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for the finite-time and exponential stabilization of

mechanical systems with constrained inputs

Griselda I. Zamora-Gómez, Arturo Zavala-Rı́o∗, Daniela J. López-Araujo

Instituto Potosino de Investigación Cient́ıfica y Tecnológica, División de Matemáticas
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Abstract

An observer-less output-feedback global continuous control scheme for the
finite-time or (local) exponential stabilization of mechanical systems with
constrained inputs is proposed. The approach is formally developed within
the theoretical framework of local homogeneity. The closed-loop analysis
incorporates a complementary insight on the control-induced motion dissi-
pation through an ad hoc feedback-system passivity theorem. The work
includes a simulation implementation section where the performance differ-
ence of the proposed scheme with previous observer-based and differentiation
algorithms is brought to the fore.

Keywords: Finite-time stabilization, local homogeneity, output feedback,
mechanical systems, constrained inputs, saturation

1. Introduction

The last decades have witnessed an increasing interest on stabilization
with finite-time convergence through continuous feedback. Such an intriguing
topic is traced back to the seminal work of Haimo in [13], where finite-time
stability on second-order (double integrator) systems of the form

ẍ = u (1)
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with u = u(x, ẋ) continuous, was studied, particularly proving the referred
stability property for

u = −k1|x|asign(x)− k2|ẋ|bsign(ẋ) (2)

k1 = k2 = 1, with b ∈ (0, 1) and a > b/(2 − b) —or equivalently a ∈ (0, 1)
and b < 2a/(1 + a)— [13, Corollary 1], and even stating finite-time stability
preservation under (some type of) additional vanishing terms [13, Corollary
2]. Later on, useful foundations were settled down by Bhat and Bernstein
[3, 4, 5, 6, 7], who stated —for continuous autonomous systems— a formal
definition of finite-time stable equilibrium, proposed a Lyapunov-based crite-
rion for its determination, and developed its characterization for homogeneous
vector fields. This last contribution has been particularly appealing in view
of its simplicity since, provided that the origin is an asymptotically stable
equilibrium of a homogeneous vector field, finite-time stability is concluded
by simply verifying that the degree of homogeneity is negative. Such a sim-
plicity is perceived for instance by comparing the (rather involved) analysis
developed in the proof of [13, Corollary 1] against [2, Example 5.6], where
finite-time stability on (1)-(2) is analyzed through homogeneity, whence the
referred stability property is concluded for a ∈ (0, 1) and b = 2a/(1 + a), or
equivalently b ∈ (0, 1) and a = b/(2 − b).1 However, for finite-time control
design purposes, such a simple criterion might be restrictive in view of the
requirements naturally imposed by homogeneity, which is conventionally a
global property (see for instance [2] for a formal definition of homogeneous
(scalar) functions and vector fields in a coordinate-dependent framework).
For instance, in a constrained-input context, the closed-loop system would
include bounded components which would preclude the corresponding vector
field to be homogeneous [7] (in a coordinate-dependent framework). Never-
theless, such a restriction has been proven to be relaxed through alternative
notions of homogeneity [41].

Based on the theoretical framework of local homogeneity [31, 41], this
work proposes an observer-less output-feedback bounded continuous control
scheme for constrained-input mechanical systems, guaranteeing global stabi-
lization with either finite-time or (local) exponential convergence. The choice
on the type of stabilization is simply stated through a control parameter.

1The analyses in [2, Example 5.6] and the proof of [13, Corollary 1] are actually valid
for any k1 > 0 and k2 > 0.
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This is made possible through a suitable extension (recently stated in [43])
of the analytical framework of local homogeneity. The finite-time stabiliza-
tion choice —achieved through bounded (observer-less) output feedback—
remains however the main motivation of the present work. This is not only
motivated by the implied analytical challenge but also by the advantages
of finite-time continuous stabilizers over asymptotic ones —such as faster
convergence and improved robustness to uncertainties [15, 17, 28]— and dis-
continuous ones [8], as well as their conceptual suitability for certain tasks
such as consensus [39] or formation [40] of multi-agent systems, and process
supervision (monitoring) [38].

A debuting work on finite-time continuous control for mechanical manip-
ulators was presented in [16] disregarding input constraints. The proposed
state-feedback controller adopted Proportional (P) and Derivative (D) type
actions with two options on the structure: one of them compensating for the
whole system dynamics and the other one only for the gravity terms. The
design was based on the conventional analytical framework of homogeneity.

Another work treating the finite-time control of robotic manipulators,
assuming unconstrained inputs, appeared later in [44]. The state-feedback
scheme proposed therein is designed aiming at the compensation for the
whole system nominal dynamics. The rest of the synthesis is developed
applying backstepping, by viewing the velocity vector as a virtual input to
achieve finite-time control of the positions, and relying on the (generalized)
force input vector to impose a closed-loop continuous dynamics that guar-
antees finite-time stabilization of the consequent error variables. The design
is then complemented through a Lyapunov-redesign type procedure that re-
sults in the addition of a control term in charge to reject system uncertainties,
which a priori renders discontinuous the resulting control law. Alternative
approximations of certain control terms are suggested in order to avoid dis-
continuities and singularities implied by the developed approach, expecting
close-enough (to the desired position) stabilization through their replace-
ment.

A different continuous control strategy for the finite-time stabilization of
mechanical systems was more recently presented in [37] similarly disregarding
input constraints. The proposed state-feedback approach is based on the
definition of a (positively invariant) manifold where the system is proven to
converge to the zero (desired) state in a finite time T1. A suitable closed
loop form ensuring convergence of the system variables to such a manifold in
a finite time T2 is then found. The control law is then synthesized through
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exact dynamic compensation so as to impose the closed-loop form found in
the precedent step.

Lately, a state-feedback continuous control scheme for the global stabiliza-
tion with finite-time or (local) exponential convergence of constrained-input
mechanical systems was proposed in [43]. It has a generalized saturating
PD-type structure involving compensation of the conservative-force terms
only. The work includes a simulation study that corroborates the veracity
of the so-cited argument claiming that finite-time controllers achieve faster
stabilization than asymptotic ones.

From the above-cited state-feedback approaches, only that in [16] formu-
lates an output-feedback extension of the proposed controller (more precisely,
of the PD type approach that only involves gravity compensation). It is
an observer-based controller that guarantees stabilization only locally, built
upon the finite-time observer developed in [14] for the double integrator:

˙̂x1 = x̂2 + κ1|x1 − x̂1|csign(x1 − x̂1) (3a)

˙̂x2 = G+ κ2|x1 − x̂1|dsign(x1 − x̂1) (3b)

with κ1 > 0, κ2 > 0, d ∈ (0, 1) and c = (1 + d)/2 (or equivalently c ∈ (0.5, 1)
and d = 2c − 1), x̂1 and x̂2 being the observer states for the respective
reconstruction of x1 and x2, and x1 = x, x2 = ẋ and G = u for (1), in
[14], while x1, x2 and G respectively stand for position, velocity and the
respective terms from the dynamic model for every link of the manipulator,
in [16]. Thus, the considered finite-time observer involves the whole system
dynamics (and parameters), and reconstructs the whole set of system states,
i.e. position and velocity variables. Although a bounded variation of such an
observer-based output-feedback approach, with the conventional saturation
function involved in the P and D type actions, was further contemplated, no
formal closed-loop analysis was presented for this case, which does not fit
within the analytical framework where the proposed unconstrained schemes
were developed (as previously explained).

