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Abstract: Saturating-Proportional-Derivative (SPD) type global continuous control for the finite-time or (local) exponential sta-
bilization of mechanical systems with bounded inputs is achieved involving desired conservative-force compensation. Far from
what one could expect, the proposed controller is not a simple extension of the on-line compensation case but it rather proves to
entail a closed-loop analysis with considerably higher degree of complexity. This gives rise to more involved requirements to guar-
antee its successful performance and implementability. Interesting enough, the proposal even shows that actuators with higher
power-supply capabilities than in the on-line compensation case are required. Other important analytical limitations are further
overcome through the developed algorithm. Experimental tests on a 2-degree-of-freedom robotic arm corroborate the efficiency
of the proposed scheme.

1 Introduction

A global continuous state-feedback scheme for the finite-time and
exponential stabilization of mechanical systems with bounded inputs
has been recently proposed and thoroughly motivated in [1]. Giving
a formal solution to the corresponding formulated problem under
the explicit consideration of input constraints and the explicit choice
on the system trajectory convergence (among finite-time and expo-
nential) constitute the main distinctions of such an approach with
respect to continuous finite-time controllers developed for mechan-
ical systems before its appearance: [2–4] (which were developed
in an unconstrained input context; see for instance [1, §1] for a
brief description of such previous works). But the distinctive fea-
tures do not stop there: while the cited previous approaches mainly
rely on the dynamic inversion technique —or exact compensation of
the whole dynamics— (except for one of the two controllers pre-
sented in [2]), the scheme in [1] benefits from the inherent passive
nature of mechanical systems. This is done by keeping a (Saturating)
Proportional-Derivative type structure with exclusive compensation
of the conservative-force (vector) term as a direct way to suitably
reshape the closed-loop potential energy so as to set the desired
posture as the only equilibrium position on the whole configura-
tion space (of course, with the required stability property). Through
such an on-line compensation of the conservative-force term —
exclusively (instead of compensating the whole dynamics)—, the
system model dependence of the designed scheme is considerably
reduced, consequently simplifying the control structure and decreas-
ing the inherent inconveniences of modelling inaccuracies as well as
the implied computation burden. But these improvements could still
be potentiated if the on-line compensation term could be replaced by
the conservative-force term exclusively evaluated at the desired posi-
tion. Such a desired conservative-force compensation idea was first
introduced in an unconstrained-input conventional (infinite-time)
stabilization context by [5] and, ever since its introduction in the

literature, it has been much appreciated in view of its simplicity and
simplification improvements. This constitutes the main motivation
of this work which aims at developing a desired-conservative-force-
compensation extension of the SPD-type (Saturating-Proportional-
Derivative) finite-time/exponential stabilization scheme from [1].
Far from what one could expect, such a design task is not as simple
or direct as a simple replacement of the on-line compensation term
by the desired one. Such a replacement happens to keep the required
(desired) closed-loop equilibrium position but not its uniqueness.
Contrarily to the on-line compensation case [where the open-loop
conservative forces are (ideally) cancelled out], in the desired com-
pensation case further design requirements prove to be needed so
as to guarantee that the control-induced potential energy component
dominates the open-loop one (in order to guarantee uniqueness of
the desired closed-loop equilibrium configuration). This was already
pointed out in the unconstrained-input conventional case [5], where
such a domination goal was shown to be achieved through a P con-
trol (vector) term with a(n absolutely) stronger growing rate than
that of the open-loop conservative force term in any direction (at
every point) on the configuration space; in particular, under the sim-
ple consideration of uncoupled linear P and D control actions, this
was shown to be achieved by simply fixing P gains higher than the
highest (induced) norm value of the Jacobian matrix of the conser-
vative force term (assuming that such a Jacobian matrix is bounded)
[6]. But the solution of the referred uniqueness issue cannot be that
simple in the analytical context considered here —under the con-
sideration of input constraints, the contemplated type of trajectory
convergence (finite-time or exponential) and the generalized form
of the SPD controller component— in view of the special functions
involved in the SPD term to guarantee the achievement of the for-
mulated stabilization goal. This represents an important analytical
challenge to which this work succeeds to give a solution enjoying
the technical benefits from desired conservative-force compensation.
Interesting enough, the exhaustive analysis developed here further
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brings to the fore that actuators with higher power-supply capabili-
ties than in the on-line-compensation case are required. This results
from the worst-case type design (analytical) procedure followed to
guarantee the achievement of the previously described domination
feature of the controller-induced conservative force term over the
open-loop system one. As a matter of fact, it is the permanence
of the open-loop conservative-force term on the system dynamics
which is at the origin of the design complication and higher degree
of complexity of the closed-loop analysis (with respect to the on-line
compensation case where such a term is absent in view of its cancel-
lation). For instance, a further complication to be dealt with —and
overcome in this work— is on the support of the controller abil-
ity to transit from finite-time to exponential stabilization through a
simple control parameter. Indeed, for exponential stability purposes,
the counterbalanced (in the desired-compensation sense) open-loop
conservative forces happen to lack of the properties required in the
homogeneity-oriented analytical framework within which [1] and
this work are developed. Thus, such a stabilization case has to be
treated differently. This work gives a suitable solution to such an
additional complication of the closed-loop analysis by supporting the
exponential stabilization case through a strict Lyapunov function.

During the preparation of the present work, the authors got aware
of the work [7] where an energy-shaping-based state-feedback finite-
time regulation design method for robot manipulators was presented.
Such a method was shown to give rise to several control laws achiev-
ing the formulated control objective, generally structured through
(separated) P and D type actions. These respectively result from the
difference of a closed-loop desired and open-loop potential energy
functions and an energy dissipation function. Since the latter is
considered to be exclusively dependent on the system velocity vec-
tor variable, it is not clear how such a method could give rise to
controllers with gathered P and D type actions [i.e. with both of
them within a common (suitable shaping) function] like the SPD
schemes of [1] and the present work. As a matter of fact, the SPD
type schemes presented in [1] and this work prove to be general-
ized enough to include the SP-SD type structure (with separated P
and D type actions) as a special case. This was already shown in
the on-line compensation case developed in [1] and will be shown
to be the case in the desired compensation context developed here.
Both the on-line and desired compensation versions of the developed
SPD scheme are experimentally corroborated here on a 2-degree-
of-freedom (DOF) robot manipulator, which is a complementary
distinction of this work.

2 Preliminaries

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij denotes
the element of X at its ith row and jth column, Xi represents the
ith row of X and yi stands for the ith element of y. With m = n,
X > 0 (conventionally) denotes thatX is positive definite while, for
a symmetric matrix X , λm(X) and λM (X) respectively stand for
its minimum and maximum eigenvalues. 0n represents the origin of
Rn and In the n× n identity matrix. We denote R>0 = {x ∈ R :
x > 0} and R≥0 = {x ∈ R : x ≥ 0} for scalars, and Rn>0 = {x ∈
Rn : xi > 0, i = 1, . . . , n} and Rn≥0 = {x ∈ Rn : xi ≥ 0, i =
1, . . . , n} for vectors. ‖ · ‖ stands for the standard Euclidean norm
for vectors and induced norm for matrices. An (n− 1)-dimensional
sphere of radius c > 0 on Rn is denoted Sn−1

c , i.e. Sn−1
c = {x ∈

Rn : ‖x‖ = c}. For a continuously differentiable scalar function
f : Rn → R and a vector function g : Rn → Rn, we denote Dgf
the directional derivative of f along g, i.e. Dgf(x) = ∂f

∂xg(x). We
will consider the sign function to be zero at zero, i.e.

sign(ς) =

{
ς
|ς| if ς 6= 0

0 if ς = 0

and denote sat(·) the standard (unitary) saturation function, i.e.
sat(ς) = sign(ς) min{|ς|, 1}. The contents of the following subsec-
tions —except for some complementary properties, assumptions and

considerations— were mostly included in [1, §2]; for the sake of
completeness, they are reproduced here.

