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Adaptive tracking control of chaotic systems with applications
to synchronisation

Antonio Loŕıa, IEEE member and Arturo Zavala-Rı́o

Abstract—We address the problem of controlled synchro-
nisation of a class of uncertain chaotic systems. Our ap-
proach follows techniques of adaptive tracking control and
identification of dynamic systems from recent developments
of control theory. In particular, we use new notions of the
so-called property of persistency of excitation —known to
be sufficient and necessary for parameter estimation— to
construct adaptive algorithms that ensure perfect track-
ing/synchronisation and parameter estimation of chaotic
systems with parameter uncertainty. Our theoretical find-
ings are supported by particular examples and simulation
studies on systems such as the Lorenz and Rössler oscilla-
tors and the Duffing equation.

I. Introduction

We address adaptive tracking control of chaotic systems;
in a general setting, this can be described as follows. Con-
sider the controlled system

ẋ = f(t, x, u, θ) (1)

where x ∈ Rn is the state of the system, u ∈ Rn corre-
sponds to the control inputs, θ ∈ Rm is a vector of un-
known constant parameters and f satisfies the sufficient
conditions for existence and uniqueness of solutions (typ-
ically, continuity in all arguments and, for each u and θ,
locally Lipschitz in x, uniformly in t) and the origin is an
equilibrium point, that is, f(t, 0, 0, θ) ≡ 0. Consider the
problem of designing a control input u such that, given any
(sufficiently smooth, bounded) reference trajectory xd(t)
—typically generated by an exogenous system— we have:
• the system trajectories x(t) tend to the reference trajec-
tories xd(t); and
• the parameters θ are identified, i.e. the estimates θ̂(t) →
θ as t →∞.

The adaptive tracking control problem of chaotic systems
is partially motivated by applications in classical master-
slave synchronisation, cf. [1], and in communications using
chaotic signals, cf. [2], [3]. In these contexts, the reference
trajectory xd(t) is assumed to be generated by a master sys-
tem which does not necessarily have the same nature as the
slave; e.g. a chaotic signal may be generated by a Rössler
system and received, carrying significant information, by
a Lorenz slave system. Hence, synchronisation is achieved
if x(t) → xd(t), that is if the tracking control problem
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is solved. Parameter adaptation is necessary since, even
though the slave system’s model is supposed to be known,
in practise, there always exists some degree of uncertainty
in the values of the dynamic parameters θ, which depend
on the physical devices used to construct the slave system
—e.g. resistances, capacitors, etc., used in electrical-circuit
realisations of chaotic systems.

Tracking control of chaotic systems in the presence of
parametric uncertainty has been considered, for instance,
in [4], [5], [6], [7], but none of these references address the
problem of parametric convergence. In the context of se-
cure communication, adaptive chaos control has been con-
sidered in [8]. In [9], parameter estimation of a chaotic
dynamical system involved in a synchronisation scheme is
developed; see also [10] which deals with the parameter es-
timation of the Lorenz system and, wrongly (abusively us-
ing LaSalle’s principle), proves that parameters converge.
This is commented in the interesting paper [11] where the
authors correctly point out that LaSalle’s principle does
not hold for general non-autonomous systems but holds for
periodic systems; in [11] an alternative analysis1 is carried
out to prove parameter convergence for the particular case
of synchronisation of two Lorenz oscillators using a contra-
diction argument. It is also claimed, without reference nor
(general) proof, that LaSalle’s principle holds for chaotic
systems. Another article to mention, on synchronisation
of chaotic systems via adaptive control is [12]. However,
even though tracking is achieved, parameter convergence
is not included within the stability proof developed by the
authors, and is consequently not guaranteed through the
proposed scheme. We believe that, while the ideas in the
previous references are quite interesting they lack either, of
formal stability proofs or generality or both.

Two aspects of stability are crucial for general non-
autonomous systems: uniformity and globality. The first
guarantees certain robustness while the second ensures
good performance for any initial conditions. As far as we
know the problem of guaranteeing uniform parametric con-
vergence, simultaneously to synchronisation, remains open.
The contribution of this paper is a general result on adap-
tive tracking control for a wide variety of chaotic systems;
we prove uniform global asymptotic stability for the syn-
chronisation and parameter error dynamics. We stress that
this is a much stronger property than simple convergence
of parameters and synchronisation errors2. Our method re-
lies on designing adaptive controllers, i.e. dynamic systems
composed of a control law u(t, x, xd(t), θ̂) and adaptation

1We stress that this reference was published after the original sub-
mission of the present paper.