It is important to keep in mind that by finite-time continuous control on
all the above stated discussion and cited references, we mean continuity at
every one of the control scheme components, i.e. at the controller output
as well as at the auxiliary state equation when dynamic. Efforts to achieve
finite-time convergence or stabilization have also been made by involving dis-
continuities, whether at the controller output or at the auxiliary subsystem
(when considered). This is the case for instance of sliding-mode algorithms
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[24], which aim at leading the system trajectories to a sliding manifold (where
the considered stabilization objective is guaranteed) in finite time. These
have motivated various finite-time convergent or stabilizing algorithms. For
instance, a modified version of a 2nd-order sliding-mode (super twisting) algo-
rithm has given rise to a finite-time-convergent differentiator in [25]. Inspired
by the super twisting algorithm, a discontinuous version of Hong’s finite-time
observer has been presented in [11], by proposing the use of Eqs. (3) with
d = 0 and c = 1/2; the observer is addressed to mechanical systems, whence
G = f(t, x1, x̂2, u) (in (3b)), such that ẍ = f(t, x1, x2, u) + ξ(t, x1, x2, u) is
taken to correspond to a generic model of the system dynamics at each one of
its degrees of freedom, with ξ representing uncertainties and u some control
input, under the assumption that the system states (position and velocity
variables) can be considered bounded and that, through such an assumption,
f and ξ in the system dynamics can be considered bounded too. Furthermore,
inspired by the twisting algorithm, the finite-time control scheme analyzed
in [2] (and previously studied in [13]) for (1), namely (2), has been extended
in [32] (under the explicit consideration of control gains k1 > 0 and k2 > 0)
so as to include the discontinuous form adopted by taking a = b = 0 (i.e.
stating finite-time stabilization for b ∈ [0, 1) and a = 2/(2 − b), or equiva-
lently a ∈ [0, 1) and b = 2a/(1+a)); this, together with a modified version of
the finite-time observer of [11], consisting in the addition of linear position
observation error correction terms (in the right-hand side of Eqs. (3)), was
proposed in [32] as an output-feedback approach for the double integrator;
such an output-feedback approach was further applied for the achievement
of an orbital stabilization of a bipedal robot under ground unilateral con-
straints, in [1]. Through the involved discontinuities, at each one of the cited
sliding-mode inspired approaches, a higher degree of robustness is earned.
The price to pay is a post-transient variation of the system error variables
and control signal, although this effect is considerably reduced if the discon-
tinuities are confined to the auxiliary state equation (avoiding discontinuities
at the controller output). It is further important to point out that although
the discontinuous control approach in [32], obtained by taking a = b = 0 in
(2), finishes up by being bounded, input constraints are not considered in
the problem formulated in either [32] or [1]; furthermore, the discontinuities
implied by such a choice in the controller output would entail the well-known
phenomenon of chattering (in view of which such a discontinuous option on
the controller output is argued to be avoided in [1]).

Thus, the question on how to succeed the output-feedback finite-time sta-
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bilization goal (for mechanical systems) globally, through a fully continuous
control scheme (avoiding discontinuities at every one of the controller com-
ponents: at its output and auxiliary dynamics), and under the consideration
of input constraints remains open. This is the question that is analyzed
and answered in this study. Moreover, this work aims at solving such an
open problem avoiding the use of observers but rather ensuring motion dis-
sipation dynamically from the exclusive feedback of the position variables.
This has been made possible in previous output-feedback asymptotic ap-
proaches through the use of the so-called dirty derivative [19, 33, 36, 26].
By explicitly visualizing its dissipative role [33], in this work, a more gen-
eral nonlinear version of such a simple operator is designed so as to achieve
the required (local) homogeneity properties that permit the finite-time or
exponential stabilization. The controller output keeps an SP-SD structure
with saturating correction actions on the position error and the output of the
generalized dirty-derivative-type subsystem, and although it considers the ex-
clusive compensation for the inherent conservative forces at its output level,
it prevents involvement of any one of the terms of the system model in the
auxiliary (dirty-derivative-type) state equation. The closed-loop analysis will
not only demonstrate the achievement of the formulated global stabilization
goal —avoiding input saturation— with user-predefined finite-time or (local)
exponential convergence, but it also gives a complementary insight on the
dissipative role of the generalized dirty-derivative type subsystem through
an ad hoc feedback-system passivity theorem. A simulation section showing
the closed-loop performance achievements through the proposed scheme is
included.

2. Preliminaries

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij denotes the
element of X at its ith row and jth column, Xi represents the ith row of
X and yi stands for the ith element of y. 0n represents the origin of Rn

and In the n × n identity matrix. We denote R>0 = {x ∈ R : x > 0} and
R≥0 = {x ∈ R : x ≥ 0} for scalars, and Rn

>0 = {x ∈ Rn : xi > 0, i = 1, . . . , n}
and Rn

≥0 = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} for vectors. ‖ · ‖ stands for
the standard Euclidean norm for vectors and induced norm for matrices.
An (n − 1)-dimensional sphere of radius c > 0 on Rn is denoted Sn−1

c , i.e.
Sn−1
c = {x ∈ Rn : ‖x‖ = c}. We denote sat(·) the standard (unitary)

saturation function, i.e. sat(ς) = sign(ς) min{|ς|, 1}. The contents of the
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following subsections —except for subsection 2.3— were mostly included in
[43]; for the sake of completeness, they are reproduced here.

2.1. Mechanical systems

Consider the n-DOF fully-actuated frictionless mechanical system dy-
namics [9, §6.1]

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (4)

where q, q̇, q̈ ∈ Rn are the position (generalized coordinates), velocity, and
acceleration vectors, H(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is
the Coriolis and centrifugal effect matrix, g(q) = ∇U(q) with U : Rn → R
being the potential energy function of the system, and τ ∈ Rn is the external
input (generalized) force vector. Some well-known properties characterizing
the terms of such a dynamical model are recalled here [9, §6.1.2] [34, §2.3].
Subsequently, we denote Ḣ the rate of change of H, i.e. Ḣ : Rn×Rn → Rn×n

with Ḣij(q, q̇) =
∂Hij

∂q
(q)q̇, i, j = 1, . . . , n.

Property 1. H(q) is a continuously differentiable positive definite symmetric
matrix function.

Property 2. The Coriolis and centrifugal effect matrix satisfies:

2.1. q̇T
[

1
2
Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0, ∀(q, q̇) ∈ Rn × Rn;

2.2. C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn.

Remark 1. Observe from Property 2.2 that C(q, aq̇)bq̇ = C(q, bq̇)aq̇ =
C(q, abq̇)q̇ = C(q, q̇)abq̇, ∀q, q̇ ∈ Rn, ∀a, b ∈ R.

In this work, we consider the (realistic) bounded input case, where the
absolute value of each input τi is constrained to be smaller than a given
saturation bound Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n. More precisely, letting
ui represent the control variable (controller output) relative to the ith degree
of freedom, we have that

τi = Tisat(ui/Ti) (5)

Further assumptions are stated next.

Assumption 1. The conservative (generalized) force vector g(q) is bounded,
or equivalently, every one of its elements, gi(q), i = 1, . . . , n, satisfies |gi(q)| ≤
Bgi, ∀q ∈ Rn, for some positive constant Bgi.

Assumption 2. Ti > Bgi, ∀i ∈ {1, . . . , n}.

7
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Assumption 1 applies e.g. for robot manipulators having only revolute
joints [20, §4.3]. Assumption 2 renders it possible to hold the system at any
desired equilibrium configuration qd ∈ Rn.

2.2. Local homogeneity, finite-time stability and δ-exponential stability

The following homogeneity-related definitions are stated under the con-
sideration of coordinates (x1, . . . , xn) in Rn. We begin by introducing the

notion of family of dilations δrε , defined as δrε(x) =
(
εr1x1, . . . , ε

rnxn
)T

,
∀x = (x1, . . . , xn)T ∈ Rn, ∀ε > 0, with r = (r1, . . . , rn)T , where the dilation
coefficients r1, . . . , rn are positive scalars. Fundamental in this study is the
concept of local homogeneity, notions of which are stated —in a coordinate-
dependent framework— in [31], under the explicit consideration of time (in
addition to coordinates), and in [41] in the time-invariant case.

Definition 1. A function V : Rn → R, resp. vector field f =
∑n

i=1 fi
∂
∂xi

(with fi : Rn → R), is locally homogeneous of degree α with respect to the
family of dilations δrε —or equivalently, it is said to be locally r-homogeneous
of degree α— if there exists an open neighborhood of the origin D ⊂ Rn

—referred to as the domain of homogeneity— such that, for every x ∈ D
and all ε ∈ (0, 1]: δrε(x) ∈ D and

V (δrε(x)) = εαV (x) (6)

resp.
fi(δ

r
ε(x)) = εα+rifi(x) (7)

i = 1, . . . , n.

Let us note that an r-homogeneous (in the conventional sense) function,
resp. vector field, is a locally r-homogeneous function, resp. vector field,
with domain of homogeneity D = Rn.

Definition 2. [29] Given r ∈ Rn
>0, a continuous function mapping x ∈ Rn

to R, denoted ‖x‖r, is called a homogeneous norm with respect to the family
of dilations δrε —or equivalently, it is said to be an r-homogeneous norm— if
‖x‖r ≥ 0 with ‖x‖r = 0 ⇐⇒ x = 0n, and ‖δrε(x)‖r = ε‖x‖r for any ε > 0.

