 64.19) [◦C] for the parallel flow
configuration. In all the simulated cases, the tests were performed as follows:
at t = 50 s, the loop was closed with Thd = 62.5 ◦C; at t = 600 s, the reference
was changed to Thd = 61 ◦C; finally, at t = 1200 s, the hot fluid flow rate
was perturbed by changing its value from Fh = 16.7 × 10−3 kg/s to Fh =
20 × 10−3 kg/s.

Fig. 3 shows the results of the simulation for both (the counter and the par-
allel) flow configurations. Note, on the one hand, that practically the same
closed-loop performance is achieved in both —the low- and the high-order—
modelling cases, with negligible quantitative differences among their responses.
Observe, on the other hand, that the control objective is achieved in every
case. Notice however that, in both configuration cases, the closed-loop system
proved to take longer times to recover from a perturbation than from a refer-
ence change. For instance, one sees, from the system responses on the figure,
that while a stabilization time of around 300 s takes place for the reference
change produced at t = 600 s, the system takes more than 1000 s to recover
from the perturbation arisen at t = 1200 s.

Fig. 4 shows the system responses to the loop closure, with Thd = 62.5 ◦C, for
different control gains. The same initial conditions of the above-mentioned test
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Fig. 4. Simulation results in counter (left) and parallel (right) flow configurations
with different control gains

were reproduced. Again, note that negligible quantitative differences among
the closed-loop responses with the low- and high-order plant models take place.
Observe that as the control gain increases, the rising and stabilization times
decrease. Notice however that system responses with overshoot are observed
in the highest tested control gain case.

5.2 Experimental results

Experiments were carried out in both —counter and parallel— flow configu-
rations. The performed tests were similar to those simulated: the controller
gain was fixed at k = 0.9 [1/(◦C · kg)]; the cold fluid flow rate was initially
held at Fc = 2 × 10−3 kg/s; after steady-state temperatures were reached, the
experiments were run, holding the initial conditions during 50 s; after such
an initial period, the loop was closed with Thd = 62.5 ◦C; at t = 600 s, the
reference was changed to Thd = 61 ◦C; finally, at t = 1100 s, the hot fluid
flow rate was perturbed by changing its value from Fh = 16.7 × 10−3 kg/s to
Fh = 20 × 10−3 kg/s.

Fig. 5 shows the experimental results for both (the counter and the parallel)
flow configurations. Observe that the control objective is achieved in every
case. Further, contrarily to what was predicted through the simulation tests
in the precedent subsection, the closed-loop system proves to take compara-
ble times to recover from a perturbation than from a reference change. For
instance, one sees, from the graphs on the figure, that a stabilization time of
around 200 s takes place for both the reference change produced at t = 600 s
and the perturbation arisen at t = 1100 s.

Fig. 6 shows the experimental system responses to the loop closure, with
Thd = 62.5 ◦C, for different control gains. The same initial conditions of the

12



0 200 400 600 800 1000 1200 1400 1600
60

61

62

63

64

65

T
h

o
[◦

C
]

Experimental tests in counter flow configuration with k = 0.9 [1/(kg⋅°C)]

 

 

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8
x 10

−3

t [s]

F
c

[k
g
/
s]

ref
T

ho

0 200 400 600 800 1000 1200 1400 1600
60

61

62

63

64

65
Experimental tests in parallel flow configuration with k = 0.9 [1/(kg⋅°C)]

T
h

o
[◦

C
]

 

 

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8
x 10

−3

t [s]

F
c

[k
g
/
s]

ref
T

ho

Fig. 5. Experimental results in counter (left) and parallel (right) flow configurations
with k = 0.9 [1/(◦C · kg)]
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Fig. 6. Experimental results in counter (left) and parallel (right) flow configurations
with different control gains

above-described test were reproduced. Observe that as the control gain in-
creases, there is a value above which underdamped system responses arise,
and consequently larger stabilization times take place.