2For further discussions we invite the reader to see [13].
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law ˙̂
θ = g(t, x), such that the closed-loop system

ẋ = f(t, x, u(t, x, xd(t), θ̂), θ)
˙̂
θ = g(t, x)

can be written in the new state-space as

˙̃x = F (t, x̃, θ̃)
˙̃
θ = G(t, x̃)

where we defined the tracking errors x̃ := x − xd and the
estimation errors θ̃ := θ̂ − θ.

We solve the adaptive tracking control problem by show-
ing uniform global asymptotic stability (UGAS, cf. Section
II and [14], [15]) for the origin of the closed-loop system,
i.e. col[x̃, θ̃] = 0 where col[·, ·] represents a column vec-
tor. UGAS is one of the strongest stability properties one
can have for time-varying systems since it guarantees a cer-
tain degree of robustness with respect to “bounded distur-
bances”; in other words, if a system is UGAS then, small
disturbances will produce small steady-state errors.

In particular, we solve the problem of adaptive synchro-
nisation under the standing assumption that the state of
the master system is known, however, no other knowledge
of the master system is required —not even the type of
system that generates the reference trajectories. We also
assume that only the model of the slave system is known
but not the exact numerical values of the dynamic param-
eters.

The rest of the paper is organised as follows: we first
present a generalisation of a recently contributed theorem
for stability of nonlinear time-varying systems (cf. Section
II) then, in Section II we apply this theorem in the adaptive
control of a general class of systems which covers chaotic
oscillators, such as the Rössler and Lorenz systems as well
as the Duffing equation. Simulations, in the context of syn-
chronisation, are presented for each application to illustrate
the usefulness of our findings. Finally, some concluding re-
marks are given in Section IV.
Notation: We start by introducing some notation and re-
calling some definitions. A continuous function γ : R≥0 →
R≥0 is of class K (γ ∈ K), if γ(s) is strictly increasing
and γ(0) = 0; γ ∈ K∞ if, in addition, γ(s) → ∞ as
s → ∞. A continuous function β : R≥0 × R≥0 → R≥0

is of class KL if β(s, t) ∈ K for each fixed t ∈ R≥0 and, for
each s ≥ 0, β(s, ·) is strictly decreasing and β(s, t) → 0
as t → ∞. We denote by x(t, t◦, x◦), the solutions of
the differential equation ẋ = f(t, x) with initial condi-
tions (t◦, x◦). For a function V : R≥0 × Rn → Rn we
also define V̇ (t, x) := ∂V

∂t + ∂V
∂x f(t, x). We denote by ‖ · ‖

the Euclidean norm of vectors and the induced norm of
matrices. For continuous functions φ : R≥0 → Rn we
define ‖φ‖∞ := supt≥0 ‖φ(t)‖. We define the closed ball
BR := {x ∈ Rn : ‖x‖ ≤ R}.

II. Lyapunov stability of time-varying systems

Consider the system

ẋ = F (t, x) , (2)

For these systems (with F continuous and locally Lipschitz
in x, uniformly in t) probably the most useful stability
properties are the following since in particular, there exist
converse Lyapunov theorems for them and UGAS guaran-
tees robustness.

Definition 1 (Uniform global stability [15]) The ori-
gin of the system (2) is said to be uniformly globally sta-
ble (UGS) if there exists γ ∈ K∞ such that, for each
(t◦, x◦) ∈ R≥0 × Rn each solution x(t, t◦, x◦) satisfies

‖x(t, t◦, x◦)‖ ≤ γ(‖x◦‖) ∀ t ≥ t◦ . (3)

Definition 2 (Uniform global attractivity [15]) The ori-
gin of the system (2) is said to be uniformly globally attrac-
tive if for each r, σ > 0 there exists T > 0 such that, for
each (t◦, x◦) ∈ R≥0 × Rn each solution x(t, t◦, x◦) satisfies

‖x◦‖ ≤ r =⇒ ‖x(t, t◦, x◦)‖ ≤ σ ∀ t ≥ t◦ + T . (4)

Furthermore, we say that the (origin of the) system is uni-
formly globally asymptotically stable (UGAS) if it is UGS
and uniformly globally attractive3.

In general UGAS, is guaranteed for (2) if and only if there
exists a Lyapunov function V (t, x), class K∞ functions α1

and α2 and a class K function α3 such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (5a)
V̇ (t, x) ≤ −α3(‖x‖) . (5b)

While UGAS necessarily implies the existence of a Lya-
punov function satisfying (5), finding such a Lyapunov
function is in general very hard. The contribution of this
paper consists in presenting general results that guarantee
UGAS, without a Lyapunov function satisfying the con-
ditions above, for a class of systems that includes many
chaotic systems. We present below the setting for these
theorems.

A. Uniform δ-persistency of excitation

Our results rely on a condition of exciteness tailored for
nonlinear systems, that we describe in this section. We
start by recalling the definition of persistency of excitation
introduced for linear time-varying systems and which can
be found in many books on adaptive control ([16], [17],
etc.).