2.1 Mechanical systems

Consider the n-degree-of-freedom (n-DOF) fully-actuated friction-
less mechanical system dynamics [8, §6.1]

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized coordinates), veloc-
ity, and acceleration vectors; H(q) ∈ Rn×n is the inertia matrix;
C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal effect matrix defined
through the Christoffel symbols of the first kind; g(q) = ∇Uol(q),
with Uol : Rn → R being the potential energy function of the
open-loop system, or equivalently

Uol(q) = Uol(q0) +

∫q

q0

gT (z)dz (2)

for any q, q0 ∈ Rn [the integration in (2) takes into account the
conservative nature of g, as pointed for instance in [9, Note 1, p.
2009]]; and τ ∈ Rn is the external input (generalized) force vec-
tor. Some well-known properties characterizing the terms of such
a dynamical model are recalled here [8, 10, 11]. Subsequently, we
denote Ḣ the rate of change of H , i.e. Ḣ : Rn × Rn → Rn×n with
Ḣij(q, q̇) =

∂Hij
∂q (q)q̇, i, j = 1, . . . , n.

Property 2.1. H(q) is a continuously differentiable positive defi-
nite symmetric matrix function, and actuallyH(q) ≥ µmIn —which
implies ‖H(q)‖ ≥ µm— ∀q ∈ Rn, for some µm > 0.

Property 2.2. The Coriolis and centrifugal effect matrix defined
through the Christoffel symbols of the first kind satisfies:

2.2.1. Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇), ∀q, q̇ ∈ Rn, and conse-
quently zT

[
1
2 Ḣ(x, y)− C(x, y)

]
z = 0, ∀x, y, z ∈ Rn;

2.2.2. C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn;
2.2.3. ‖C(x, y)‖ ≤ ψ(x)‖y‖, ∀x, y ∈ Rn, for some ψ : Rn →
R≥0.

Remark 2.1. Observe from Property 2.2.2 that C(q, aq̇)bq̇ =
C(q, bq̇)aq̇ = C(q, abq̇)q̇ = C(q, q̇)abq̇, ∀q, q̇ ∈ Rn, ∀a, b ∈ R.4

In this work, we consider the (realistic) bounded input case, where
the absolute value of each input τi is constrained to be smaller than
a given saturation bound Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n. More
precisely, letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Tisat(ui/Ti) (3)

Further assumptions are stated next.

Assumption 2.1. The inertia matrix is bounded, i.e. ‖H(q)‖ ≤
µM , ∀q ∈ Rn, for some µM ≥ µm > 0.

Assumption 2.2. ψ(·) in Property 2.2.3 is bounded and conse-
quently ‖C(x, y)‖ ≤ kC‖y‖, ∀x, y ∈ Rn, for some kC ≥ 0.

Assumption 2.3. The conservative (generalized) force vector g(q)
is a continuously differentiable bounded vector function with
bounded Jacobian matrix ∂g

∂q , or equivalently,

2.3.1. every element of the conservative force vector, gi(q), i =
1, . . . , n, satisfies: |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some non-negative
constant Bgi;
2.3.2. ∂g

∂x exists and is continuous and such that
∥∥∥∂g∂q (q)

∥∥∥ ≤ kg ,
∀q ∈ Rn, for some non-negative constant kg , and consequently
‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀x, y ∈ Rn.
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Assumption 2.4. Ti > ηBgi, ∀i ∈ {1, . . . , n}, for some scalar η ≥
1.

Remark 2.2. Assumptions 2.1–2.3 apply e.g. for robot manipulators
having only revolute joints [11, §4.3]. All the stated assumptions will
prove to be essential along the control design procedure —and/or
closed-loop system analysis— developed in this paper. 4

2.2 Local homogeneity, finite-time stability and
δ-exponential stability

As in [1], this work is developed within the analytical framework of
local homogeneity, which states a formal analytical platform permit-
ting to handle vector fields with bounded components (and conse-
quently, control design under the consideration of input constraints
[12], which would not be formally possible within the conventional
coordinate-dependent context of homogeneity [13]). Definitions and
results in such an analytical context are strongly related to family of
dilations δrε , defined as δrε(x) =

(
εr1x1, . . . , ε

rnxn
)T , ∀x ∈ Rn,

∀ε > 0, with r = (r1, . . . , rn)T , where the dilation coefficients
r1, . . . , rn are positive scalars.

Definition 2.1. [12] A function V : Rn → R, resp. vector field
f =

∑n
i=1 fi

∂
∂xi

(with fi : Rn → R), is locally homogeneous of
degree α with respect to the family of dilations δrε —or equiva-
lently, it is said to be locally r-homogeneous of degree α— if there
exists an open neighborhood of the origin D ⊂ Rn —referred to
as the domain of homogeneity— such that, for every x ∈ D and all
ε ∈ (0, 1]: δrε(x) ∈ D and

V (δrε(x)) = εαV (x) (4)

resp.

fi(δ
r
ε(x)) = εα+rifi(x) (5)

i = 1, . . . , n.

Fundamental concepts involved in the analytical context under-
lying this work are those of homogeneous norm —with respect to
the family of dilations δrε , or simply r-homogeneous norm: a pos-
itive definite continuous function being r-homogeneous of degree
1— [1, 14, 15], denoted ‖ · ‖r , and r-homogeneous (n− 1)-sphere
of radius c > 0: Sn−1

r,c = {x ∈ Rn : ‖x‖r = c}.
Consider an n-th order autonomous system

ẋ = f(x) (6)

where f is a vector field being continuous on an open neighborhood
of the origin D ⊂ Rn and such that f(0n) = 0n, and let x(t;x0)
represent the system solution with initial condition x(0;x0) = x0.

Definition 2.2. [13] The origin is said to be a finite-time stable
equilibrium of system (6) if it is Lyapunov stable and there exist an
open neighborhood of the origin,N ⊂ D, being positively invariant
with respect to (6), and a positive definite function T : N → R≥0,
called the settling-time function, such that x(t;x0) 6= 0n, ∀t ∈[
0, T (x0)

)
, ∀x0 ∈ N \ {0n}, and x

(
T (x0);x0

)
= 0n, ∀x0 ∈ N .

The origin is said to be a globally finite-time stable equilibrium if it
is finite-time stable withN = D = Rn.

Remark 2.3. Note, from Definition 2.2, that the origin is a globally
finite-time stable equilibrium of system (6) if and only if it is globally
asymptotically stable and finite-time stable. 4

Theorem 2.1. [12] Consider system (6) with D = Rn. Suppose
that f is a locally r-homogeneous vector field of degree α with
domain of homogeneity D ⊂ Rn. Then, the origin is a globally

finite-time stable equilibrium of system (6) if and only if it is globally
asymptotically stable and α < 0.

The next definition is stated under the additional consideration
that, for some r ∈ Rn>0, f in (6) is locally r-homogeneous with
domain of homogeneity D ⊂ D.

Definition 2.3. [14, 15] The equilibrium point x = 0n of (6) is δ-
exponentially stable with respect to the homogeneous norm ‖ · ‖r if
there exist a neighborhood of the origin, V ⊂ D, and constants a ≥
1 and b > 0 such that ‖x(t;x0)‖r ≤ a‖x0‖re−bt, ∀t ≥ 0, ∀x0 ∈
V .

Remark 2.4. If f in (6) is locally r-homogeneous of degree α = 0
with dilation coefficients ri = r0, ∀i ∈ {1, . . . , n}, for some r0 >
0, then the origin turns out to be exponentially stable (in the usual or
standard sense [16, Definition 4.5]) if and only if it is δ-exponentially
stable [1, Remark 2.5]. 4

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (7)

where f and f̂ are continuous vector fields on Rn such that f(0n) =
f̂(0n) = 0n.

Lemma 2.1. [1, Lemma 2.2] Suppose that, for some r ∈ Rn>0, f
in (7) is a locally r-homogeneous vector field of degree α < 0,
resp. α = 0, with domain of homogeneity D ⊂ Rn, and that 0n is
a globally asymptotically, resp. δ-exponentially, stable equilibrium
of ẋ = f(x). Then, the origin is a finite-time, resp. δ-exponentially,
stable equilibrium of system (7) if

lim
ε→0+

f̂i(δ
r
ε(x))

εα+ri
= 0 (8)

i = 1, . . . , n, ∀x ∈ Sn−1
c , resp. ∀x ∈ Sn−1

r,c , for some c > 0 such
that Sn−1

c ⊂ D, resp. Sn−1
r,c ⊂ D.