Notice that an r-homogeneous norm is a positive definite continuous func-
tion being r-homogeneous of degree 1.
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Definition 3. An r-homogeneous (n − 1)-sphere of radius c > 0 is the set
Sn−1
r,c = {x ∈ Rn : ‖x‖r = c}.

A special subset of r-homogeneous norms is defined as follows.

Definition 4. [18] Given r ∈ Rn
>0, an r-homogeneous p-norm (p ≥ 1) is

defined as ‖x‖r,p =
[∑n

i=1 |xi|p/ri
]1/p

.

Subsequently, in this work, an r-homogeneous norm ‖ · ‖r will be consid-
ered to refer to an r-homogeneous p-norm with p > maxi{ri}.

Consider an n-th order autonomous system

ẋ = f(x) (8)

where f : D → Rn is continuous on an open neighborhood of the origin
D ⊂ Rn and f(0n) = 0n, and let x(t;x0) represent the system solution with
initial condition x(0;x0) = x0.

Definition 5. [3, 7] The origin is said to be a finite-time stable equilibrium
of system (8) if it is Lyapunov stable and there exist an open neighborhood
of the origin, N ⊂ D, being positively invariant with respect to (8), and a
positive definite function T : N → R≥0, called the settling-time function,
such that x(t;x0) 6= 0n, ∀t ∈

[
0, T (x0)

)
, ∀x0 ∈ N \ {0n}, and x(t;x0) = 0n,

∀t ≥ T (x0), ∀x0 ∈ N . The origin is said to be a globally finite-time stable
equilibrium if it is finite-time stable with N = D = Rn.

Remark 2. Note, from Definition 5, that the origin is a globally finite-time
stable equilibrium of system (8) if and only if it is globally asymptotically
stable and finite-time stable.

The next theorem, stating a local-homogeneity-based necessary-and-sufficient
criterion for global finite-time stability, is reproduced from [41]. A previous
version stating the sufficiency part of the theorem and providing an upper
estimate of the settling time is found in [31].

Theorem 1. Consider system (8) with D = Rn. Suppose that f is a locally
r-homogeneous vector field of degree α with domain of homogeneity D ⊂ Rn.
Then, the origin is a globally finite-time stable equilibrium of system (8) if
and only if it is globally asymptotically stable and α < 0.

9
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The next definition is stated under the additional consideration that, for
some r ∈ Rn

>0, f in (8) is locally r-homogeneous with domain of homogeneity
D ⊂ D.

Definition 6. [18, 29] The equilibrium point x = 0n of (8) is δ-exponentially
stable2 with respect to the homogeneous norm ‖ · ‖r if there exist a neigh-
borhood of the origin, V ⊂ D, and constants a ≥ 1 and b > 0 such that
‖x(t;x0)‖r ≤ a‖x0‖re−bt, ∀t ≥ 0, ∀x0 ∈ V .

Remark 3. Observe that Definition 6 becomes equivalent to the usual def-
inition of exponential stability when the standard dilation is concerned, i.e.
when ri = 1, i = 1, . . . , n.

The next lemma is a trivial extension to the local homogeneity context
of [18, Lemma 2.4]. Analogously to [18, Lemma 2.4], it is stated under the
additional consideration that solutions of (8) with x0 ∈ D remain unique
(while belonging to D).3

Lemma 1. Suppose that f in (8) is a locally r-homogeneous vector field of
degree α = 0 with domain of homogeneity D ⊂ D. Then, the origin is a
δ-exponentially stable equilibrium if and only if it is asymptotically stable.

Observe that the assumptions of Lemma 1 imply the existence of a neigh-
borhood of the origin V ⊂ D such that x0 ∈ V =⇒ x(t;x0) ∈ D, ∀t ≥ 0.
The proof of Lemma 1 is thus analogous to the one developed in [12, §57] for
the special case of r = (r1, . . . , rn)T with ri = 1, i = 1, . . . , n.4

Remark 4. Let us note that if a vector field f is locally r-homogeneous of
degree α = 0 with dilation coefficients ri = r0, ∀i ∈ {1, . . . , n}, for some

2We adopt the dilation-related designation stated in [18] for Definition 6, i.e. δ-
exponential stability. In [29], the same definition is alternatively designated as ρ-
exponential stability, with ρ referring to the involved r-homogeneous norm, in accordance
to the notation stated therein.

3Another version of [18, Lemma 2.4] is stated in [29, Lemma 1] where no restriction on
the uniqueness of solutions is considered. It is further concluded from [29, §III.E] that the
solutions of autonomous systems ẋ = f(x) with r-homogeneous vector field being locally
Lipschitz on Rn \ {0n} are unique.

4One further concludes from [12, §57] that asymptotic stability when α > 0 is not
δ-exponential (i.e. δ-exponential stability is a property that can only take place when
α = 0).

10
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r0 > 0, then f is locally r∗-homogeneous of degree α = 0 with dilation
coefficients r∗i = r∗0, ∀i ∈ {1, . . . , n}, for any r∗0 > 0. Indeed, observe that if,
for every x ∈ D, f(εr0x) = εr0f(x), ∀ε ∈ (0, 1], then, by taking ε = εr0/r

∗
0 ,

we have that f(εr
∗
0x) = εr

∗
0f(x), ∀ε ∈ (0, 1]. Consequently, if f in (8) is

locally r-homogeneous of degree α = 0 with dilation coefficients ri = r0, ∀i ∈
{1, . . . , n}, for some r0 > 0, then (under the consideration of Remark 3) the
origin turns out to be exponentially stable if and only if it is δ-exponentially
stable.

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (9)

where f : Rn → Rn and f̂ : Rn → Rn are continuous vector fields such that
f(0n) = f̂(0n) = 0n. The next result is an extended version of [41, Lemma
3.2].

Lemma 2. [43] Suppose that, for some r ∈ Rn
>0, f in (9) is a locally r-

homogeneous vector field of degree α < 0, resp. α = 0, with domain of
homogeneity D ⊂ Rn, and that 0n is a globally asymptotically, resp. δ-
exponentially, stable equilibrium of ẋ = f(x). Then, the origin is a finite-
time, resp. δ-exponentially, stable equilibrium of system (9) if

lim
ε→0+

f̂i(δ
r
ε(x))

εα+ri
= 0 (10)

i = 1, . . . , n, ∀x ∈ Sn−1
c , resp. ∀x ∈ Sn−1

r,c , for some c > 0 such that
Sn−1
c ⊂ D, resp. Sn−1

r,c ⊂ D.

Remark 5. Notice that the condition required by Lemma 2 may be equiv-
alently verified through the satisfaction of

lim
ε→0+

∥∥ε−αdiag
[
ε−r1 , . . . , ε−rn

]
f̂(δrε(x))

∥∥ = 0 (11)

∀x ∈ Sn−1
c (resp. Sn−1

r,c ). In other words, (10) is fulfilled for all i = 1, . . . , n
and all x ∈ Sn−1

c (resp. Sn−1
r,c ) if and only if (11) is satisfied for all x ∈ Sn−1

c

(resp. Sn−1
r,c ).
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Figure 1: Feedback connection

2.3. Passivity

Basic definitions are recalled in Appendix A. Consider here the feed-
back system of Figure 1, where each feedback component Σi, i = 1, 2, is
represented by the state model

ẋi = fi(xi, ei) (12a)

yi = hi(xi, ei) (12b)

with fi : Rni × Rm → Rni and hi : Rni × Rm → Rm being continuous,
fi(xi, ei) locally Lipschitz on Rni × Rm \ (0ni

, 0m), fi(0ni
, 0m) = 0ni

and
hi(0ni

, 0m) = 0m. We will consider that the feedback connection is well-
defined5 [21, §6.5]. We state the following feedback-system passivity theorem.

Theorem 2. For the considered feedback connection with u1 = u2 = 0m, the
origin of the consequent closed-loop system, (x1, x2) = (0n1 , 0n2), is asymp-
totically stable if, for some i ∈ {1, 2} and j ∈ {1, 2} \ {i} (or equivalently
j = i − (−1)i), Σi is zero-state observable and passive with positive definite
storage function, Σj is strictly passive and

fj(0nj
, ej) = 0nj

=⇒ ej = 0m (13)

Furthermore, if the storage function for each component is radially unbounded,
the origin is globally asymptotically stable.