For comparison purposes, the linearizing feedback approach developed in (Mal-
leswararao and Chidambaram 1992) was implemented in counter flow con-
figuration. The complete control law, considering the complemented LMTD
expression in Eq. (1), is shown in Appendix B; the reader may corroborate
the complexity of such a control expression with respect to the simplicity of
the algorithm in Proposition 1. The controller parameter values were tuned
as suggested in (Malleswararao and Chidambaram 1992) (see Appendix B).
In view of the slow closed-loop responses produced by this controller (as will
be seen and commented below), two tests were performed. The first test de-
parted from the same initial conditions of the previous experiments, with
the cold fluid flow rate initially held at Fc = 2 × 10−3 kg/s; after steady-
state temperatures were reached, the experiments were run, holding the initial

13
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Fig. 7. Experimental results with the linearizing feedback scheme (App. B): reference
change (left) and perturbation rejection (right)

conditions during 50 s; after such an initial period, the loop was closed with
Thd = 62.5 ◦C and, at t = 2000 s, the reference was changed to Thd = 61 ◦C.
With the system in closed loop, the second test departed from the steady-
state conditions produced at the end of the first test; after 360 s, the hot fluid
flow rate was perturbed by changing its value from Fh = 16.7 × 10−3 kg/s to
Fh = 20 × 10−3 kg/s.

Fig. 7 shows the closed-loop outlet temperature response and control signal
arisen with such a linearizing feedback scheme at both performed tests. The
results of the first test are shown in the left-hand-side graphs while those of
the second test are presented in the right-hand side of the figure. Note that
notoriously longer stabilization times take place compared to those previously
observed with the proposed scheme. Indeed, note from the graphs on the fig-
ures that while a regulation time of about 950 s takes place when the loop was
closed (at t = 50 s during the first test), the system takes more than 2000 s
to get stabilized from the reference change (at t = 2000 s during first test)
and more than 1500 s to recover from the perturbation (arisen at t = 360 s
during the second test). Moreover, responses with overshoot are observed dur-
ing the first test, and oscillating convergence takes place after the reference
was changed (during the first test) and when the perturbation was produced
(during the second test). Furthermore, observe that the resulting control sig-
nals are noisy. This may be a consequence of the high dependence of the
linearizing feedback controller on the system states (entailing a high degree of
measurement noise corruption).

Further experimental tests were performed implementing a conventional PI
controller, i.e. Fc(t) = kp

[

(Tho(t) − Thd) + 1
τi

∫ t
0(Tho(s) − Thd)ds

]

, in counter
flow configuration. After numerous trial-and-error experimental tests, the con-
trol gain combination giving rise to the best closed loop responses was deter-
mined to be: kp = 1 × 10−3 kg/(◦C · s) and τi = 20 s. With these values,
regulation was achieved avoiding oscillations, or giving rise to negligible ones.
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Fig. 8. Experimental results under the conventional PI controller with different
control parameter tunings: a suitable one (left) and an unfortunate one (right)

Once the controller suitably tuned, a test similar to the one performed for
the proposed scheme was reproduced: departing from the same initial con-
ditions, the loop was closed at t = 50 s with Thd = 62.5 ◦C; at t = 600 s,
the reference was changed to Thd = 61 ◦C; and at t = 1100 s, the hot fluid
flow rate was perturbed by changing its value from Fh = 16.7 × 10−3 kg/s to
Fh = 20 × 10−3 kg/s.

The left-hand-side graphs of Fig. 8 show the closed-loop outlet temperature
response and control signal arisen through the experimental implementation of
the conventional PI controller with the above-mentioned suitable control pa-
rameter value combination. Note that stabilization times comparable to those
obtained with the proposed approach took place. In particular, the closed-loop
system seems to perform a quicker recovery from the perturbation. Neverthe-
less, overshoots were observed when the loop was closed at t = 50 s and when
the reference was changed at t = 600 s.