Remark 2.5. Notice that the condition required by Lemma 2.1 may
be equivalently verified through the satisfaction of

lim
ε→0+

∥∥ε−αdiag
[
ε−r1 , . . . , ε−rn

]
f̂(δrε(x))

∥∥ = 0 (9)

∀x ∈ Sn−1
c (resp. Sn−1

r,c ). In other words, (8) is fulfilled for all i =

1, . . . , n and all x ∈ Sn−1
c (resp. Sn−1

r,c ) if and only if (9) is satisfied
for all x ∈ Sn−1

c (resp. Sn−1
r,c ). 4

2.3 Scalar functions with particular properties

Definition 2.4. A continuous scalar function σ : R→ R will be said
to be:

1. positively upper-bounded —by M+— if σ(ς) ≤M+, ∀ς ∈ R,
for some positive constant M+;
2. negatively lower-bounded —by −M−— if σ(ς) ≥ −M−, ∀ς ∈
R, for some positive constant M−;
3. bounded —by M— if |σ(ς)| ≤M , ∀ς ∈ R, for some positive
constant M ;
4. strictly passive if ςσ(ς) > 0, ∀ς 6= 0;
5. strongly passive if it is a strictly passive function satisfy-
ing |σ(ς)| ≥ κ

∣∣a sat(ς/a)
∣∣b = κ

(
min{|ς|, a}

)b, ∀ς ∈ R, for some
positive constants κ, a and b.

Remark 2.6. A non-decreasing strictly passive function σ is
strongly passive [1, Remark 2.7]. 4
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Remark 2.7. Equivalent characterizations of strictly passive func-
tions are: ςσ(ς) > 0 ⇐⇒ sign(ς)σ(ς) > 0 ⇐⇒ sign(σ(ς)) =
sign(ς), ∀ς . 4

Lemma 2.2. [1, Lemma 2.3] Let σ : R→ R, σ0 : R→ R and σ1 :
R→ R be strongly passive functions and k be a positive constant.
Then:

1.
∫ς

0 σ(kν)dν > 0, ∀ς 6= 0;
2.

∫ς
0 σ(kν)dν →∞ as |ς| → ∞;

3. σ0 ◦ σ1 is strongly passive.

Lemma 2.3. [1, Lemma 2.4] Let σ0 : R→ R be a strictly increas-
ing function, σ2 : R→ R be strictly passive, and k be a posi-
tive constant. Then: ς2

[
σ0(ς1 + σ2(kς2))− σ0(ς1)

]
> 0, ∀ς2 6= 0,

∀ς1 ∈ R.

3 The proposed control scheme

Consider the following SPD-type controller with desired conservative-
force compensation

u(q, q̇) = −s0
(
s1(K1q̄) + s2(K2q̇)

)
+ g(qd) (10)

where q̄ = q − qd, for any constant —desired equilibrium position—
qd ∈ Rn; Ki ∈ Rn×n, i = 1, 2, are positive definite diago-
nal matrices —i.e. Ki = diag[ki1, . . . , kin], kij > 0, i = 1, 2,
j = 1, . . . , n— with K1 involved in an additional require-
ment stated below (through (12)); for any x ∈ Rn, si(x) =(
σi1(x1), . . . , σin(xn)

)T , i = 0, 1, 2, with —for each j =
1, . . . , n— σ0j being a strictly increasing strictly passive function,
σ1j being strongly passive and σ2j being strictly passive, all three
being locally Lipschitz-continuous on R \ {0}, and such that

Bj , sup
(ς1,ς2)∈R2

∣∣σ0j

(
σ1j(ς1) + σ2j(ς2)

)∣∣ < Tj −Bgj (11)

(recall Assumption 2.3.1) [notice that if σ1j and σ2j are (both) cho-
sen to be non-decreasing, then Bj = max{limς→∞ σ0j(σ1j(ς) +
σ2j(ς)) , limς→−∞−σ0j(σ1j(ς) + σ2j(ς))}], all three being
locally Lipschitz-continuous on R \ {0}; and with —for each j =
1, . . . , n— k1j , σ0j and σ1j additionally required to be such that

∣∣σ0j

(
σ1j(k1jς)

)∣∣ > min
{
kg|ς| , 2Bgj

}
(12)

∀ς 6= 0 (recall Assumption 2.3.2).

Remark 3.1. As seen from (10), the proposed controller is based on
position and velocity error correction terms K1q̄ and K2q̇, respec-
tively, which may be seen as P and D basic actions. With the negative
sign included in the right-hand side of (10), and the analytical prop-
erties of the scalar functions σij , i = 0, 1, 2, j = 1, . . . , n, involved
in the vector functions si, i = 0, 1, 2, included in the control law (as
shown in the right-hand side of (10)), the referred PD-basic-action
terms carry out their correction function by generating forces/torques
that oppose to the referred errors. Additionally, the referred ana-
lytical properties of the involved functions σij , i = 0, 1, 2, j =
1, . . . , n, are stated so as to suitably bound the referred correc-
tion actions in order to avoid input saturation along the closed-loop
system trajectories (through (11)), on the one hand, and simultane-
ously to guarantee the required convergence (among finite-time and
exponential) through their slope at zero, on the other hand; a visual-
ization of these aspects on σij will be graphically shown in Section
4. Thus, the error correction/opposition actions are suitably non-
linearly distorted so as to successfully achieve the just mentioned
design objectives. Further, the last term in the right-hand side of (10)
is the desired compensation term through which the conservative
forces are counterbalanced at the desired position qd. This way, qd
is ensured to be an equilibrium configuration, while its uniqueness

is guaranteed through (12). The resulting (saturating) PD-type (with
desired conservative-force compensation) structure of the proposed
scheme has the advantage to keep the main (beneficial) features of
PD-type controllers, such as the intuitive sense on the role of the
P and D control gains (in K1 and K2), as well as the respect of
the structure and essence of the controlled system by avoiding exact
on-line compensation of any of its open-loop terms and keeping its
passive nature with suitably shaped (potential) energy and added
damping (details on this latter aspect are given later on in Remark
3.8). 4

Remark 3.2. Notice that σ1j and σ2j , j = 1, . . . , n, are not
required to be non-decreasing, as long as they are strongly and
strictly passive functions —respectively— that fulfill the above-
stated specifications. Actually, this also applies in the (on-line)
conservative-force compensation case presented in [1] (where such
functions were defined to be non-decreasing strictly passive, which
rendered them strongly passive, but the point is that the non-
decreasing character is unnecessary, as long as they are as described
above). 4

Remark 3.3. Note that by (11), the proposed control law, in (10),
shall be bounded. This gives rise to several possible combinations on
the selection of the functions σij , i = 0, 1, 2, j = 1, . . . , n, (con-
cerning items 1–3 of Definition 2.4) aiming at the satisfaction of
the suitable boundedness requested by (11), as described through
[1, Remark 3.1] (i.e. Remark 3.1 from [1] applies in the case of the
controller proposed here too). 4

Remark 3.4. From the formulation of the proposed scheme, one can
verify that the proper satisfaction of the stated requirements entails
that

2Bgj < |σ0j

(
σ1j(k1jς)

)
|

≤ sup
(ς1,ς2)∈R2

∣∣σ0j

(
σ1j(ς1) + σ2j(ς2)

)∣∣

< Tj −Bgj

∀|ς| ≥ 2Bgj/kg , whence one sees that Assumption 2.4 with η = 3
is a necessary condition for the feasibility of the simultaneous ful-
filment of (11) and (12). A similar condition on the control input
bounds has been required by other approaches where input con-
straints have been considered [17] [9, Appendix 1], generally arising
from the worst-case procedure followed to ensure that the analytical
requirements that guarantee the result are fulfilled. 4

Remark 3.5. Let us note that (12) could have been alterna-
tively stated as requiring

∣∣σ0j

(
σ1j(k1jς)

)∣∣ ≥ min
{
k̂1j |ς|, bj

}
for

some constants k̂1j > kg and bj > 2Bgj . However, by stating
(12), the existence of constants k̂1j > kg and bj > 2Bgj such
that

∣∣σ0j

(
σ1j(k1jς)

)∣∣ ≥ min
{
k̂1j |ς|, bj

}
> min

{
kg|ς|, 2Bgj

}
,

∀ς 6= 0, is implied. 4

Remark 3.6. Note that the (D) gains in K2 are not at all restricted
and are consequently free to take any positive value, while the (P)
gains in K1 are the only ones whose choice remains restricted in
accordance to the design requirement stated through (12) (where
they are involved in). 4

Proposition 3.1. Consider system (1),(3) in closed loop with the
proposed control law (10), under Assumptions 2.1–2.3 and 2.4 with
η = 3, and the above stated design specifications. Thus, global
asymptotic stability of the closed-loop trivial solution q̄(t) ≡ 0n is
guaranteed with |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0.
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Proof. Observe that —for every j = 1, . . . , n— by (11), we have
that, for any (q, q̇) ∈ Rn × Rn and any qd ∈ Rn:

|uj(q, q̇)| =
∣∣− σ0j

(
σ1j(k1j q̄j) + σ2j(k2j q̇j)