Proof. See Appendix B.

5Independence of hi on ei for either i ∈ {1, 2} suffices to ensure that the feedback
connection is well-defined.
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Theorem 2 keeps a close relation with previous passivity theorems or
passivity-related results for feedback systems. Indeed, it is well known that
an unforced feedback connection —as depicted in Fig. 1— where one of
the components, Σj, is a dynamical system being strictly passive, and the
other component, Σi, is a passive function (memoryless process), yields the
origin of the closed loop (globally) asymptotically stable [21, Theorem 6.4],6

as it is also the case when the dynamical component is passive and zero-
state observable —or even zero-state detectable— and the static one is a
passive function whose internal product with any non-zero (vector) value of
its argument is (strictly) positive [10]. Theorem 2 goes in an analog direction
of such well-known results, but under the consideration of both components
being dynamical systems. A similar approach has been previously used, for
instance, on the design of output-feedback schemes for Lagrangian systems
[33, 27], by considering their feedback connection with a controller that keeps
an Euler-Lagrange structure too, basing such a design philosophy on the
natural passivity properties of such type of systems. In this direction, it is
worth noting that Theorem 2 is not addressed to interconnected systems of
particular structure, and that, in such a general context, it clearly brings to
the fore the additional requirement (condition (13)) that makes the stated
result possible.

2.4. Scalar functions with particular properties

Definition 7. A continuous scalar function σ : R→ R will be said to be:

1. bounded (by M) if |σ(ς)| ≤M , ∀ς ∈ R, for some positive constant M ;

2. strictly passive7 if ςσ(ς) > 0, ∀ς 6= 0;

3. strongly passive if it is a strictly passive function satisfying |σ(ς)| ≥
κ
∣∣a sat(ς/a)

∣∣b = κ
(

min{|ς|, a}
)b

, ∀ς ∈ R, for some positive constants
κ, a and b.

Remark 6. Notice that equivalent characterizations of strictly passive func-
tions are: ςσ(ς) > 0 ⇐⇒ sign(ς)σ(ς) > 0 ⇐⇒ sign

(
σ(ς)

)
= sign(ς),

∀ς 6= 0.

6See also [21, Theorem 6.5] where shortage of passivity is permitted in either of the
components as long as a dominating excess of passivity characterizes the other component.

7The designation stated in items 2 and 3 of Definition 7 is inspired on the definition of
a passive memoryless process [21, §6.1].
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Let us note that a non-decreasing strictly passive function σ is strongly
passive. Indeed, notice that the strictly passive character of σ implies the
existence of a sufficiently small a > 0 such that |σ(ς)| ≥ κ|ς|b, ∀|ς| ≤ a,
for some positive constants κ and b, while from its nondecreasing character
we have that |σ(ς)| ≥ |σ(sign(ς)a)| ≥ κab, ∀|ς| ≥ a, and thus |σ(ς)| ≥
κ
(

min{|ς|, a}
)b

= κ
∣∣a sat(ς/a)

∣∣b, ∀ς ∈ R.

Lemma 3. [43] Let σ : R → R, σ0 : R → R and σ1 : R → R be strongly
passive functions and k be a positive constant. Then:

1.
∫ ς

0
σ(kν)dν > 0, ∀ς 6= 0;

2.
∫ ς

0
σ(kν)dν →∞ as |ς| → ∞;

3. σ0 ◦ σ1 is strongly passive.

3. The proposed output-feedback scheme

Consider the following SP-SD type controller

u(q, ϑ) = −s1(K1q̄)− s2(K2ϑ) + g(q) (14)

where q̄ = q − qd, for any constant (desired equilibrium position) qd ∈ Rn;
ϑ ∈ Rn is the output vector variable of an auxiliary subsystem defined as

ϑ̇c = −As3(ϑc +Bq̄) (15a)

ϑ = ϑc +Bq̄ (15b)

K1, K2, A andB are positive definite diagonal matrices, i.e. Ki = diag[ki1, . . . , kin],
i = 1, 2, A = diag[a1, . . . , an] and B = diag[b1, . . . , bn], with kij > 0, aj > 0

and bj > 0, ∀j ∈ {1, . . . , n}; and for any x ∈ Rn, si(x) =
(
σi1(x1), . . . , σin(xn)

)T
,

i = 1, 2, with, for each j ∈ {1, . . . , n}, σ3j(·) being a strictly passive function,
while σ1j and σ2j are strongly passive functions such that8

Bj , max
ς∈R

∣∣σ1j(ς) + σ2j(ς)
∣∣ < Tj −Bgj (16)

all three being locally Lipschitz-continous on R \ {0}.

8Notice that if σ1j and σ2j are (both) chosen to be non-decreasing, then Bj =

max
{

limς→∞
[
σ1j(ς) + σ2j(ς)

]
, limς→−∞−

[
σ1j(ς) + σ2j(ς)

]}
.
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Remark 7. Note that, by (16), we have that —for each j ∈ {1, . . . , n}— σ1j

and σ2j shall both be bounded, while σ3j may be bounded or not. Moreover,
the bounds of σ1j and σ2j are naturally restricted by (16), while an eventual
choice of a bounded σ3j would permit a free selection on its bound.

Remark 8. Let us note that the auxiliary subsystem in Eqs. (15) is a
nonlinear version of the dirty derivative operator, applied to the position
error vector variable. Indeed, observe that if s3 were chosen to be the iden-
tity function, i.e. s3(x) ≡ x, the conventional linear dynamics of the dirty
derivative (applied to q̄) [33] is obtained. Through the required analytical
properties on s3, the expected closed-loop stability features will be proven
to be obtained. Further requirements on s3 will show the usefulness of such
a generalized form to get the focused types of trajectory convergence. The
output variable of the (non-linear) dirty-derivative-type subsystem, ϑ, may
thus be seen as an approximated dirty derivative of q̄ —or an approximated
dirty calculation of q̇— even though a more appropriate insight on the role
played by the auxiliary subsystem in Eqs. (15) will be brought to the fore
(later, in Remark 10) under an energy-related optics.

Remark 9. The control scheme in Eqs. (14)-(15) is reminiscent of that in
[27], which was shown to be obtained through the design methodology pro-
posed therein for the asymptotic stabilization of Lagrangian systems under
input constraints, and includes the desired -conservative-force pre-compensation
option. Such a scheme in [27] has been among the first controllers of its kind
and inspired similar alternative bounded-input control design formulations
for Euler-Lagrange type systems. Leaving aside the conservative-force com-
pensation aspect, the control structure proposed through Eqs. (14)-(15) in
this work goes however further in its generalization by permitting the choice
among finite-time or exponential stabilization, as will be stated and proven
next, and by allowing larger design flexibility on the functions σij, i =, 1, 2, 3,
j = 1, . . . , n, involved to guarantee the formulated control objective. It is
worth adding that the desired pre-compensation option could also be included
here through additional requirements ensuring that the potential energy com-
ponent due to the first term in the right-hand side of (14) dominates those
of the conservative-force and desired pre-compensation terms of the closed
loop. Details on this option will be reported on future communications.

Proposition 1. Consider system (4)-(5) in closed loop with the proposed
control scheme in Eqs. (14)-(15). Thus, for any positive definite diagonal

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

matrices K1, K2, A and B: global asymptotic stability of the closed-loop
trivial solution q̄(t) ≡ 0n is guaranteed with |τj(t)| = |uj(t)| < Tj, j =
1, . . . , n, ∀t ≥ 0.