The right-hand-side graphs of Fig. 8 show the experimental system responses
to the loop closure, with Thd = 62.5 ◦C and departing from the same ini-
tial conditions of the above-described test, under the conventional PI con-
trol action with a different control parameter value combination, namely:
kp = 1.4 × 10−2 kg/(◦C · s) and τi = 10 s. Observe from the graphs of the fig-
ure that, in this case, a sustained oscillation takes place. Further, the control
flow rate sweeps the whole input range several times per period, undergoing
lower- and upper-bound input saturation at every cycle. This behavior is due
to the unfortunate control parameter tuning, in view of the inherent input sat-
uration levels which are not considered by the controller. Because of the lack
of a suitable closed-loop analysis taking into account those input constraints,
unfortunate control parameter tunings, that give rise to such type of generally
unexpected oscillatory behaviors, may easily be performed.
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6 Conclusions

In this work, a bounded positive control scheme for the outlet temperature
global regulation of double-pipe heat exchangers was proposed. The algorithm
guarantees a control signal varying within its physical positive limits, which
agrees with the bounded and unidirectional nature of the corresponding flow
rate. Moreover, the proposed scheme turns out to be a simple algorithm that
does not need to feed back the whole closed-loop state vector and does not de-
pend on the exact knowledge of the system parameters. Numerical simulations
and experimental tests corroborated the theoretical developments. Compared
to other controllers that were also experimentally implemented, good closed-
loop responses were obtained with the proposed algorithm.

A Proofs

A.1 Proof of Claim 1

Continuous differentiability of gh with respect to Fc follows from the arguments
given in Remark 2. Hence, from Eq. (3), g′

h(Fc) = dgh

dFc
(Fc) is given by

g′

h(Fc) =































RS [1 + γ − eγ] (Thi − Tci)

Fc (1 + (−S)βR)2 if R − α 6= 0

−
CpcU

2A2(Thi − Tci)

2CphFh (UA + CphFh)
2 if R = α = 1

where γ , UA
CpcFc

− αUA
CphFh

. Thus, from Formula 4.2.30 in 2 (Abramowitz and

Stegun 1972), one sees that g′

h(Fc) < 0, ∀Fc > 0, showing that gh(Fc) is strictly
decreasing on its domain. This, in turn, corroborates its one-to-one character.

A.2 Proof of Proposition 1

Let T , {To ∈ R | Tci < To < Thi}, x denote the closed-loop (extended)
state vector, i.e. x , (Tco, Tho, Fc)

T , and ẋ = f(x) represent the closed-loop
system dynamics. Based on Lemma 1 (see also Remark 1), it can be verified

2 Formula 4.2.30 in (Abramowitz and Stegun 1972) states the following well-known
inequality: ez > 1 + z, ∀z 6= 0.
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that, with α = 1:

f1(Thi, Tho, Fc) = 2Fc

Mc
(Tci − Thi) < 0 , ∀(Tho, Fc) ∈ T × int(Fc)

f2(Tco, Tci, Fc) = 2Fh

Mh
(Thi − Tci) > 0 , ∀(Tco, Fc) ∈ T × int(Fc)

with α = −1:

f1(Tco, Tco, Fc) = 2Fc

Mc
(Tci − Tco) < 0 , ∀(Tco, Fc) ∈ T × int(Fc)

f2(Tho, Tho, Fc) = 2Fh

Mh
(Thi − Tho) > 0 , ∀(Tho, Fc) ∈ T × int(Fc)

and for any α ∈ {−1, 1}:

f1(Tci, Tho, Fc) = 2UA
McCpc

∆TL(Tci, Tho) > 0 , ∀(Tho, Fc) ∈ T × int(Fc)

f2(Tco, Thi, Fc) = − 2UA
MhCph

∆TL(Tco, Thi) < 0 , ∀(Tco, Fc) ∈ T × int(Fc)

f3(Tco, Tho, Fcl) = f3(Tco, Tho, Fcu) = 0 , ∀(Tco, Tho) ∈ D

This shows that there is no point on the boundary of D×Fc where the vector
field f has a normal component pointing outwards. Consequently, for any
initial extended state vector in D × int(Fc), the closed-loop system solution
cannot leave the system state-space domain D× int(Fc). Moreover, it is clear
that the points on ∂D × int(Fc) cannot even be approached. On the other
hand, from Eq. (4) and Remark 3, it can be easily seen that the closed-loop
system has a unique equilibrium point x∗ = (T ∗

co, T
∗

ho, F
∗

c ) in D × int(Fc),
where T ∗

ho = Thd and F ∗

c takes the unique value on Fc through which T ∗

ho can

adopt the desired value Thd. Besides, letting x∗

l
,

(

gc(Fcl), gh(Fcl), Fcl

)

and

x∗

u
,

(

gc(Fcu), gh(Fcu), Fcu

)