Definition 3 (PE) The locally integrable function Φ :
R≥0 → Rn×m, with n ≥ m, is said to be persistently excit-
ing if there exist µ > 0 and T > 0 such that

∫ t+T

t

Φ(τ)Φ(τ)>dτ ≥ µI ∀ t ∈ R≥0 . (6)

The systems that we deal with in this paper are nonlinear
time-varying; therefore, we need to introduce the following

3Other references treating stability definitions in detail are [14],
[13].
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property which is a relaxed condition of persistency of ex-
citation. The definition below was originally proposed in
[18] (see also [19]).

Let x ∈ Rn be partitioned as x := col[x1, x2] where
x1 ∈ Rn1 and x2 ∈ Rn2 and n = n1 + n2. Define the
column vector function φ : R≥0×Rn → Rm to be such that
t 7→ φ(t, x) is locally integrable. Define also D1 := {x ∈
Rn : x1 6= 0}.

Definition 4 The function φ is said to be uniformly δ-
persistently exciting (Uδ-PE) with respect to x1 if for each
x ∈ D1 there exist δ > 0, T > 0 and µ > 0 such that for
all t ∈ R≥0,

‖z − x‖ ≤ δ =⇒
∫ t+T

t

‖φ(τ, z)‖dτ ≥ µ . (7)

The property of Uδ-PE defined above roughly means that
for each fixed x such that x1 6= 0 the function Φ(t)> :=
φ(t, x) (that is, Φ depends only on time because x is fixed)
is PE and µ and T are the same for all neighbouring points
of x. For functions that are continuous uniformly in the
second argument we do not need to check the condition
on the neighbouring points. More precisely we have the
following.

Lemma 1 [19] If φ(t, ·) is uniformly continuous4 then,
φ(t, x) is Uδ-PE with respect to x1 if and only if for each
x ∈ D1 there exist T > 0 and µ > 0 such that, for all t ∈ R,

∫ t+T

t

‖φ(τ, x)‖dτ ≥ µ . (8)

¤

Example 1 The function φ(t, x) := v(x)ψ(t) with v posi-
tive definite, continuous and ψ PE and bounded, is Uδ-PE.
¤

Lemma 1 also helps to see that the following interesting
fact, which is very useful in our identification problem, is
true.

Fact 1 The function φ(t, x) := Φ(t)>x with Φ(t), contin-
uous and bounded, is Uδ-PE with respect to x if and only
if Φ is PE.

In its turn, this fact is very useful to analyse nonlinear
adaptive control systems that are linear in the unknown
parameters. Such is the case for several chaotic systems,
as we will see later.

B. UGAS of nonlinear systems

We introduce now, a general result for stability of non-
linear time-varying systems (2) that applies in the adaptive
tracking control problems studied in this paper. Let

F (t, x) :=
[
A(t, x1) + B(t, x)

H(t, x)

]
(9)

4A sufficient condition for uniform continuity of a function f is that
its derivative be bounded.

be all functions that are equivalently equal to zero when
x = 0 and have the properties to ensure existence and
uniqueness of solutions. For further development, let us
define

B◦(t, x2) := B(t, x)
∣∣
x1=0

(10)

and notice that necessarily, B◦(t, 0) ≡ 0.
This type of systems has been studied before for instance

in [20], [21] and, as pointed out in the last reference, have
appeared for instance in Model Reference Adaptive Control
of linear plants (cf. [20]) and in mechanical systems. We
show that they also cover well-known chaotic systems such
as the Duffing equation, the Lorenz and Rössler systems.

For the sequel, we split the state vector into x :=
col[x1, x2] where x1 corresponds to the trajectory tracking

(position and velocity) error and x2 the parameter estima-
tion error. The vector A(t, x1) corresponds to the closed-
loop dynamics of the system with the controller as if the dy-
namic parameters were known. Finally, the vectors B(t, x)
and H(t, x) involve the regressor function, considering that
the model is linear in the dynamic unknown parameters.

Thus, let us consider systems of the form given above
and under the following conditions.
Assumption 1 There exists a continuously differentiable
function V1 : R≥0 × Rn → R≥0 which is positive definite,
decrescent, radially unbounded, i.e. there exist functions
α′1, α′2 ∈ K∞ such that

α′1(‖x‖) ≤ V1(t, x) ≤ α′2(‖x‖)

and V̇1(t, x) ≤ 0 for all (t, x) ∈ R≥0 × Rn.
Assumption 1 is tantamount to assuming that the system
is UGS, hence, for any r > 0 we have ‖x(t)‖ ≤ γ(r) where
γ is defined in (3).
Assumption 2 Given any R > 0, there exists a continu-
ously differentiable function V2 : R≥0 × BR → R≥0 which
is positive definite, decrescent, radially unbounded and has
a negative semidefinite time-derivative on BR. More pre-
cisely, assume that there exist functions α1, α2 ∈ K∞ and
U : Rn1 → R≥0 continuous positive definite, such that