Proof. Observe that —for every j ∈ {1, . . . , n}— by (16), we have that, for
any (q, ϑ) ∈ Rn × Rn:

|uj(q, ϑ)| =
∣∣− σ1j(k1j q̄j)− σ2j(k2jϑj) + gj(q)

∣∣
≤
∣∣σ1j(k1j q̄j) + σ2j(k2jϑj)

∣∣+ |gj(q)|
≤ Bj +Bgj < Tj

From this and (5), one sees that Tj > |uj(q, ϑ)| = |uj| = |τj|, ∀(q, ϑ) ∈ Rn ×
Rn, which shows that, along the system trajectories, |τj(t)| = |uj(t)| < Tj,
j = 1, . . . , n, ∀t ≥ 0. This proves that, under the proposed scheme, the input
saturation values, Tj, are never reached. Hence, the closed-loop dynamics
takes the (equivalent) form

H(q)q̈ + C(q, q̇)q̇ = −s1(K1q̄)− s2(K2ϑ)

ϑ̇ = −As3(ϑ) +Bq̇

By defining x1 = q̄, x2 = q̇ and x3 = ϑ, the closed-loop dynamics adopts the
3n-order state-space representation

ẋ1 = x2 (17a)

ẋ2 = −H−1(x1 + qd)
[
C(x1 + qd, x2)x2 + s1(K1x1) + s2(K2x3)

]
(17b)

ẋ3 = −As3(x3) +Bx2 (17c)

By further defining x = (xT1 , x
T
2 , x

T
3 )T , these state equations may be rewritten

in the form of system (9) with

f(x) =




x2

−H−1(qd)
[
s1(K1x1) + s2(K2x3)

]

−As3(x3) +Bx2


 (18a)

f̂(x) =




0n

−H−1(x1 + qd)C(x1 + qd, x2)x2 −H(x1)
[
s1(K1x1) + s2(K2x3)

]

0n




(18b)

16
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where
H(x1) = H−1(x1 + qd)−H−1(qd) (19)

Thus, the closed-loop stability property stated through Proposition 1 is cor-
roborated by showing that x = 03n is a globally asymptotically stable equi-
librium of the state equation ẋ = f(x) + f̂(x), which is proven through the
following theorem (whose formulation proves to be convenient for subsequent
developments and proofs).

Theorem 3. Under the stated specifications, the origin is a globally asymp-
totically stable equilibrium of both the state equation ẋ = f(x) and the (closed-
loop) system ẋ = f(x) + f̂(x), with f(x) and f̂(x) defined through Eqs. (18).

Proof. For every ` ∈ {0, 1}, let us define the continuously differentiable scalar
function

V`(x1, x2, x3) =
1

2
xT2H(`x1 + qd)x2 +

∫ x1

0n

sT1 (K1r)dr +

∫ x3

0n

sT2 (K2r)B
−1dr

where

∫ x1

0n

sT1 (K1r)dr =
n∑

j=1

∫ x1j

0

σ1j(k1jrj)drj

∫ x3

0n

sT2 (K2r)B
−1dr =

n∑

j=1

∫ x3j

0

σ2j(k2jrj)

bj
drj

From Property 1 and Lemma 3, V`(x1, x2, x3), ` = 0, 1, are concluded to be
positive definite and radially unbounded. Further, for every ` ∈ {0, 1}, the
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derivative of V` along the trajectories of ẋ = f(x) + `f̂(x), is obtained as

V̇`(x1, x2, x3) = xT2H(`x1 + qd)ẋ2 +
`

2
xT2 Ḣ(x1 + qd, x2)x2 + sT1 (K1x1)ẋ1

+ sT2 (K2x3)B−1ẋ3

= xT2
[
− `C(x1 + qd, x2)x2 − s1(K1x1)− s2(K2x3)

]

+
`

2
xT2 Ḣ(x1 + qd, x2)x2 + sT1 (K1x1)x2

+ sT2 (K2x3)B−1
[
− As3(x3) +Bx2

]

= −sT2 (K2x3)B−1As3(x3)

= −
n∑

j=1

aj
bj
σ2j(k2jx3j)σ3j(x3j)

where, in the case of ` = 1, Property 2.1 has been applied. Note, from the
strictly passive character of σ2j and σ3j (recall Definition 7 and Remark 6),
j = 1, . . . , n, that V̇`(x1, x2, x3) ≤ 0, ∀(x1, x2, x3) ∈ Rn × Rn × Rn, with
Z` , {(x1, x2, x3) ∈ Rn × Rn × Rn : V̇`(x1, x2, x3) = 0} = {(x1, x2, x3) ∈
Rn×Rn×Rn : x3 = 0n}. Further, from the system dynamics ẋ = f(x)+`f̂(x)
—under the consideration of the strictly passive character of σ1j, j = 1, . . . , n,
Property 1 and the positive definiteness of K1— one sees that x3(t) ≡ 0n =⇒
ẋ3(t) ≡ 0n =⇒ x2(t) ≡ 0n =⇒ ẋ2(t) ≡ 0n =⇒ s1

(
K1x1(t)

)
≡

0n ⇐⇒ x1(t) ≡ 0n (which shows that (x1, x2, x3)(t) ≡ (0n, 0n, 0n) is the
only system solution completely remaining in Z`), and corroborates that at
any (x1, x2, x3) ∈ Z` \{(0n, 0n, 0n)}, the resulting unbalanced force terms act
on the closed-loop dynamics [ẋ = f(x1, x2, 0n)+`f̂(x1, x2, 0n) with (x1, x2) 6=
(0n, 0n)], forcing the system trajectories to leave Z`, whence {(0n, 0n, 0n)} is
concluded to be the only invariant set in Z`, ` = 0, 1. Therefore, by the
invariance theory [30, §7.2] (more precisely by [30, Corollary 7.2.1]9), x = 03n

is concluded to be a globally asymptotically stable equilibrium of both the
state equation ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x).

9Corollary 7.2.1 in [30] is a version of Barbashin-Krasovskii’s theorem that permits
to conclude on the global asymptotic stability of the origin of an autonomous system
ẋ = f(x) under the consideration of a continuous vector field f(x). This is in contrast to
other well-known versions like [21, Corollaries 4.1 & 4.2], that require f(x) to be locally
Lipshcitz, or those in [22, 23] where f(x) is considered to be continuously differentiable.
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Remark 10. Consider the closed-loop system in Eqs. (17). Let e1 = −y2 =
−s2(K2x3), e2 = y1 = x2, ψ(x3) = sT2 (K2x3)B−1As3(x3),

V11(x1, x2) =
1

2
xT2H(x1 + qd)x2 +

∫ x1

0n

sT1 (K1r)dr

and

V12(x3) =

∫ x3

0n

sT2 (K2r)B
−1dr

By previous arguments and developments, V11 and V12 are radially unbounded
positive definite functions in their respective arguments. Following an anal-
ysis analog to that of the proof of Theorem 3, one obtains

V̇11 = eT1 y1

and
V̇12 = eT2 y2 − ψ(x3)

with ψ(x3) being positive definite (in its argument). Hence, the closed-loop
system in Eqs. (17) may be seen as a (negative) feedback system connection
—as depicted in Fig. 1— among a passive —actually lossless— subsystem
Σ1 with dynamic model

Σ1 :





ẋ1 = x2

ẋ2 = H−1(x1 + qd)
[
− C(x1 + qd, x2)x2 − s1(K1x1) + e1

]

y1 = x2

and positive definite storage function V11(x1, x2), and a strictly passive sub-
system Σ2 with sate model

Σ2 :

{
ẋ3 = −As3(x3) +Be2 , f2(x3, e2)

y2 = s2(K2x3)
(20)

and storage function V12(x3). Moreover, one sees from (20) that f2(0n, e2) =
Be2 = 0n =⇒ e2 = 0n, completing the requirements of Theorem 2. This
formulation actually brings to the fore the damping-injection role that sub-
system (17c) —or, equivalently, in Eqs. (15) (in the original coordinates)—
plays in the closed loop. Indeed, through its x3-dependent term, subsystem
(17c) in fact acts as a dynamic damper in charge to dissipate the feedback
system stored energy, thus leading the closed-loop trajectories to the (unique)
minimum-energy configuration, located (by feedback) at the desired position.
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4. Finite-time and exponential stabilization

Proposition 2. Consider the proposed control scheme under the additional
consideration that, for every j ∈ {1, . . . , n}, σij, i = 1, 2, are locally ri-
homogeneous of (common) degree αi = 2r2 − r1 > 0 —i.e. r1j = r1, r2j = r2

and α1j = α1 = 2r2 − r1 = α2 = α2j > 0 for all j ∈ {1, . . . , n}— with
domain of homogeneity Dij = {ς ∈ R : |ς| < Lij ∈ (0,∞]} and σ3j is locally
r1-homogeneous of degree α3 = r2 —i.e. r3j = r3 = r1 and α3j = α3 = r2

for all j ∈ {1, . . . , n}— with domain of homogeneity D3j = {ς ∈ R : |ς| <
L3j ∈ (0,∞]}. Thus, for any positive definite diagonal matrices K1, K2, A
and B: |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0, and the closed-loop trivial
solution q̄(t) ≡ 0n is:

1. globally finite-time stable if r2 < r1;
2. globally asymptotically stable with (local) exponential stability if r2 = r1.