)
+ gj(qd)

∣∣

≤
∣∣σ0j

(
σ1j(k1j q̄j) + σ2j(k2j q̇j)

)∣∣+ |gj(qd)|
≤ Bj +Bgj < Tj

From this and (3), one sees that Tj > |uj(q, q̇)| = |uj | = |τj |,
∀(q, q̇) ∈ Rn × Rn, which shows that, along the system trajecto-
ries, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. This proves that,
under the proposed scheme, the input saturation values, Tj , are never
reached. Hence, the closed-loop dynamics takes the form

H(q)q̈ + C(q, q̇)q̇ + g(q) = −s0
(
s1(K1q̄) + s2(K2q̇)

)
+ g(qd)

By defining x1 = q̄ and x2 = q̇, the closed-loop dynamics adopts
the 2n-order state-space representation

ẋ1 = x2

ẋ2 = H−1(x1 + qd)
[
− s0

(
s1(K1x1) + s2(K2x2)

)

−C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)
]

By further defining x = (xT1 , x
T
2 )T , these state equations may be

rewritten in the form of system (7) with

f(x) =

(
x2

−H−1(qd)s0
(
s1(K1x1) + s2(K2x2)

)
)

(13a)

f̂(x) =




0n

−H−1
(x1 + qd)

[
C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)

]

−H(x1)s0
(
s1(K1x1) + s2(K2x2)

)




(13b)
where

H(x1) = H−1(x1 + qd)−H−1(qd) (14)

Thus, the closed-loop stability property stated through Proposition
3.1 is corroborated by showing that x = 02n is a globally asymp-
totically stable equilibrium of the state equation ẋ = f(x) + f̂(x),
which is proven through the following theorem (whose formulation
proves to be convenient for subsequent developments and proofs).

Theorem 3.1. Under the stated specifications, the origin is a glob-
ally asymptotically stable equilibrium of ẋ = f(x) + `f̂(x), ∀` ∈
{0, 1}, —i.e. of both the state equation ẋ = f(x) and the (closed-
loop) system ẋ = f(x) + f̂(x),— with f(x) and f̂(x) defined
through Eqs. (13).

Proof: For every ` ∈ {0, 1}, let us define the continuously differen-
tiable scalar function

V`(x1, x2) =
1

2
xT2 H(`x1 + qd)x2 + U`(x1) (15)

where

U`(x1) ,
∫x1

0n

sT0
(
s1(K1z)

)
dz + `U(x1) (16)

with

∫x1

0n

sT0
(
s1(K1z)

)
dz =

n∑

j=1

∫x1j

0
σ0j

(
σ1j(k1jzj)

)
dzj (17)

and

U(x1) , Uol(x1 + qd)− Uol(qd)− gT (qd)x1 (18a)

=

∫x1

0n

[
g(z + qd)− g(qd)

]T
dz (18b)

=

∫x1

0n

[ ∫z

0n

∂g

∂q
(z̄ + qd)dz̄

]T
dz (18c)

Observe from Eqs. (18) and Assumption 2.3 that

U(x1) ≤
∫x1

0n

[ ∫z

0n

∥∥∥∥
∂g

∂q
(z̄ + qd)

∥∥∥∥dz̄
]T
dz

≤
∫x1

0n

[ ∫z

0n

kgdz̄

]T
dz

=

∫x1

0n

kgz
T dz =

n∑

j=1

∫x1j

0
kgzjdzj (19)

∀x1 ∈ Rn (more specifically from (18c)), and simultaneously that

U(x1) ≤
n∑

j=1

∫x1j

0
sign(zj)

∣∣gj(z + qd)− gj(qd)
∣∣dzj

≤
n∑

j=1

∫x1j

0
sign(zj)2Bgjdzj

∀x1 ∈ Rn (more specifically from (18b)). From these inequalities,
Eqs. (16) and (17), the satisfaction of (12), and Remark 3.5, we have
that

U`(x1)

≥
n∑

j=1

∫x1j

0
sign(zj) min

{
(k̂1j − `kg)|zj | , (bj − 2`Bgj)

}
dzj

≥
n∑

j=1

∫x1j

0
sign(zj) min

{
k̄`j |zj | , b̄`j

}
dzj

=
n∑

j=1

w`j(x1j) , S`(x1) (20a)

with

w`j(x1j) =





k̄`j
2 x2

1j if |x1j | ≤ b̄`j/k̄`j
b̄`j
[
|x1j | − b̄`j/(2k̄`j)

]
if |x1j | > b̄`j/k̄`j

(20b)
for some k̂1j > kg and bj > 2Bgj , and any positive constants
k̄`j ≤ k̂1j − `kg and b̄`j ≤ bj − 2`Bgj .

Remark 3.7. One sees from expressions (20) that S`, ` = 0, 1, are
positive definite radially unbounded functions of x1. Observe further
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that (involving previous arguments and Remark 2.7)

Dx1U`(x1) = xT1 ∇x1U`(x1)

= xT1

[
s0
(
s1(K1x1)

)
+ `
(
g(x1 + qd)− g(qd)

)]

=
n∑

j=1

|x1j |
[∣∣σ0j

(
σ1j(k1jx1j)

)∣∣

+ ` sign(x1j)
(
gj(x1 + qd)− gj(qd)

)]

≥
n∑

j=1

|x1j |
[∣∣σ0j

(
σ1j(k1jx1j)

)∣∣

− `
∣∣gj(x1 + qd)− gj(qd)

∣∣
]

≥
n∑

j=1

|x1j |min{(k̂1j − `kg)|x1j | , (bj − 2`Bgj)}

≥
n∑

j=1

|x1j |min
{
k̄`j |x1j | , b̄`j

}
> 0 (21)

∀x1 6= 0n [in any radial direction, U`(x1) is strictly increasing, and
consequently x1 = 0n is the unique stationary point of U`(x1)],
whence one sees that, for every ` = 0, 1,

∇x1U`(x1) = s0
(
s1(K1x1)

)
+ `
[
g(x1 + qd)− g(qd)

]
= 0n

⇐⇒ x1 = 0n (22)

4

Thus, from Eqs. (15) and (20), and Property 2.1, we get that

V`(x1, x2) ≥ µm
2
‖x2‖2 + S`(x1) (23)

whence positive definiteness and radial unboundedness of V`, ` =
0, 1, is concluded. Further, for every ` ∈ {0, 1}, the derivative of V`
along the trajectories of ẋ = f(x) + `f̂(x), is obtained as

V̇`(x1, x2)

= xT2 H(`x1 + qd)ẋ2 +
`

2
xT2 Ḣ(x1 + qd, x2)x2

+
[
s0
(
s1(K1x1)

)
+ `
[
g(x1 + qd)− g(qd)

]]T
ẋ1

= xT2

[
− `
[
C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)

]

− s0
(
s1(K1x1) + s2(K2x2)

)]

+
`

2
xT2 Ḣ(x1 + qd, x2)x2

+
[
s0
(
s1(K1x1)

)
+ `
[
g(x1 + qd)− g(qd)

]]T
x2

= −xT2
[
s0
(
s1(K1x1) + s2(K2x2)

)
− s0

(
s1(K1x1)

)]

= −
n∑

j=1

x2j

[
σ0j

(
σ1j(k1jx1j)+σ2j(k2jx2j)

)

− σ0j

(
σ1j(k1jx1j)

)]

where, in the case of ` = 1, Property 2.2.1 has been applied. Note,
from Lemma 2.3, that V̇`(x1, x2) ≤ 0, ∀(x1, x2) ∈ Rn × Rn, with
Z` , {(x1, x2) ∈ Rn × Rn : V̇`(x1, x2) = 0} = {(x1, x2) ∈ Rn
× Rn : x2 = 0n}. Further, from the system dynamics ẋ = f(x) +

`f̂(x) —under the consideration of Property 2.1 and Remark 3.7
(more precisely (22))— one sees that x2(t) ≡ 0n =⇒ ẋ2(t) ≡
0n =⇒ s0

(
s1(K1x1(t))

)
+ `
[
g
(
x1(t) + qd

)
− g(qd)