α1(‖x‖) ≤ V2(t, x) ≤ α2(‖x‖) (11a)
V̇2(t, x) ≤ −U(x1) (11b)

for all (t, x) ∈ R≥0 ×BR.
In the context of this paper, i.e. where x1 denotes track-

ing errors and x2 parameter estimation errors, Assumption
2 means that we know a strict Lyapunov function for the
case when the parameters are exactly known. Such a Lya-
punov function is useful, for instance, to construct another
Lyapunov function involving parametric errors; then, if the
derivative of this new function satisfies the bound (11b) one
can show that the tracking errors converge to zero even if
the parametric errors do not. The latter is due to what
is called, in adaptive control theory, certainty-equivalence
principle –cf. e.g. [22], [17] and it is a property of many
adaptive controllers; in particular, of passivity-based adap-
tive controllers for mechanical systems –cf. e.g. [23], [24].
To some extent, a similar situation, to that of adaptive



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 5

control of mechanical systems is encountered in the con-
text of synchronisation with parameter uncertainty e.g., in
[10], [11].

In many applications both Assumptions 1 and 2 may
be verified with the same function V ; however, in general
this is not necessarily the case. Stating these assumptions
separately gives the extra freedom of verifying (11b) re-
stricting the state to closed balls as opposed to the whole
state space.

The following hypothesis consists in a set of conditions
on boundedness of certain functions, uniformly in time.
Assumption 3 For each ∆ > 0 there exist bM > 0 and
continuous nondecreasing functions ρi : R≥0 → R≥0 with
i = 1, 2 such that ρi(0) = 0 and for all t ∈ R≥0 and all
x ∈ Rn

max
|x2|≤∆

{
‖B◦(t, x2)‖, ‖∂B◦

∂t
‖, ‖∂B◦

∂x2
‖
}
≤ bM , (12)

max
|x2|≤∆

‖B(t, x)−B◦(t, x2)‖ ≤ ρ1(‖x1‖) , (13)

max
|x2|≤∆

{‖A(t, x1)‖, ‖H(t, x)‖} ≤ ρ2(‖x1‖) . (14)

Under these assumptions, we can state the following gen-
eral theorem for systems (2), (9) and that is fundamental
to present our main results on adaptive control of chaotic
systems.

Theorem 1 The system (2), (9) under Assumptions 1-3
is UGAS if and only if
(Assumption 4) the function B◦(t, x2) is Uδ-PE with re-
spect to x2 .

¤

The proof follows along the lines of the proof of Theorem
3 in [18] and is omitted here.

III. Adaptive tracking control of chaotic
systems

Our control approach consists in designing a control law
such that the closed-loop system has the form (2), (9) and
satisfies the conditions of the Theorem 1. We study me-
chanical systems such as the Duffing equation as well as a
class of chaotic oscillators which includes the Rössler and
Lorenz systems.

A. Chaotic oscillators

Let us consider chaotic systems that have the form

ẋ + Φ(x)x + Ψ(x)θ = u (15)

where θ ∈ Rm is a vector of unknown parameters, x ∈ Rn

is the system’s state, Φ(·) and Ψ(·) are locally Lipschitz
continuous and u ∈ Rn is a control input. We address the
problem of adaptive tracking control of system (15), with
parameter convergence. In the context of synchronisation,
such problem comes to synchronise the trajectories of the
controlled chaotic slave system (15) with the reference tra-
jectories xd(t) generated by a master system.

Proposition 1 Consider the system (15). Assume that
there exist a continuously differentiable function P : R≥0×

Rn → Rn×n, pm, pM and q > 0 such that, for all ξ ∈ Rn,
pmI ≤ P (t, x) ≤ pMI and

ξ>
(

˙︷ ︷
P (t, x) + [K(x)− Φ(x)]>P (t, x)

+ P (t, x)[K(x)− Φ(x)]
)

ξ ≤ −q‖ξ‖2 . (16)

Then, the adaptive controller

u = Φ(x)xd + K(x)x̃ + Ψ(x)θ̂ + ẋd (17a)
˙̂
θ = −γΨ(x)>P (t, x)x̃ , (17b)

where each element of K(·) is locally Lipschitz continu-
ous, makes the origin of the closed-loop system, uniformly
globally asymptotically stable if and only if Ψ(xd(t)) is per-
sistently exciting, i.e. if there exist µ and T > 0 such that

∫ t+T

t

Ψ(xd(s))Ψ(xd(s))>ds ≥ µ I ∀ t ≥ 0 . (18)

¤

Proof . The proof follows from Theorem 1 with x1 = x̃ and
x2 = θ̃. Consider the function5

V (t, x̃, θ̃) :=
1
2
x̃>P (t, x)x̃ +

1
2γ
‖θ̃‖2

which satisfies

1
2γ
‖θ̃‖2 + pm‖x̃‖2 ≤ 2V (t, x̃, θ̃) ≤ pM‖x̃‖2 +

1
γ
‖θ̃‖2 .