Proof. Since the proposed control scheme is applied —with all its previ-
ously stated specifications— Proposition 1 holds and consequently |τj(t)| =
|uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0. Then, all that remains to be proven is
that the additional considerations give rise to the specific stability prop-
erties claimed in items 1 and 2 of the statement. In this direction, let
r̂i = (ri1, . . . , rin)T , i = 1, 2, 3, r = (r̂T1 , r̂

T
2 , r̂

T
3 )T , D , {(x1, x2, x3) ∈

Rn × Rn × Rn : Kixi ∈ Di1 × · · · × Din , i = 1, 2, 3} = {(x1, x2, x3) ∈
Rn × Rn × Rn : |xij| < Lij/kij , i = 1, 2, 3 , j = 1, . . . , n}, and consider the
previously defined state (vector) variables and the consequent closed-loop
state-space representation ẋ = f(x) + f̂(x), with f and f̂ as defined through
Eqs. (18). Since D defines an open neighborhood of the origin, there exists
ρ > 0 such that Bρ , {x ∈ R3n : ‖x‖ < ρ} ⊂ D. Moreover, for every x ∈ Bρ

and all ε ∈ (0, 1], we have that δrε(x) ∈ Bρ (since ‖δrε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)),
and, for every j ∈ {1, . . . , n},

fj(δ
r
ε(x)) = εr2jx2j = εr2x2j = ε(r2−r1)+r1x2j = ε(r2−r1)+r1jfj(x)

fn+j(δ
r
ε(x)) = −H−1

j (qd)
[
s1(K1δ

r̂1
ε (x1)) + s2(K2δ

r̂3
ε (x3))

]

= −H−1
j (qd)

[
s1(εr1K1x1) + s2(εr3K2x3)

]

= −H−1
j (qd)

[
εα1s1(K1x1) + εα2s2(K2x3)

]

= −H−1
j (qd)ε

2r2−r1[s1(K1x1) + s2(K2x3)
]

= −ε(r2−r1)+r2H−1
j (qd)

[
s1(K1x1) + s2(K2x3)

]

= ε(r2−r1)+r2jfn+j(x) (21)
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f2n+j(δ
r
ε(x)) = −As3

(
δr̂3ε (x3)

)
+Bδr̂2ε (x2)

= −As3(εr3x3) + εr2Bx2

= −Aεα3s3(x3) + εr2Bx2

= εr2
[
− As3(x3) +Bx2

]

= ε(r2−r3)+r3
[
− As3(x3) +Bx2

]

= ε(r2−r1)+r3jf2n+j(x)

whence one concludes that f is a locally r-homogeneous vector field of degree
α = r2 − r1, with domain of homogeneity Bρ. Hence, by Theorems 1 and
3, Lemma 1 and Remark 4, the origin of the state equation ẋ = f(x) is
concluded to be a globally finite-time stable equilibrium if r2 < r1, and a
globally asymptotically stable equilibrium with (local) exponential stability
if r2 = r1. Thus, by Theorem 3, Lemma 2, and Remarks 2 and 5, the origin
of the closed-loop system ẋ = f(x)+ f̂(x) is concluded to be a globally finite-
time stable equilibrium provided that r2 < r1, and a globally asymptotically
stable equilibrium with (local) exponential stability provided that r2 = r1, if

L0 , lim
ε→0+

∥∥∥ε−αdiag[ε−r11 , . . . , ε−r1n , ε−r21 , . . . , ε−r2n , ε−r31 , . . . , ε−r3n ]f̂(δrε(x))
∥∥∥

= lim
ε→0+

∥∥∥ε−αdiag[ε−r21 , . . . , ε−r2n ]
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T∥∥∥

= lim
ε→0+

∥∥∥ε−α−r2
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T∥∥∥

= lim
ε→0+

εr1−2r2
∥∥∥
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T∥∥∥ (22)

= 0

for all x ∈ S3n−1
c = {x ∈ R3n : ‖x‖ = c}, resp. x ∈ S3n−1

r,c = {x ∈ R3n :
‖x‖r = c}, for some c > 0 such that S3n−1

c ⊂ D, resp. S3n−1
r,c ⊂ D. Hence,

from (18b), under the consideration of Property 2.2 and Remark 1, we have,
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for all such x ∈ S3n−1
c , resp. x ∈ S3n−1

r,c :

∥∥∥
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T∥∥∥

=
∥∥∥−H−1(εr1x1 + qd)C(εr1x1 + qd, ε

r2x2)εr2x2

−H(εr1x1)
[
s1(εr1K1x1) + s2(εr3K2x3)

]∥∥∥

≤
∥∥∥−H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥

+
∥∥∥H(εr1x1)

[
εα1s1(K1x1) + εα2s2(K2x3)

]∥∥∥

≤
∥∥∥− ε2r2H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥

+
∥∥∥H(εr1x1)ε2r2−r1[s1(K1x1) + s2(K2x3)

]∥∥∥

≤ ε2r2
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥

+ε2r2−r1
∥∥∥H(εr1x1)

[
s1(K1x1) + s2(K2x3)

]∥∥∥

and consequently, from (22), we get

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥

+ lim
ε→0+

∥∥∥H(εr1x1)
[
s1(K1x1) + s2(K2x3)

]∥∥∥

≤
∥∥H−1(qd)C(qd, x2)x2

∥∥ lim
ε→0+

εr1

+
∥∥s1(K1x1) + s2(K2x3)

∥∥ lim
ε→0+

∥∥H(εr1x1)
∥∥

≤
∥∥s1(K1x1) + s2(K2x3)

∥∥ ·
∥∥H(0n)

∥∥ = 0

(note, from (19), that ‖H(0n)‖ = ‖H−1(qd)−H−1(qd)‖ = 0), which completes
the proof.

Corollary 1. Consider the proposed control scheme taking σij, i = 1, 2, 3,
j = 1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞] (23)
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with —for every j = 1, . . . , n— constants βij = βi, i = 1, 2, 3, such that

0 < β1 ≤ 1 , β2 = β1 , β3 =
1 + β1

2
(24)

Thus, for any positive definite diagonal matrices K1, K2, A and B, |τj(t)| =
|uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0, and the closed-loop trivial solution q̄(t) ≡
0n is:

1. globally finite-time stable if 0 < β1 < 1;

2. globally asymptotically stable with (local) exponential stability if β1 = 1.

Proof. Note that, given any rij > 0, for every ς ∈ (−Lij, Lij): εrij ς ∈
(−Lij, Lij) and σij(ε

rij ς) = sign(εrij ς)|εrij ς|βij = εrijβijsign(ς)|ς|βij = εrijβijσij(ς),
∀ε ∈ (0, 1]. Hence, under the consideration of expressions (24), for every
j ∈ {1, . . . , n}, we have, for any r1j = r1 > 0, that taking r2j = r2 =
(1 + β1)r1/2 and r3j = r3 = r1, σij, i = 1, 2, are locally ri-homogeneous
of degree α1j = α1 = r1β1 = r3β2 = α2 = α2j with domain of homo-
geneity Dij = {ς ∈ R : |ς| < Lij}, and σ3j is locally r1-homogeneous of
degree α3j = α3 = (1 + β1)r3/2 = (1 + β1)r1/2 = r2 with domain of ho-
mogeneity D3j = {ς ∈ R : |ς| < L3j}, while 0 < β1 ≤ 1 =⇒ β1 > 0 ≥
β1 − 1 ≥ (β1 − 1)/2 =⇒ (β1 + 1)/2 ≤ 1 < 1 + β1 ⇐⇒ (β1 + 1)r1/2 ≤
r1 < (1 + β1)r1 ⇐⇒ r2 ≤ r1 < 2r2 ⇐⇒ r2 − r1 ≤ 0 < 2r2 − r1.
The requirements of Proposition 2 are thus concluded to be satisfied with
0 < β1 < 1 =⇒ r2 < r1 and β1 = 1 =⇒ r2 = r1.

Remark 11. Since the results of this section depart from the application
of the proposed control scheme, the cases of Proposition 2 with r2 > r1

and Corollary 1 with β1 > 1 are particular cases of Proposition 1 where the
closed-loop trivial solution q̄(t) ≡ 0n is globally asymptotically stable but
not (locally) exponentially stable (in accordance to Footnote 4).