]
≡ 0n

⇐⇒ x1(t) ≡ 0n (which shows that (x1, x2)(t) ≡ (0n, 0n) is the
only system solution completely remaining in Z`), and corroborates
that at any (x1, x2) ∈ {(q̄, q̇) ∈ Z` : q̄ 6= 0n}, the resulting unbal-
anced force term −s0

(
s1(K1x1)

)
+ `
[
g(x1 + qd)− g(qd)

]
acts

on the closed-loop dynamics, forcing the system trajectories to leave
Z`, whence {(0n, 0n)} is concluded to be the only invariant set in
Z`, ` = 0, 1. Therefore, by the invariance theory [18, §7.2] —more
precisely by [18, Corollary 7.2.1]— x = 02n is concluded to be a
globally asymptotically stable equilibrium of both the state equation
ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x). �

Remark 3.8. The proof of Theorem 3.1 brings to the fore
how the proposed scheme shapes the closed-loop potential energy
and injects damping to guarantee the stabilization goal. Indeed,
one sees from the proof that, through the proposed scheme, the
closed-loop potential energy is given the shape adopted from its
generalized expression, U1(q̄) =

∫q̄
0n
sT0
(
s1(K1z)

)
dz + Uol(q)−

Uol(qd)− gT (qd)q̄, which —through the requirement stated by
(12)— is guaranteed to be a positive definite radially unbounded
function with global minimum at the origin, giving rise to the
closed-loop conservative force uc(q̄) = ∇q̄U1(q̄)−∇qUol(q) =
s0
(
s1(K1q̄)

)
− g(qd). Further, damping is injected through a

force vector of the form sd(q̄, q̇) = s0
(
s1(K1q̄) + s2(K2q̇)

)
−

s0
(
s1(K1q̄)

)
, which —through the properties required for σij , i =

0, 1, 2, j = 1, . . . , n— is proven to fulfil q̇T sd(q̄, q̇) > 0, ∀q̇ 6= 0n,
∀q̄ ∈ Rn. Thus, the proposed control law proves to be the addi-
tion of a dissipative force opposing to motion, −sd(q̄, q̇), and a
restituting conservative force, −uc(q̄); more precisely u(q, q̇) =
−sd(q̄, q̇)− uc(q̄), giving rise to the expression in (10), which —
through the additional requirement in (11)— is guaranteed to be suit-
ably bounded (so as to avoid input saturation along the closed loop
trajectories). [Such an energy-shaping-plus-damping-injection char-
acteristic can also be observed in the on-line compensation approach
of [1], where U1(q̄) =

∫q̄
0n
sT0
(
s1(K1z)

)
dz, uc(q̄) = ∇q̄U1(q̄)−

∇qUol(q) = s0
(
s1(K1q̄)

)
− g(q) and sd(q̄, q̇) = s0

(
s1(K1q̄) +

s2(K2q̇)
)
− s0

(
s1(K1q̄)

)
.] 4

3.1 Finite-time stabilization

Proposition 3.2. Consider the proposed control scheme under the
additional consideration that, for every j = 1, . . . , n, σij , i = 1, 2,
are locally ri-homogeneous of degree αj > 0 —i.e. r1j = r1, r2j =
r2 and α1j = α2j = αj > 0 for all j = 1, . . . , n— with domain
of homogeneity Dij = {ς ∈ R : |ς| < Lij ∈ (0,∞]} and σ0j is
locally αj -homogeneous of degree α0 = 2r2 − r1 —i.e. α0j =
α0 = 2r2 − r1 for all j = 1, . . . , n— with domain of homogene-
ity D0j = {ς ∈ R : |ς| < L0j ∈ (0,∞]}, for some dilation coeffi-
cients ri > 0, i = 1, 2, such that α0 = 2r2 − r1 > 0 > r2 − r1.
Thus, global finite-time stability of the closed-loop trivial solution
q̄(t) ≡ 0n is guaranteed with |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n,
∀t ≥ 0.

Proof: Since the proposed control scheme is applied —with all
its previously stated specifications— Proposition 3.1 holds and
consequently |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. Then,
all that remains to be proven is that the additional consider-
ations give rise to the claimed finite-time stabilization. In this
direction, let r̂i = (ri1, . . . , rin)T , i = 1, 2, r = (r̂T1 , r̂

T
2 )T , r̂0 =

(α1, . . . , αn)T , α̂0 = (α01, . . . , α0n)T , D , {(x1, x2) ∈ Rn ×
Rn : Kixi ∈ Di1 × · · · ×Din , i = 1, 2 , s1(K1x1) + s2(K2x2)
∈ D01 × · · · ×D0n} = {(x1, x2) ∈ Rn × Rn : |x1j | < L1j/k1j ,
|x2j | < L2j/k2j , |σ1j(k1jx1j) + σ2j(k2jx2j)| < L0j , j = 1,
. . . , n}, and consider the previously defined state (vector) vari-
ables and the consequent closed-loop state-space representation
ẋ = f(x) + f̂(x), with f and f̂ as defined through Eqs. (13).
Since D defines an open neighborhood of the origin, there exists
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ρ > 0 such that Bρ , {x ∈ R2n : ‖x‖ < ρ} ⊂ D. Moreover, for
every x ∈ Bρ and all ε ∈ (0, 1], we have that δrε(x) ∈ Bρ (since
‖δrε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)), and, for every j ∈ {1, . . . , n},

fj(δ
r
ε(x)) = εr2jx2j = εr2x2j = ε(r2−r1)+r1x2j

= ε(r2−r1)+r1jfj(x)

and [observe, for every x ∈ Bρ and all ε ∈ (0, 1], that
σij(kijε

rijxij) = σij(ε
rikijxij) = εαjσij(kijxij), i = 1, 2, j =

1, . . . , n ⇐⇒ si(Kiδ
r̂i
ε (xi)) = si(ε

riKixi) = δr̂0ε
(
si(Kixi)

)
,

i = 1, 2, and σ0(εαj ·) = εα0jσ0(·) = εα0σ0(·), j = 1, . . . , n
⇐⇒ s0(δr̂0ε (·)) = δα̂0

ε
(
s0(·)

)
= εα0s0(·)]

fn+j(δ
r
ε(x))

= −H−1
j (qd)s0

(
s1(K1δ

r̂1
ε (x1)) + s2(K2δ

r̂2
ε (x2))

)

= −H−1
j (qd)s0

(
s1(εr1K1x1) + s2(εr2K2x2)

)

= −H−1
j (qd)s0

(
δr̂0ε
(
s1(K1x1)

)
+ δr̂0ε

(
s2(K2x2)

))

= −H−1
j (qd)s0

(
δr̂0ε
(
s1(K1x1) + s2(K2x2)

))

= −H−1
j (qd)δα̂0

ε

(
s0
(
s1(K1x1) + s2(K2x2)

))

= −εα0H−1
j (qd)s0

(
s1(K1x1) + s2(K2x2)

)

= ε(r2−r1)+r2jfn+j(x) (24)

whence one concludes that f is a locally r-homogeneous vector field
of degree α = r2 − r1, with domain of homogeneity Bρ. Hence,
by Theorems 2.1 and 3.1, the origin of the state equation ẋ = f(x)
is concluded to be a globally finite-time stable equilibrium since
r2 − r1 < 0. Thus, by Theorem 3.1, Lemma 2.1, and Remarks 2.3
and 2.5, the origin of the closed-loop system ẋ = f(x) + f̂(x) is
concluded to be a globally finite-time stable equilibrium, provided
that r2 − r1 < 0, if

L0 , lim
ε→0+

∥∥∥ε−αdiag
[
ε−r11 , . . . , ε−r1n , ε−r21 , . . . ,

ε−r2n
]
f̂(δrε(x))

∥∥∥

= lim
ε→0+

∥∥∥ε−αdiag
[
ε−r21 , . . . , ε−r2n

][
f̂n+1(δrε(x)), . . . ,

f̂2n(δrε(x))
]T ∥∥∥

= lim
ε→0+

∥∥∥ε−α−r2
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T ∥∥∥

= lim
ε→0+

εr1−2r2
∥∥∥
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T ∥∥∥ (25)

= 0

for all x ∈ S2n−1
c = {x ∈ R2n : ‖x‖ = c}, for some c > 0 such

that S2n−1
c ⊂ D. Hence, from (13b), under the consideration of

Property 2.2.2 and Remark 2.1, we have, for all such x ∈ S2n−1
c :

∥∥∥
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T ∥∥∥

=
∥∥∥−H−1(εr1x1 + qd)