Its time-derivative satisfies

2V̇ (t, x̃, θ̃) = x̃>
(

˙︷ ︷
P (t, x) + [K(x)− Φ(x)]>P (t, x)

+P (t, x)[K(x)− Φ(x)]
)

x̃

≤ −q‖x̃‖2 .

This shows that Assumptions 1 and 2 hold. To show
that Assumption 3 holds, let x1 := x̃, x2 := θ̃ and
A(t, x1) := [ K(x1 + xd(t)) − Φ(x1 + xd(t)) ]x1, B(t, x) :=
Ψ(x1+xd(t))x2, and H(t, x) := −γΨ(x1+xd(t))>P (t, x1+
xd(t))x1. The functions A(t, x1) and H(t, x) are uniformly
bounded in t provided that the reference trajectories and
velocities are bounded; also, A(t, 0) ≡ 0, H(t, x) depends
only on x1 and H(t, 0) ≡ 0.

Finally, we see that B◦(t, x2) is Uδ-PE if and only if (18)
holds (cf. Fact 1). ¥

A.1 Example 1: the Lorenz system

The controlled Lorenz chaotic system is defined as

ẋ1 = σ(x2 − x1) + u1

ẋ2 = rx1 − x2 − x1x3 + u2

ẋ3 = x1x2 − bx3 + u3 .

5For simplicity, with an abuse of notation, we write P (t, x) instead
of P (t, x̃ + xd(t)).
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The uncontrolled (u = 0) Lorenz oscillator exhibits a
chaotic behaviour if σ = 16, r = 45.6 and b = 4. Defining
θ := col[σ, r, b], this system takes the form (15), i.e.




ẋ1

ẋ2

ẋ3


 +




0 0 0
0 1 x1

0 −x1 0







x1

x2

x3




+




x1 − x2 0 0
0 −x1 0
0 0 x3







θ1

θ2

θ3


 =




u1

u2

u3


 .

For this system, given the reference trajectories xd(t) —
possibly generated by another Lorenz system or any other
type of chaotic oscillator— the adaptive controller (17)
takes the form

u =




0 0 0
0 1 x1

0 −x1 0







x1d

x2d

x3d


−




k1 0 0
0 k2 0
0 0 k3







x̃1

x̃2

x̃3




+




x1 − x2 0 0
0 −x1 0
0 0 x3







θ̂1

θ̂2

θ̂3


 +




ẋd1

ẋd2

ẋd3




˙̂
θ = −γ




x1 − x2 0 0
0 −x1 0
0 0 x3







x̃1

x̃2

x̃3




where k1, k2 and k3 are positive constants. Indeed, a simple
calculation yields that, choosing P (t, x) := I, the inequal-
ity (16) becomes, simply,

−ξ>




k1 0 0
0 k2 + 1 0
0 0 k3


 ξ ≤ −min{k1, k2 + 1, k3}‖ξ‖2.

We conclude that this condition is verified for any control
parameters such that k1 > 0, k2 > −1 and k3 > 0. The
persistency of excitation condition may be verified numer-
ically; yet, it is evident that this condition would not hold
if x1(t) ≡ x2(t).

We have tested in simulations the performance of the
adaptive controller given above. In the simulation set-up
we assume that the reference trajectories xd(t) are gen-
erated by a Rössler system for which we chose physical
parameters that make the (master) system chaotic i.e.

ẋ1d(t) = x2d(t) + ax1d(t) (19a)
ẋ2d(t) = −x1d(t)− x3d(t) (19b)
ẋ3d(t) = b + x3d(t)[x2d(t)− c] (19c)

where a = 0.15, b = 0.2 and c = 10. The simulation
set-up is as follows: for 40s the Lorenz oscillator is uncon-
trolled and describes a typical Lorenz chaotic behaviour —
the parameters of the Lorenz system were fixed at σ = 16,
b = 45.6 and r = 4. Then, the control action starts on at
t = 40s and the Lorenz system’s trajectories synchronise,
after a short transient, to the Rössler master system —the
Rössler chaotic behaviour is appreciated in the plots.