5. Simulation results

The proposed scheme was implemented through computer simulations
considering the model of a 2-DOF mechanical manipulator corresponding to
the experimental robotic arm used in [42]. For such a robot, the various
terms characterizing the system dynamics in Eq. (4) are given by

H(q) =

(
2.351 + 0.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)
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Figure 2: Examples of σu(ς;β, a) and σb(ς;β, a,M)

C(q, q̇) =

(
−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)

Assumption 1 is thus satisfied with Bg1 = 40.29 Nm and Bg2 = 1.825 Nm.
Furthermore, the input saturation bounds are T1 = 150 Nm and T2 = 15
Nm for the first and second links respectively, whence one can corroborate
that Assumption 2 is fulfilled too. For the sake of simplicity, units will be
subsequently omitted.

For the application of the proposed design methodology, let us define the
functions

σu(ς; β, a) = sign(ς) max{|ς|β, a|ς|} (25a)

σb(ς; β, a,M) = sign(ς) min{|σu(ς; β, a)|,M} (25b)

for constants β > 0, a ∈ {0, 1} and M > 0 (other function definitions, that
may be used in this context, are presented in [43]). Figure 2 shows examples.
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Based on the functions in Eqs. (25), we define —for every j = 1, 2—
those involved in the implementations performed in this subsection as

σij(ς) = σb(ς; βi, aij,Mij) i = 1, 2 (26a)

σ3j(ς) = σu(ς; β3, a3j) (26b)

Let us note that through these definitions we have Bj = M1j +M2j, j = 1, 2
(see (16) and recall footnote 8). Thus, by fixing M11 = M21 = 50 and
M12 = M22 = 6.4, the inequalities from expression (16) are satisfied. The im-

plementations were run taking the desired configuration at qd =
(
π/4 π/2

)T
[rad] and initial conditions as q(0) = q̇(0) = ϑc(0) = 02.

Following the design procedure in accordance to Corollary 1, we began
by a test where the aim is to corroborate the convergence difference among
the closed-loop trajectories obtained with the proposed finite-time controller,
taking β1 = β2 = 1/2 and β3 = 3/4, and the analog exponential stabilizer,
i.e. with β1 = β2 = β3 = 1. All the rest, including control and auxiliary
subsystem gains, remained unchanged. For this test we took aij = 0, i =
1, 2, 3, j = 1, 2. As a performance comparison indicator, we obtained the
%-stabilization time ts%, defined as ts% , inf{ts ≥ 0 : ‖x(t)‖ ≤ % ∀t ≥ ts},
where x ,

(
q̄T q̇T ϑT

)T
.

Figure 3 shows results obtained taking K1 = K2 = diag[70, 20], A =
diag[30, 30] and B = diag[70, 20]. One sees that the stabilization objective
was achieved by both controllers avoiding input saturation. Moreover, the
contrast among the different types of trajectory convergence, in accordance
to the corresponding controller nature, is clear from the graphs. In partic-
ular, one sees that, with the finite-time controller, the position errors, and
actually the (norm of the) whole state vector in the extended state space
(x = (q̄T q̇T ϑT )T ), converge to zero in less than 5 seconds, remaining
invariant thereafter. The exponential controller, instead, generated asymp-
totically convergent closed-loop trajectories with longer stabilization time.
In terms of the ρ-stabilization time for ρ = 0.01, we obtained ts0.01 = 7.38 s
for the exponential controller vs ts0.01 = 2.16 s for the finite-time stabilizer.
Let us note that, in view of the different types of trajectory convergence,
whatever the control parameter tuning be, there will always be a sufficiently
small value ρ∗ such that tsρ is smaller in the finite-time controller case for all
ρ < ρ∗. The control gain tuning was fixed so as to render such a convergence
difference visibly clear from the graphs.

Another test was run in order to compare the finite-time controller pro-
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Figure 3: Finite-time vs exponential stabilization: position errors (↑), control signals (↓)
and ‖x(t)‖ (→)
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posed here with an observer-based algorithm from [16]. More precisely, with
the control replacement posed in the last paragraph of [16, Section 3], having
the form

u = g(q)−K1Sat(Sig(ζ1; β1))−K2Sat(Sig(ζ2; β2)) (27)

where, for any x ∈ Rn and β ∈ R>0, Sat(x) =
[
sat(x1) , . . . , sat(xn)

]T
,

Sig(x; β) =
[
sign(x1)|x1|β , . . . , sign(xn)|xn|β

]T
, β1 ∈ (0, 1), β2 = 2β1/(1 +

β1), Ki = diag[ki1, . . . , kin], i = 1, 2, are positive definite —control gain—
matrices such that

k1j + k2j < Tj −Bgj (28)

j = 1, . . . , n (so as to guarantee input saturation avoidance), and ζi ∈ Rn,
i = 1, 2, are the state vector variables of a finite-time observer with the
following state-space representation

ζ̇1 = ζ2 − L1Sig(ζ1 − q̄, α1) (29a)

ζ̇2 = v − L2Sig(ζ1 − q̄;α2) (29b)

where
v = M−1(q)

[
− g(q)− C(q, ζ2)ζ2 + u

]
(30)

α1 = (1+β1)/2, α2 = β1, Li, i = 1, 2, are positive definite diagonal —observer
gain— matrices, and the position error vector variable q̄ is as previously
defined. In view of the different degree of dependence on the system model
among the control scheme in expressions (27)–(30) —subsequently designated
as H02— and the controller proposed here, the motivation of this new test
is to carry out the comparison under system parameter uncertainties. To
account for such parameter imprecisions, the test was run replacing in the
corresponding control algorithms g(·), C(·, ·) and/or M(·) by ĝ(·) = kgg(·),
Ĉ(·, ·) = kCC(·, ·) and M̂(·) = kMM(·), respectively, taking kg = kC = kM =
1.15. Furthermore, the test was implemented keeping the same auxiliary
functions for the proposed finite-time controller, i.e. those in Eqs. (26)
with M11 = M21 = 50 and M12 = M22 = 6.4, and β1 = 1/2 for both
controllers (i.e. β1 = β2 = 1/2 and β3 = 3/4 for the proposed finite-time
scheme, and β1 = α2 = 1/2, β2 = 2/3 and α1 = 3/4 for the H02 controller).
The same desired configuration as in the previous test and analog initial
conditions were also taken, i.e. qd = (π/4 π/2)T and q(0) = q̇(0) = 02

for both controllers, ϑc(0) = 02 for the proposed finite-time scheme and
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Table 1: Performance indices: proposed controller vs H02

prop. cont. H02

ts0.01 1.21 2.37
ISE 0.015 0.069

ζ1(0) = ζ2(0) = 02 for the H02 controller. As a variation with respect to the
previous implementations, for this test the proposed finite-time algorithm
was run taking aij = 1, i = 1, 2, 3, j = 1, 2. The control parameters were
tuned, after numerous simulations, so as to get the best possible performance
for every controller, taking into account the advantages and design features
of each one, in particular, with high enough observer gains in the H02 case
to considerably reduce the uncertainty effects in the observer estimations,
and taking into account its (saturation-avoidance) control gain constraints
(28), and on the other hand the liberty to fix any desired (positive) control
gain value in the case of the control scheme proposed here. The resulting
values were K1 = diag[100, 50], K2 = diag[80, 45], A = diag[31, 31], B =
diag[35, 20] for the proposed scheme, and K1 = diag[55, 6], K2 = diag[45, 5],
L1 = L2 = diag[1000, 250] for the H02 controller. Furthermore, in view of
the considered system uncertainties, as performance comparison indicators,
we calculated a modified version of the %-stabilization time defined (for this
test) as ts% , inf{ts ≥ 0 : ‖q̇(t)‖ ≤ % ∀t ≥ ts}, as well as the Integral

of the Square of the Error (ISE) index, defined as
∫ t0+∆

t0
‖x(t)‖2dt, applied

during the steady-state phase, more precisely with t0 = tsρ and common ∆
for every controller, both in their respective extended state space, i.e. with
x = (q̄T q̇T ϑT )T for the proposed scheme, and x = (q̄T q̇T ζT1 ζT2 )T in the
case of the H02 controller.

Figure 4 shows the results obtained for this test. One corroborates that
the system trajectories reached an equilibrium avoiding input saturation,
both controllers with a reduced steady-state error. Table 1 shows the re-
sulting values for each one of the considered performance indices —with the
ISE calculated taking t0 = ts0.01 and ∆ = 7.6 s— whence one sees that the
proposed controller achieved a faster response and a lower ISE index value.