[
C(εr1x1 + qd, ε

r2x2)εr2x2

+ g(εr1x1 + qd)− g(qd)
]

−H(εr1x1)s0
(
s1(εr1K1x1) + s2(εr2K2x2)

)∥∥∥

≤
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥

+
∥∥∥H−1(εr1x1 + qd)

∥∥∥
∥∥∥g(εr1x1 + qd)− g(qd)

∥∥∥

+
∥∥∥H(εr1x1)s0

(
δr̂0ε
(
s1(K1x1) + s2(K2x2)

))∥∥∥

whence, through a procedure similar to the one developed to obtain
(24), and the consideration of Assumption 2.3.2, we get
∥∥∥
[
f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))

]T ∥∥∥

≤ ε2r2
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥

+
∥∥∥H−1(εr1x1 + qd)

∥∥∥kgεr1‖x1‖

+ ε2r2−r1
∥∥∥H(εr1x1)s0

(
s1(K1x1) + s2(K2x2)

)∥∥∥

and consequently, from (25) (recalling that by design specifications:
r1 > r2 > 0), we get

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥

+ kg‖x1‖ lim
ε→0+

ε2(r1−r2)
∥∥∥H−1(εr1x1 + qd)

∥∥∥

+ lim
ε→0+

∥∥H(εr1x1)s0
(
s1(K1x1) + s2(K2x2)

)∥∥

≤
∥∥H−1(qd)C(qd, x2)x2

∥∥ lim
ε→0+

εr1

+ kg‖x1‖
∥∥H−1(qd)

∥∥ lim
ε→0+

ε2(r1−r2)

+
∥∥s0
(
s1(K1x1) + s2(K2x2)

)∥∥ lim
ε→0+

∥∥H(εr1x1)
∥∥

≤
∥∥s0
(
s1(K1x1) + s2(K2x2)

)∥∥ ·
∥∥H(0n)

∥∥ = 0
(26)

(note, from (14), that ‖H(0n)‖ = ‖H−1(qd)−H−1(qd)‖ = 0),
which completes the proof. �

Corollary 3.1. Consider the proposed control scheme taking σij ,
i = 0, 1, 2, j = 1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞) (27)

with constants βij such that

β1j > 0 , β2j = γβ1j , β0j =
2− γ
γβ1j

(28)

for a constant γ ∈ (1, 2). Thus, global finite-time stability of the
closed-loop trivial solution q̄(t) ≡ 0n is guaranteed with |τj(t)| =
|uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0.

Proof: Note that, given any rij > 0, for every ς ∈ (−Lij , Lij):
εrij ς ∈ (−Lij , Lij) and σij(ε

rij ς) = εrijβij sign(ς)|ς|βij
= εrijβijσij(ς), ∀ε ∈ (0, 1]. Hence, under the consideration of
expressions (28), for every j = 1, . . . , n, we have, for any
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Fig. 1: Experimental setup: 2-DOF revolute-joint mechanical
manipulator

r1j = r1 > 0, that taking r2j = r2 = r1/γ and r0j = r1β1j , σij ,
i = 1, 2, are locally ri-homogeneous of degree α2j = r2β2j =
r1β1j = α1j = αj with domain of homogeneity Dij = {ς ∈ R :
|ς| < Lij}, and σ0j is locally αj -homogeneous of degree α0j =
α0 = (2− γ)r1/γ with domain of homogeneity D0j = {ς ∈ R :
|ς| < L0j}. The requirements of Proposition 3.2 are thus concluded
to be satisfied with 1 < γ < 2 ⇐⇒ r2 < r1 < 2r2 ⇐⇒ r2 −
r1 < 0 < 2r2 − r1 = α0. �

Remark 3.9. Since the results of this section depart from the appli-
cation of the proposed control scheme, the cases of Proposition 3.2
with r2 ≥ r1 and Corollary 3.1 with γ ∈ (0, 1] are particular cases
of Proposition 3.1 where the closed-loop trivial solution q̄(t) ≡ 0n
is globally asymptotically (but not finite-time) stable. It is further
worth pointing out that with r2 = r1 —or analogously γ = 1 in the
case of Corollary 3.1— we have that εr2−r1 = 1, ∀ε > 0. Hence,
in this case, developments analog to those giving rise to inequalities
(26) lead to L0 ≤ kg‖x1‖

∥∥H−1(qd)
∥∥, and consequently, Lemma

2.1 (under the consideration of Remark 2.4) cannot be applied to
conclude (local) exponential stability (contrarily to the on-line grav-
ity compensation case of [1]). Nevertheless, exponential stability is
next proven to be achieved (locally), through an alternative (strict-
Lyapunov-function-based) analytical procedure, for the special case
obtained under the consideration of (27) with βij = 1, i = 0, 1, 2,
j = 1, . . . , n (which implies γ = 1 ⇐⇒ r2 = r1). 4

3.2 Exponential stabilization

Corollary 3.2. Consider the proposed control scheme taking —for
every i = 0, 1, 2 and j = 1, . . . , n— σij as in (27) with βij = 1, i.e.
such that

σij(ς) = ς ∀|ς| ≤ Lij ∈ (0,∞) (29)

Thus: |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0, and the closed-
loop trivial solution q̄(t) ≡ 0n is globally asymptotically stable and
(locally) exponentially stable.

Proof: See the Appendix (Subsection 8.1). �

4 Experimental results

The proposed control scheme was implemented through experi-
mental tests on a 2-DOF robot manipulator moving on a vertical
plane. The experimental setup, shown in Fig. 1, is a 2-revolute-joint
mechanical arm located at the Instituto Tecnológico de la Laguna,
Mexico, previously used in [19]. The robot actuators are direct-drive
brushless servomotors operated in torque mode, that is, they act as
torque sources and receive an analogue voltage as a torque reference
signal. The motors used in the experimental arm are DM1200-A and
DM1015-B from Parker Compumotor, for the shoulder and elbow

joints, respectively. In this configuration, the first motor is capa-
ble of delivering a maximum torque of 150 Nm and the second
one delivers only 15 Nm. Joint positions are obtained from incre-
mental encoders located on the motors, which have a resolution of
1,024,000 pulses/rev for the first motor and 655,300 for the second
one (accuracy of 0.0069◦for both motors), and the standard back-
wards difference algorithm is used to obtain the velocity signals.
The setup includes a PC-host computer with an acquisition board
—the Multi-Q I/O card form Quanser— to get the encoder data
and generate reference voltages. The robot is programmed through
WinMechLab [20], which is a general-purpose computer system for
real time control of mechanisms that runs on a Windows platform
based on C language. The control algorithm is executed at a 2.5
ms sampling period (holding constant the control signals among the
samples). This has proven to be fast enough to suitably approxi-
mate the continuous control signals generated by the implemented
continuous-time scheme. Thorough details of the manipulator model
can be found in [19]. In particular, the gravity (conservative) force
vector is expressed as

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)

Assumptions 2.1–2.3 are thus satisfied, which is a direct conse-
quence of the revolute nature of both joints of the considered manip-
ulator, in accordance to Remark 2.2; in particular Assumption 2.3 is
fulfilled with Bg1 = 40.29 Nm, Bg2 = 1.825 Nm and kg = 40.37
Nm/rad. Furthermore, as previously mentioned, the input saturation
bounds are T1 = 150 Nm and T2 = 15 Nm for the first and second
links respectively, whence one can corroborate that Assumption 2.4
is fulfilled with η = 3 (since T1 = 150 Nm > 120.87 Nm = 3Bg1
and T2 = 15 Nm > 5.475 Nm = 3Bg2). For the sake of simplicity,
units will be subsequently omitted.

For the application of the proposed design methodology, let us
define the functions

σu(ς;β, a) = sign(ς) max{|ς|β , a|ς|} (30a)

σbh(ς;β, a,M) = sign(ς) min{|σu(ς;β, a)|,M} (30b)

σbs(ς;β, a,M,L) =

{
σu(ς;β, a) if |ς| ≤ L
sign(ς)σ+

bs(|ς|;β, a,M,L) if |ς| > L
(30c)

where

σ+
bs(ς;β, a,M,L) = σu(L;β, a)

+ (M − σu(L;β, a)) tanh

(
σu(ς;β, a)− σu(L;β, a)

M − σu(L;β, a)

)

for constants β > 0, a ∈ {0, 1}, M > 0, and L > 0 such that
σu(L;β, a) < M . Examples are shown in Fig. 2.