0
40

80
120

160
200

−40
−20

0
20

40
−40

−20

0

20

40

60

Time [s]

Phase portrait x1 against x2 over time

x1

x
2

Fig. 1. Adaptive tracking control of Lorenz system: state integral
curves for x1 and x2
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Fig. 2. Adaptive tracking control of Lorenz system: state integral
curves for x1 and x3

The control input gains were chosen as k1 = k2 = k3 =
10. The controller uses estimated parameters initialised at
zero and that evolve according to the adaptation law with
an adaptation gain γ = 0.1. Figures 1–3 show the phase
portraits (integral curves) of the state responses while Fig-
ures 4–6 show the evolution, against time, of the respec-
tive estimated parameters. Note the convergence of the
estimated parameters (of the Lorenz system) to their true
values. We also show, in Figures 7–9, the graphs of the
control inputs and in Figures 10 and 11, we represent the
tracking errors between the actual Lorenz and the reference
Rössler trajectories.

We stress that our theoretical conditions are, in gen-
eral, both sufficient and necessary. The particular choice
of lower-bounds (k1 > 0, k2 > −1 and k3 > 0) for the
control gains in this example remains only sufficient. For
completeness we show, in Figure 12, the system’s response
for the choice k1 = 0, and k2 = k3 = 10 i.e., violating
the conditions given. Note that only tracking in the last
two variables is achieved. From this one may conclude that
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UGAS is not achieved for this particular choice of the gains,
which violates the numeric conditions given above, but one
shall not haste to conclude that such particular numeric
conditions are necessary.
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Fig. 3. Adaptive tracking control of Lorenz system: state integral
curves for x2 and x3
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Fig. 4. Adaptive tracking control of Lorenz system: estimated pa-

rameter θ̂1 converging to its true value

A.2 Example 2: the Rössler system

Let us consider now the adaptive tracking control prob-
lem for a Rössler system with input, given by

ẋ1 = ax1 + x2 + u1

ẋ2 = −x1 − x3 + u2

ẋ3 = b + x3[x2 − c] + u3 .

Notice that, defining θ := col[a, b, c], this system can also
be written as



ẋ1

ẋ2

ẋ3


 +




0 −1 0
1 0 1
0 −x3 0






x1

x2

x3


 +



−x1 0 0
0 0 0
0 −1 x3






θ1

θ2

θ3


=




u1

u2

u3


 .
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Fig. 5. Adaptive tracking control of Lorenz system: estimated pa-

rameter θ̂2 converging to its true value
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Fig. 6. Adaptive tracking control of Lorenz system: estimated pa-

rameter θ̂3 converging to its true value
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For this system, given the reference trajectories xd(t) —
possibly generated by another Rössler system or any type
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u2(t)
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of chaotic oscillator— the adaptive controller (17) takes the
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Fig. 11. Adaptive tracking control of Lorenz system: zoom on track-
ing errors between Lorenz and (Rössler) reference trajectories
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Fig. 12. Adaptive tracking control of Lorenz system: violation of
stability conditions on control gains lead to tracking errors

form

u =




0 −1 0
1 0 1
0 −x3 0







x1d

x2d

x3d


−




k1 0 0
0 k2 0
0 x3 k3







x̃1

x̃2

x̃3




+



−x1 0 0
0 0 0
0 −1 x3







θ̂1

θ̂2

θ̂3


 +




ẋd1

ẋd2

ẋd3


 (20a)

˙̂
θ = −γ



−x1 0 0
0 0 −1
0 0 x3







x̃1

x̃2

x̃3


 (20b)

where k1, k2 and k3 are positive constants such that k2k3 >
1

4
. To see this, we verify the inequality (16) which, for

P (t, x) := I, becomes

−ξ>




2k1 0 0
0 2k2 1
0 1 2k3


 ξ ≤ −q‖ξ‖2



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 9

where q is a positive number if and only if k2k3 >
1

4
and

ki > 0; indeed, a simple calculation shows that the minimal
eigenvalue of the matrix above corresponds to

min
{

2k1, k2 + k3 −
√

(k2 + k3)2 − (4k2k3 − 1)
}

.

We have tested in simulations the performance of the
adaptive controller given above. In the simulation set-up
we assume that the reference trajectories xd(t) are gener-
ated by a Lorenz system for which we chose physical pa-
rameters that make the (master) system chaotic i.e.