(see Eq. (3)), with gh(Fcl) = max{T ∗

ho ∈ Rh} and

gh(Fcu) = min{T ∗

ho ∈ Rh} (see Remark 3), it follows that f(x∗

l
) = f(x∗

u
) =

03. Actually, x∗

l
and x∗

u
are the only equilibrium points on the boundary of

D ×Fc. The Jacobian matrix of f , i.e.

∂f

∂x
=

















−2Fc

Mc
+ 2UA

McCpc

∂∆TL

∂Tco

2UA
McCpc

∂∆TL

∂Tho

2(Tci−Tco)
Mc

− 2UA
MhCph

∂∆TL

∂Tco
−2Fh

Mh
− 2UA

MhCph

∂∆TL

∂Tho
0

0 kη(Fc) kη′(Fc)(Tho − Thd)

















where η′(Fc) = dη
dFc

(Fc) = Fcu +Fcl−2Fc, evaluated at x∗

l
and x∗

u
, i.e. ∂f

∂x

∣

∣

∣

x=x∗

l

and ∂f

∂x

∣

∣

∣

x=x∗

u

, have eigenvalues

k(Fcu − Fcl)(gh(Fcl) − Thd) > 0
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and
k(Fcl − Fcu)(gh(Fcu) − Thd) > 0

respectively. Then x∗

l
and x∗

u
are repulsive (unstable) and consequently the

points on D × ∂Fc cannot be asymptotically approached from the interior of
the system state-space domain either. Consequently, for any x0 ∈ D× int(Fc),
x(t; x0) ∈ D × int(Fc), ∀t ≥ 0, or equivalently Fc(t) ∈ int(Fc), ∀t ≥ 0, and
(Tco, Tho)(t) ∈ D, ∀t ≥ 0. Now, consider the Jacobian matrix of f at x∗, i.e.
∂f

∂x

∣

∣

∣

x=x∗

. Its characteristic polynomial is given by P (λ) = λ3 +a2λ
2 +a1λ+a0,

where

a2 ,

[

2Fc

Mc

+
2Fh

Mh

−
2UA

McCpc

∂∆TL

∂Tco

+
2UA

MhCph

∂∆TL

∂Tho

]

x=x∗

a1 ,

[

4FcFh

McMh

+
4FcUA

McMhCph

∂∆TL

∂Tho

−
4FhUA

MhMcCpc

∂∆TL

∂Tco

]

x=x∗

and a0 , kā0 with

ā0 ,

[

4UAη(Fc)(Tci − Tco)

McMhCph

∂∆TL

∂Tco

]

x=x∗

From these expressions and Lemma 2 (see also Remark 1), it can be seen that

a2 > b2 ,
2Fcl

Mc

+
2Fh

Mh

> 0

a1 > b1 , −
4FhUA

MhMcCpc

[

∂∆TL

∂Tco

]

x=x∗

> 0

0 < ā0 < b̄0 ,
4UAη

(

Fcl+Fcu

2

)

(Tci − Thi)

McMhCph

[

∂∆TL

∂Tco

]

x=x∗

where the fact that η(Fc) ≤ η
(

Fcl+Fcu

2

)

, ∀Fc ∈ Fc, has been taken into account.
Furthermore, consider that k satisfies

k ≤
b1b2

b̄0

=
8FhCph(FclMh + FhMc)

MhMcCpc(Fcu − Fcl)2(Thi − Tci)
(A.1)