Through experimental tests that show the efficiency of the pro-
posed approach from an actual application whence model inaccura-
cies constitute an unavoidable reality, we further aim at observing
diverse aspects on the closed-loop responses. The first of these is
to show the achievement of the finite-time stabilization in contrast
to analog exponential regulation implementations. Next, finite-time
stabilization tests aiming at illustrating the ability of the proposed
controller to adopt different saturating structures will be shown.
Finally, finite-time stabilization tests oriented to conclude on the
differences or coincidences among closed-loop responses obtained
through the desired and on-line compensation versions of the devel-
oped SPD type scheme —where the type of the compensation term
is the only difference among the implementations— are included.
All the implementations were run taking the desired configuration at
qd =

(
π/6 π/3

)T [rad] and initial conditions as q(0) = q̇(0) = 02.
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Fig. 2: Examples of σu(ς;β, a), σbh(ς;β, a,M) and
σbs(ς;β, a,M,L)

4.1 Finite-time vs exponential stabilization

Based on the functions in Eqs. (30), we define —for every j =
1, 2— those involved in the implementations performed in this
subsection as

σ0j(ς) = σbs(ς;β0, a0j ,M0j , L0j) (31a)

σij(ς) = σu(ς;βi, aij) i = 1, 2 (31b)

with aij = 0, i = 0, 1, 2, j = 1, 2. Conditions on their parameters
under which (12) is fulfilled are:

k1j > kg(2Bgj)
(1−β0β1)/β0β1 (32a)

2Bgj ≤ Lβ0

0j < M0j (32b)

(this is shown in the Appendix (Subsection 8.2)) [the right-most
inequality in (32b) actually comes from the specifications of σbs in
(30c)]. Let us note, from the involved functions, as defined through
Eqs. (31), that Bj = M0j , j = 1, 2 (see (11)). Hence, (11) and
(32b) simultaneously require that 2Bgj < M0j < Tj −Bgj , j =
1, 2, which has been fulfilled by fixing M01 = 100 and M02 = 12.
The rest of the control gain/parameter values were chosen taking
care that inequalities (32) were always satisfied.

Figure 3 shows results obtained taking β1 = 3/5, β2 = 18/25
and β0 = 10/9 for the finite-time controller with γ = 6/5, and the
remaining control gain/parameters were taken, for both (finite-time
and exponential) controllers, as: K1 = diag[500, 78] and K2 =
diag[2.5, 2.5]. We further fixed L01 = 59.78 and L02 = 7.58 for
the finite-time controller, and L01 = 94.17 and L02 = 9.49 for the
exponential stabilizer. One sees that control signals avoiding input
saturation took place in both implementations, while the closed-loop
trajectory arising through the exponential controller was observed
to present a longer and more important transient. Interestingly, the
finite-time stabilizer shows a more efficient ability to counteract the
inertial effects through control signals with considerably less and
lower variations during the transient.

4.2 Multiple saturating structure

We present an alternative test where the proposed desired-
compensation scheme adopts two different saturating structures. It
is worth pointing out that the proposed design methodology does
not force to keep the same saturating structure at every one of the
controlled degree of freedom but rather permits different choices
among them. However, for our comparison purposes, the saturating
structures are chosen different among the controllers but are kept the

Fig. 3: Finite-time vs exponential stabilization

same among the controlled degrees of freedom for each one of the
implemented stabilizer.

One of the implemented finite-time controllers adopts the same
saturating structure of the precedent subsection, i.e. it involves the
functions defined through Eqs. (31). Since this stabilizer uses, at
every controlled degree of freedom, a single saturation function that
includes both the P and D actions, it will be referred to as the SPD
controller. The alternative finite-time controller is structured taking,
for every j = 1, 2:

σ0j(ς) = σu(ς;β0, a0j) (33a)

σij(ς) = σbh(ς;βi, aij ,Mij) i = 1, 2 (33b)

with aij = 0, i = 0, 1, 2, j = 1, 2. Since this stabilizer uses a satu-
ration function for each one of the P and D actions (separately), it
will be referred to as the SP-SD controller. Conditions on the param-
eters of the functions involved in this case —as defined through Eqs.
(33)— under which (12) is fulfilled are:

k1j > kg(2Bgj)
(1−β0β1)/β0β1 (34a)

Mβ0

1j > 2Bgj (34b)

(this is shown in the Appendix (Subsection 8.3)).
For both —the SPD and SP-SD— finite-time controllers with

γ = 5/4, we took β1 = 3/5, β2 = 3/4 and β0 = 1. Notice that
with such a unitary value of β0, for the SP-SD algorithm we have
Bj = M1j +M2j , j = 1, 2 (see (11)). Hence, while M01 = 100
and M02 = 12 were kept for the SPD controller (as in the precedent
subsection), by taking M11 = 82, M21 = 18, and M12 = M22 =
6, the inequalities from expressions (11) and (34b) have been simul-
taneously satisfied. By further fixing K1 = diag[3260, 400] and
K2 = diag[250, 25], the common inequality (32a) and (34a) has
been fulfilled (for both controllers). We further fixed L01 = 94.17
and L02 = 9.49 for the SPD algorithm, under the consideration of
(32b).

Figure 4 shows the results obtained from the implementations.
One sees that, while both controllers achieve the finite-time stabiliza-
tion objective avoiding input saturation, the closed-loop responses
show different performances, with the SP-SD stabilizer giving rise
to longer overshoots. Such a result corroborates the usefulness of the
structural variety offered by the proposed approach in searching for
performance improvement. It is worth further noticing that the SPD
finite-time controller shows again —as in the previous test but this
time compared to the SP-SD finite-time stabilizer— a more efficient
ability to counteract the inertial effects through signals with consid-
erably less and lower variations during the transient, concluding that
such a nice feature is related not only to the finite-time nature of the
controller but also to its (combined) SPD type structure.
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Fig. 4: SPD vs SP-SD finite-time controllers

Fig. 5: Desired vs on-line conservative-force compensation

4.3 Desired vs on-line conservative-force compensation

The last test focuses on the comparison among finite-time control
implementations involving the desired and on-line conservative-
force compensation versions of the SPD-type control schemes from
this work and that from [1], respectively. Of course, for every one of
these cases, one can always choose control gain/parameters and/or
saturating structures such that, for the same initial conditions, either
of them outperforms the other. Thus, what we really focus on, in
this section, is in comparing closed-loop responses when both con-
trollers hold the same control gain/parameter values and saturating
structures but differ only on the type of conservative-force (gravity)
compensation. With this goal in mind, we repeated exactly the finite-
time control test of Subsection 4.1 simply alternating the referred
compensation term. Figure 5 shows the comparison among the tested
controllers, with FTd and FTo denoting the finite-time controllers
with desired and on-line compensation term, respectively. No con-
siderable differences among the closed-loop performances can be
appreciated. Several alternative tests performing the same compar-
ison but with different control characteristics (e.g. different control
gain/parameter value combinations) generally gave rise to a similar
result, i.e. suitable closed-loop responses with no considerable dif-
ferences among them. We conclude from these results that the cost
on the performance for the implementation simplification earned by
the desired compensation version of the controller is negligible, in

spite of the open-loop conservative-force term that is left acting on
the system in this case.

5 Conclusions

Global SPD-type continuous control of mechanical systems with
input constraints guaranteeing finite-time or exponential stabiliza-
tion has been made possible and further simplified through desired
conservative-force compensation. Far from what one could have
expected, this controller is not a simple extension of the on-line
compensation case but it has rather proven to need more involved
requirements resulting from a closed-loop analysis with consider-
ably higher degree of complexity. Moreover, the proposed approach
has overcome the proof on its transition from finite-time to expo-
nential stabilization, which could not be solved keeping the local-
homogeneity approach of the former in view of the open-loop
conservative force which is kept acting on the closed loop. Exper-
imental tests on a 2-DOF mechanical manipulator have shown the
actual ability of the proposed approach to guarantee the considered
types of convergence avoiding input saturation, and through dif-
ferent saturating configurations. In particular, the SPD finite-time
stabilizer, with external saturation gathering unbounded internal P
and D type actions, has shown the ability to counteract the system
inertial transient effects through control signals with considerably
less and lower variations than its analog SPD exponential and SP-
SD finite-time controller versions. Furthermore, both the on-line and
desired conservative-force compensation versions of the developed
scheme were tested and actually compared when the only difference
among them is on the type of the referred compensation term. They
both gave rise to suitable results with very small differences among
the corresponding closed-loop responses. Thus, the implementation
simplifications earned through the desired compensation are con-
cluded to have a negligible cost on the system performance, passing
the bill rather to the closed-loop analysis. Future work will focus on
robustness issues of the proposed continuous finite-time controllers.
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8 Appendix

8.1 Proof of Corollary 3.2

The global asymptotic stability follows from Proposition 3.1. Thus,
all that remains to be proven is the (local) exponential stabil-
ity property. In this direction, let us consider the scalar function
V2(x1, x2) = V1(x1, x2) + εxT1 H(x1 + qd)x2, with V1(x1, x2)
as defined through Eq. (15) (with ` = 1), i.e.