ẋ1d(t) = σ(x2d(t)− x1d(t)) (21a)
ẋ2d(t) = rx1d(t)− x2d(t)− x1d(t)x3d(t) (21b)
ẋ3d(t) = x1d(t)x2d(t)− bx3d(t) . (21c)

with σ = 16, r = 45.6 and b = 4.
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Fig. 13. Adaptive tracking control of Rössler system: state integral
curves for x1 vs. x2
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Fig. 14. Adaptive tracking control of Rössler system: state integral
curves for x1 vs. x3

The simulation set-up is as follows: for 200s the Rössler
oscillator is uncontrolled and describes a typical chaotic be-
haviour —the parameters of the Rössler system were fixed
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Fig. 15. Adaptive tracking control of Rössler system: state integral
curves for x2 vs. x3
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Fig. 16. Adaptive tracking control of Rössler system: estimated

parameter θ̂1(t) converging to its true value
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Fig. 17. Adaptive tracking control of Rössler system: estimated

parameter θ̂2(t) not converging to its true value

at a = 0.15, b = 0.2 and c = 10; the control action starts
on at t = 200s and the Rössler system’s trajectories syn-
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Fig. 18. Adaptive tracking control of Rössler system: estimated

parameter θ̂3(t) converging to its true value
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chronise to the Lorenz master system —the Lorenz chaotic
behaviour described by the Rössler system is appreciated
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in the plots, cf. Figures 13–23. For the simulation pur-
poses, the trajectories of the Lorenz master system were
slowed down by a factor of 10 since it is naturally much
faster than the Rössler system.

The control input gains were chosen as k1 = k2 = k3 =
10. The controller uses estimated parameters initialised
at zero and that evolve according to the adaptation law
with an adaptation gain γ = 0.1. Figures 13–15 show plots
of the state integral curves corresponding to the controlled
slave system and Figures 16–18 show plots of the estimated
parameters, against time; notice that convergence of the
estimated parameters (of the Rössler system) to their true
values is achieved, except for θ̂2(t) = b̂(t) which converges
to a steady-state value different from b = 0.2. This is in ac-
cordance with the theoretical results: a closer look at the
matrix Ψ(x) reveals that the necessary condition of per-
sistency of excitation for uniform parameter convergence
cannot be met; indeed, we have

∫ t+T

t

Ψ(xd(s))Ψ(xd(s))>ds

=




∫ t+T

t
xd1(s)2ds 0 0
0 0 0
0 0

∫ t+T

t
[xd3(s)2 + 1]ds




for which matrix there is clearly no T > 0 to render it
positive definite. Yet, the tracking errors converge to zero
asymptotically; this is in view of the commonly known, in
control theory, certainty equivalence principle (cf. [17]).
However, in this particular case, one cannot conclude uni-
form global asymptotic stability of the origin.

Other plots are shown in Figures 19–23: specifically the
control inputs on Figures 19–21 and the tracking errors on
Figures 22 and 23; note from the latter that the tracking
control goal is achieved almost instantaneously.

B. Duffing equation

Let us consider now the tracking control problem for the
controlled (normalised) Duffing equation

q̈ + θ1q + q3 + θ2q̇ − θ3 cos ωt = u (22)

where θi are supposed to be unknown but constant, ω is
known and u is a control input. Let θ := col[θ1, θ2, θ3]
and θ̂ denote its estimate. Define the regressor function
Ψ : R≥0 × R2 → R3 as Ψ(t, q, q̇) := [q, q̇, − cosωt]. The
uncontrolled Duffing equation (with u = 0) exhibits chaotic
behaviour if θ1 = −1.1, θ2 = 0.4, θ3 = 2.1 and ω = 1.8

Proposition 2 Let q∗ : R≥0 → R be the reference tra-
jectory, assumed to be twice continously differentiable,
bounded and with bounded derivatives. Define the track-
ing velocity and position errors ˙̃q := q̇− q̇∗ and q̃ := q− q∗.
Consider the system (22) in closed loop with

u = q̈∗ + q∗3 + 3q2q∗ − 3qq∗2 + θ̂1q + θ̂2q̇ − θ̂3 cosωt

−kd
˙̃q − kp1q̃ − kp2q̃

3 (23a)
˙̂
θ = −γΨ(t, q, q̇)>[ ˙̃q + εq̃] (23b)

where γ, ε, kp1, kp2, and kd are positive constants. Then,
the closed loop system is UGAS if and only if Υ(t) :=
Ψ(t, q∗(t), q̇∗(t)) is persistently exciting; in particular, the
estimation errors θ̃ := θ̂− θ converge uniformly to zero for
any initial conditions, if and only if the reference trajecto-
ries are such that Υ is PE. ¤

Proof . Define the state variables x1 := col[x11, x12] =
col[q̃, ˙̃q] then, the closed-loop system becomes
[
ẋ11

ẋ12

]
=

[
x12

−(kp2 + 1)x3
11 − kdx12 − kp1x11

]

+
[

0
Ψ(t, x11 + q∗(t), x12 + q̇∗(t))

]
x2 (24)

˙̃
θ = −γΨ(t, x11 + q∗(t), x12 + q̇∗(t))>[x12 + εx11] .

(25)

That is, the closed-loop system has the form (9). Then,
stability proof follows applying Theorem 1. Assumption 2
holds with the Lyapunov function

V (t, x, θ̃) :=
1
2

[
x2

12 +
kp2 + 1

2
x4

11 + kp1x
2
11

+ 2εx11x12 +
1
γ
‖θ̃‖2

]
.