Under the satisfaction of this inequality, it turns out that a0 = kā0 < kb̄0 ≤
b1b2 < a1a2, i.e. a0 < a1a2, which is a necessary and sufficient condition for the
three roots of P (λ) to have negative real part (see for instance Example 6.2 in
(Dorf and Bishop 2001)). Thus, x∗ is asymptotically stable. Its attractivity is
global on D× int(Fc) if {x∗} is the only invariant in D× int(Fc), which is the
case for a small enough value of k. Indeed, from boundedness of D × int(Fc)
and its positive invariance with respect to the closed-loop system dynamics,
every solution x(t; x0 ∈ D× int(Fc)) has a nonempty, compact, and invariant
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positive limit set L+, and x(t; x0) → L+ as t → ∞, ∀x0 ∈ D × int(Fc) (see
(Khalil 1996, Lemma 3.1)). Then, the global attractivity of x∗ on D×int(Fc) is
subject to the absence of periodic orbits on D×int(Fc) (implying L+ = {x∗}).
A sufficiently small value of k renders the closed loop a slowly varying system
(see (Khalil 1996, §5.7)). Then, the 3rd-order closed-loop dynamics can be
approximated by the 2nd-order system in Eqs. (2) with (quasi) constant Fc.
Since under such representation no closed orbits can take place, 3 the absence
of periodic solutions of the closed-loop (3rd-order) system on D × int(Fc) is
deduced. Thus, in conclusion: Tho(t) → Thd as t → ∞.

B Linearizing feedback controller

Under the consideration of the LMTD complemented expression in Eq. (1),
the linearizing feedback control scheme developed in (Malleswararao and Chi-
dambaram 1992) for countercurrent heat exchangers is given by

Fc =
v − T̈hm − 2

Mh

(

Fh + UA
Cph

∂∆TL

∂Tho

)

Ṫho −
(2UA)2

McMhCpcCph

∂∆TL

∂Tco
∆TL

4UA
McMhCph

∂∆TL

∂Tco
(Tci − Tco)

v = −kp

[

e −
1

τi

∫ t

0
e(s)ds − τdė

]

e = Thm − Tho

Thm is the state of a first order reference model defined as

Ṫhm = −λmThm + λmThd

for some positive scalar λm,

∆TL =











∆T2−∆T1

ln
∆T2

∆T1

if ∆T2 6= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

∂∆TL

∂Tco

=



















[

ln
∆T2

∆T1
−

∆T2−∆T1

∆T1

]

[

ln
∆T2

∆T1

]2 if ∆T2 6= ∆T1

−1
2

if ∆T2 = ∆T1

3 This is verified through Bendixon’s Criterion (see for instance (Khalil 1996, The-

orem 7.2)), since ∂f̄1

∂y1
+ ∂f̄2

∂y2
= −a2 < 0, ∀y ∈ D, as was stated and shown in

(Zavala-Ŕıo and Santiesteban-Cos 2007).
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∂∆TL

∂Tho

=



















[

ln
∆T2

∆T1
−

∆T2−∆T1

∆T2

]

[

ln
∆T2

∆T1

]2 if ∆T2 6= ∆T1

1
2

if ∆T2 = ∆T1

with ∆T1 = Thi − Tco and ∆T2 = Tho − Tci. The following tuning criterion is
proposed in (Malleswararao and Chidambaram 1992): kp = 25

t2sξ2 , τi = 0.6ts,

and τd = 0.4tsξ
2, for some positive constants ts and ξ. Finally, the following

values are suggested in (Malleswararao and Chidambaram 1992) for a good
regulatory response: λm = 0.05 [1/s], ts = 60 s, and ξ = 0.75 (these were,
consequently, the values taken for the experimental tests in Subsection 5.2).
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Figure captions

Fig. 1. Counter/parallel-flow (full/dashed arrows resp.) double-pipe heat ex-
changer

Fig. 2. Bench-scale pilot plant

Fig. 3. Simulation results in counter (left) and parallel (right) flow configura-
tions with k = 0.9 [1/(◦C · kg)]

Fig. 4. Simulation results in counter (left) and parallel (right) flow configura-
tions with different control gains

Fig. 5. Experimental results in counter (left) and parallel (right) flow config-
urations with k = 0.9 [1/(◦C · kg)]

Fig. 6. Experimental results in counter (left) and parallel (right) flow config-
urations with different control gains

Fig. 7. Experimental results with the linearizing feedback scheme (App. B):
reference change (left) and perturbation rejection (right)

Fig. 8. Experimental results under the conventional PI controller with different
control parameter tunings: a suitable one (left) and an unfortunate one (right)
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