As a suggestion from an anonymous reviewer, under the same parameter
uncertainty considered in the previous test, we further performed an ad-
ditional test where the (discontinuous) algorithms from [25] and [11] were
involved. More precisely, leaving the controller output from the scheme

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

�

 

 

prop. cont. H02

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

�

0 1 2 3
−50

0

50

100

150

�

0 1 2 3
−15

−10

−5

0

5

10

15

�

Figure 4: Proposed finite-time controller vs H02 with biassed parameter estimations:
position errors (↑) and control signals (↓)
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Table 2: Performance indices: proposed controller vs L98 and DFL05

prop. cont. L98 DFL05

ts0.01 1.21 2.89 2.51
ISE 0.014 0.473 0.013

proposed in this work, and replacing the auxiliary (dynamic dissipation)
subsystem in Eqs. (15) by the respectively referred algorithms, i.e. by
Eqs. (29) with α1 = 1/2 and α2 = 0 in both cases, taking v = 0n and
ϑ = ζ2 − L1Sig(ζ1 − q̄; 1/2) in the case of the differentiator from [25], sub-
sequently designated as L98, and taking v as in (30) and ϑ = ζ2 in the case
of the observer from [11], subsequently designated as DFL05. This time, the
control gain parameter values were kept for every one of the tested controller,
and the auxiliary subsystem parameters were fixed (after numerous simula-
tions) so as to obtain the best possible closed-loop performance at every one
of the implemented cases. The common control gains were K1 = diag[100, 50]
and K2 = diag[80, 45], and the resulting auxiliary subsystem parameter val-
ues were L1 = diag[502.02, 152.02] and L2 = diag[100, 100] in the case of L98,
L1 = L2 = diag[13.2, 5.2] in the case of DFL05, and those from the previous
test for the proposed controller, i.e. A = diag[31, 31] and B = diag[35, 20].
The same performance indices defined for the previous test were considered
for this test.

Figure 5 shows the results obtained for this test. The graphs show that
at all the implemented cases an equilibrium is attained entailing a reduced
steady-state error. Table 2 shows the resulting values for each one of the
considered performance indices —with the ISE calculated taking t0 = ts0.01

and ∆ = 7.1 s— whence one sees that the proposed controller achieved the
fastest response, and L98 produced the highest ISE index value, with the
other two controllers being very close at this latter aspect. Let us further
add that each one of the implementations were reproduced using different
integration steps. The responses obtained with the proposed controller and
with DFL05 did not produce perceptible changes through such a technical
modification in the numerical simulations. Such was not the case for L98.
The results shown in Fig. 5 were obtained using an integration step of 10−5

s. When they were reproduced with an integration step of 10−4 s, the sys-
tem response obtained with L98 was notoriously different with respect to
the corresponding one reported in Fig. 5 (it actually kept oscillating). This
leads us to conclude that L98 is sensible to technical implementation aspects
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Figure 5: Proposed finite-time controller vs L98 and DFL05 with biassed parameter esti-
mations: position errors (↑) and control signals (↓)
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such as the integration step or the involved numerical-integration algorithm
(recall the dynamic nature of the auxiliary subsystem) or the sampling pe-
riod (under digital or computer-based implementations, as commonly done
nowadays), particularly if the former is attached to the latter. Furthermore,
the implementation involving the DFL05 algorithm produced a(n although
reduced but existent) chattering type effect on the control signals, as actu-
ally shown in Fig. 5. Such phenomena noticed in the L98 and DFL05 cases
are related to their discontinuous nature and are avoided in the case of the
proposed controller.

6. Conclusions

Global output-feedback stabilization of mechanical systems with input
constraints guaranteeing finite-time or exponential stabilization has been
made possible through local homogeneity. A continuous control scheme
based on such a concept has been thoroughly developed and formally pro-
posed, leaving the designer the election on the mentioned types of conver-
gence through a simple parameter. The proposed scheme achieves the control
objective through a continuous dynamic dissipator with a simple generalized
structure. The work has been complemented through a simulation implemen-
tation section where it has not only been possible to illustrate the application
of the proposed method and confirm the analytical results but also to cor-
roborate the performance difference with respect to previous observer-based
an differentiation algorithms. Future work will focus on a more thorough
robustness study under uncertainties.
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Appendix A. Passive systems

We recall here the definition of a passive dynamical system represented
by state model [21, §6.2]

ẋ = f(x, u) (A.1a)

y = h(x, u) (A.1b)
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with f : Rn × Rm → Rn and h : Rn × Rm → Rm being continuous, f(x, u)
locally Lipschitz on Rn × Rm \ (0n, 0m), f(0n, 0m) = 0n and h(0n, 0m) = 0m.

Definition 8. The system represented by the state model in Eqs. (A.1) is
said to be passive if there exists a continuously differentiable positive semidef-
inite function V (x) (called the storage function) such that

V̇ (x, u) =
∂V

∂x
f(x, u) ≤ uTy

∀(x, u) ∈ Rn × Rm. Moreover, it is said to be

• lossless if V̇ (x, u) = uTy;

• input strictly passive if V̇ (x, u) ≤ uTy − uTϕ(u) for some function
ϕ : Rm → Rm such that uTϕ(u) > 0, ∀u 6= 0m;

• output strictly passive if V̇ (x, u) ≤ uTy − yTρ(y) for some function
ρ : Rm → Rm such that yTρ(y) > 0, ∀y 6= 0m;

• strictly passive if V̇ (x, u) ≤ uTy−ψ(x) for some positive definite func-
tion ψ : Rn → R.

Definition 9. The system represented by the state model in Eqs. (A.1)
is said to be zero-state observable, if no solution of ẋ = f(x, 0m) can stay
identically in S = {x ∈ Rn : h(x, 0m) = 0m}, other than the trivial solution
x(t) ≡ 0n (or equivalently u(t) ≡ y(t) ≡ 0m =⇒ x(t) ≡ 0n).

Appendix B. Proof of Theorem 2

Let Vi(xi) and Vj(xj) be the storage functions for Σi and Σj, respec-
tively. As proven in [21, Lemma 6.7], Vj(xj) is positive definite. Take
V (x1, x2) = Vi(xi) + Vj(xj) as Lyapunov function candidate for the closed
loop. Its derivative along the system trajectories V̇ satisfies

V̇ =
∂Vi
∂xi

fi(xi, ei) +
∂Vj
∂xj

fj(xj, ej) ≤ eTi yi + eTj yj − ψ(xj)

with ψ being positive definite in its argument, i.e. ψ(xj) > 0, ∀xj 6= 0nj
, and

ψ(0nj
) = 0. Since u1 = u2 = 0m, it then follows that

V̇ ≤ (−1)iyTj yi + (−1)jyTi yj − ψ(xj)

≤ (−1)iyTj yi − (−1)iyTi yj − ψ(xj)

≤ −ψ(xj)
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From the positive definite character of ψ, we have that S , {(x1, x2) ∈
Rn1 ×Rn2 : V̇ = 0} = {(x1, x2) ∈ Rn1 ×Rn2 : xj = 0nj

}. It then follows that

(x1, x2)(t) ∈ S ∀t =⇒ xj(t) ≡ 0nj

=⇒ ẋj(t) = fj(0nj
, ej(t)) ≡ 0nj

=⇒ ej(t) ≡ 0m (B.1a)

=⇒
{
yj(t) ≡ hj(0nj

, 0m) = 0m =⇒ ei(t) ≡ 0m
yi(t) ≡ 0m

}

=⇒ xi(t) ≡ 0ni
(B.1b)

where the third implication, (B.1a), is a consequence of (13), and the last one,
(B.1b), results from the zero-state observability of Σi. Hence, (x1, x2)(t) ≡
(0n1 , 0n2) is the only solution staying identically in S, and consequently
{(0n1 , 0n2)} is the only —therefore the largest— invariant in S. Thus, from
the invariance theory [30, §7.2], (x1, x2) = (0n1 , 0n2) is concluded to be asymp-
totically stable. Finally, radial unboundedness of V1 and V2 renders V radial
unbounded, whence the concluded asymptotic stability proves to be global
[30, Corollary 7.2.1] (see footnote 9).
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[26] A. Loŕıa, Observers are unnecessary for output-feedback control of La-
grangian systems, IEEE Transactions on Automatic Control 61 (2016)
905–920.
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