By direct calculations one can show that that, if 2ε2 ≤ kp1,
[
x2

12 +
kp2 + 1

2
x4

11 + (kp1 + ε2)x2
11 +

1
γ
‖θ̃‖2

]

≥ V (t, x, θ̃) ≥ 1
4

[
x2

12 + (kp2 + 1)x4
11 +

1
γ
‖θ̃‖2

]

hence, (11a) holds. Furthermore, the derivative of V along
the trajectories of (24) yields

V̇ (t, x, θ̃) =− kd

2
x2

12 − ε(kp2 + 1)x4
11 − εkp1

2
x2

11

−
[(

kd

2
− ε

)
x2

12 + εkdx11x12 + εkp1

2
x2

11

]
.

The sum of three terms in brackets on the right hand side
is nonnegative if and only if

0 ≤ ε ≤ kp1kd1

2kp1 + k2
d

hence, taking into account the condition that kp1 ≥ 2ε2,
we obtain that

V̇ (t, x, θ̃) ≤ −kd

2
x2

12 − ε(kp2 + 1)x4
11 − εkp1

2
x2

11

for any positive kp1, kp2 and kd. Thus, Assumption 2 holds.
To see that Assumption 3 holds we first observe that, in
this case,

A(t, x1) :=
[

x12

−(kp2 + 1)x3
11 − kdx12 − kp1x11

]

B :=
[

0
Ψ(t, x11 + q∗(t), x12 + q̇∗(t))

]
x2

H(t, x)) = −γΨ(t, x11 + q∗(t), x12 + q̇∗(t))>[x12 + εx11] ,
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and hence,

B◦(t, x2) =
[

0
Ψ(t, q∗(t), q̇∗(t))

]
x2 .

Note that A(t, x1) and H(t, x) are uniformly bounded in t
provided that the reference trajectories and velocities, q∗
and q̇∗, are bounded; also, A(t, 0) ≡ 0 and H(t, x) depends
only on x1 and H = 0 if x1 = 0.

Finally, notice that ‖B◦‖ = ‖Υ(t)x2‖ therefore, in view
of Fact 1, B◦ is Uδ-PE with respect to x2 if and only if Υ(t)
is PE. Hence, Assumption 4 holds; this ends the proof. ¥

We have tested in simulations, the performance of our
adaptive controller. We assume that the reference trajec-
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Fig. 24. Duffing equation: tracking errors

tory q∗(t) is generated by a van der Pol oscillator with pa-
rameter values leading to a chaotic behaviour, i.e. the refer-
ence trajectory xd(t) := [q∗(t), q̇∗(t)]> satisfies the second-
order differential equation:

q̈∗(t)− µ[1− q∗(t)2]q̇∗(t) + q∗(t) = a cos(ωvt) (26)

with µ = 3 and a = 5 and ωv = 1.7880rad/s. The con-
trol gains for the controller (23) were chosen as follows:
kp1 = kp2 = kd = γ = 10. The simulation scenario is as
follows: the Duffing equation is left uncontrolled, driven
by the signal θ3 cos(ωt) for 50s; then, the control starts
and the duffing response immediately follows the reference
trajectories given by the van der Pol system, i.e., synchro-
nising with the latter. We present the simulation results in
Figures 24–28.

Figure 24 shows the tracking errors between the actual
Duffing trajectories and the (reference) van der Pol’s i.e.,
q − q∗(t) and q̇ − q̇∗; the phase portrait of position against
velocity is depicted on Figure 25; state integral curves are
shown in Figure 26; the evolution of the three estimated
parameters are shown in Figure 27 –note the convergence
to their true values θ1 = −1.1, θ2 = 0.4 and θ3 = 2.1.
Finally, Figure 28 shows the control inputs u(t, q(t), q̇(t)).

IV. Conclusions

We have studied the adaptive tracking control problem
of chaotic systems. We presented general results that cover
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Fig. 25. Duffing equation: phase portrait of position against velocity
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Fig. 26. Duffing equation: state integral curve
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Fig. 27. Duffing equation: evolution of the estimated parameters

different controlled chaotic systems such as the Duffing
equation, the Lorenz and Rössler systems. In particular,
we addressed the open problem of tracking control in the
presence of parametric uncertainty and guaranteeing con-
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Fig. 28. Duffing equation: controlinput

vergence of the estimated parameters to their true values.
A direct application of our results is in the synchronisation
of chaotic systems; we have illustrated the usefulness of our
findings via simulations that show that synchronisation of
different systems is possible.
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Univ. of Santa Barbara. A. Loŕıa occupies a tenure research position
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