V2(x1, x2) =
1

2
xT2 H(x1 + qd)x2 +

∫x1

0n

sT0
(
s1(K1z)

)
dz

+ Uol(x1 + qd)− Uol(qd)− gT (qd)x1

+ εxT1 H(x1 + qd)x2

where ε is a positive constant such that

ε < min{ε1, ε2} (35)

with

ε1 =

[
k̄1mµm

]1/2

µM
, ε2 =

k̄1mk2m

k̄1mkC%+ k̄1mµM + k2
2M/4

k̄1m = minj{k̄1j}; k2m = minj{k2j}; k2M = maxj{k2j}; µm,
µM and kC as defined through Property 2.1 and Assumptions
2.1 and 2.2; and % is a positive constant to be defined later on.
From the proof of Theorem 3.1 (particularly, from inequality (23)),
we have that V2(x1, x2) ≥ µm

2 ‖x2‖2 + S1(x1)− ε
∣∣xT1 H(x1)x2

∣∣,
with S1(x1) as defined through Eqs. (20) (with ` = 1). More pre-
cisely, on Q1 × Rn, with Q1 = {x1 ∈ Rn : |x1j | < b̄1j/k̄1j , j =
1, . . . , n}, we have that

V2(x1, x2) ≥ µm
2
‖x2‖2 +

n∑

j=1

k̄1j

2
x2

1j − ε
∣∣xT1 H(x1 + qd)x2

∣∣

≥ µm
2
‖x2‖2 +

k̄1m

2
‖x1‖2 − εµM‖x1‖‖x2‖

=
1

2

(
‖x1‖
‖x2‖

)T
Q1

(
‖x1‖
‖x2‖

)

with

Q1 =

(
k̄1m −εµM
−εµM µm

)

where Assumption 2.1 has been considered, and since (35) =⇒
ε < ε1 =⇒ Q1 > 0, we get

V2(x) ≥ c1‖x‖2 (36)

∀x ∈ Q1 × Rn, with c1 = λm(Q1)/2 > 0. On the other hand,
observe that in view of (29), we have, onQ0 = {x1 ∈ Rn : |x1j | ≤
L1j/k1j , |σ1j(k1jx1j)| = |k1jx1j | ≤ L0j , j = 1, . . . , n} =

{
x1

∈ Rn : |x1j | ≤ min{L1j , L0j}/k1j , j = 1, . . . , n
}

, that
s0
(
s1(K1x1)

)
= K1x1. From this, Assumption 2.1 and (19) we

get, onQ0 × Rn:

V2(x1, x2) =
1

2
xT2 H(x1 + qd)x2 +

1

2
xT1 K1x1 + Uol(x1 + qd)

− Uol(qd)− gT (qd)x1 + εxT1 H(x1 + qd)x2

≤ µM
2
‖x2‖2 +

k1M

2
‖x1‖2 +

kg
2
‖x1‖2

+ εµM‖x1‖‖x2‖

=
1

2

(
‖x1‖
‖x2‖

)T
Q2

(
‖x1‖
‖x2‖

)

with

Q2 =

(
k1M + kg εµM

εµM µM

)

and k1M = maxj{k1j}. From simple developments, one can fur-
ther verify that (35) =⇒ ε < ε1 =⇒ Q2 > 0, whence we get

V2(x) ≤ c2‖x‖2 (37)

∀x ∈ Q0 × Rn, with c2 = λM (Q2)/2 > 0. Furthermore, the
derivative of V2 along the closed-loop system trajectories is given
by

V̇2(x1, x2)

= xT2 H(x1 + qd)ẋ2 +
1

2
xT2 Ḣ(x1 + qd, x2)x2

+
[
s0
(
s1(K1x1)

)
+ g(x1 + qd)− g(qd)

]T
ẋ1

+ εxT1 H(x1 + qd)ẋ2 + εxT1 Ḣ(x1 + qd, x2)x2

+ εẋT1 H(x1 + qd)x2

= xT2
[
− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)

− s0
(
s1(K1x1) + s2(K2x2)

)]
+

1

2
xT2 Ḣ(x1 + qd, x2)x2

+
[
s0
(
s1(K1x1)

)
+ g(x1 + qd)− g(qd)

]T
x2

+ εxT1
[
− C(x1 + qd, x2)x2 − g(x1 + qd)

+ g(qd)− s0
(
s1(K1x1) + s2(K2x2)

)]

+ εxT1
[
C(x1 + qd, x2) + CT (x1 + qd, x2)

]
x2

+ εxT2 H(x1 + qd)x2

= − xT2
[
s0
(
s1(K1x1) + s2(K2x2)

)
− s0

(
s1(K1x1)

)]

− εxT1
[
s0
(
s1(K1x1)

)
+ g(x1 + qd)− g(qd)

]

− εxT1
[
s0
(
s1(K1x1) + s2(K2x2)

)
− s0

(
s1(K1x1)

)]

+ εxT2 C(x1 + qd, x2)x1 + εxT2 H(x1 + qd)x2

where Property 2.2.1 has been applied. Notice that, in view of (29),
we have, on S = {(x1, x2) ∈ Rn × Rn : |x1j | ≤ L1j/k1j , |x2j |
≤ L2j/k2j , |σ1j(k1jx1j) + σ2j(k2jx2j)| = |k1jx1j + k2jx2j |
≤ L0j , j = 1, . . . , n}, that s0

(
s1(K1x1) + s2(K2x2)

)

− s0
(
s1(K1x1)

)
= K2x2. From this, (21), Property 2.2.3 and
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Assumptions 2.1 and 2.2, we get

V̇2(x1, x2) ≤ −xT2 K2x2 − ε
n∑

j=1

k̄1jx
2
1j + ε

∣∣xT1 K2x2

∣∣

+ ε
∣∣xT2 C(x1 + qd, x2)x1

∣∣+ ε
∣∣xT2 H(x1 + qd)x2

∣∣

≤ − k2m‖x2‖2 − εk̄1m‖x1‖2 + εk2M‖x1‖‖x2‖
+ εkC%‖x2‖2 + εµM‖x2‖2

= −
(
‖x1‖
‖x2‖

)T
Q3

(
‖x1‖
‖x2‖

)

∀(x1, x2) ∈ S ∩
(
Q1 × Rn

)
, with

Q3 =

(
εk̄1m −εk2M/2

−εk2M/2 k2m − εkC%− εµM

)

and % = maxx1∈Q1
‖x1‖ =

[∑n
j=1

[
b̄1j/k̄1j

]2]1/2, and since
(35) =⇒ ε < ε2 =⇒ Q3 > 0, we get

V̇2(x) ≤ −c3‖x‖2 (38)

∀x ∈ S ∩
(
Q1 × Rn

)
, with c3 = λm(Q3) > 0. Thus, from the

simultaneous satisfaction of inequalities (36)–(38) on S ∩
[
(Q0 ∩

Q1)× Rn
]
, we conclude —by [16, Theorem 4.10]— that the origin

(x1, x2) = (0n, 0n) is a (locally) exponentially stable equilibrium
of the closed-loop system, whence the proof is completed.

8.2 On inequalities (32)

Noting from (28) that β0β1 = (2− γ)/γ and (in accordance
to Corollaries 3.1 and 3.2) that 1 ≤ γ < 2 ⇐⇒ 0 < (2−
γ)/γ ≤ 1 ⇐⇒ 0 < β0β1 ≤ 1, observe that on {ς ∈ R : 0 <
|ς| ≤ 2Bgj/kg} we have that

|ς| ≤ 2Bgj
kg

⇐⇒ |ς|1−β0β1 ≤
(

2Bgj
kg

)1−β0β1

⇐⇒ kβ0β1

1j

(
2Bgj
kg

)β0β1−1

|ς| ≤ |k1jς|β0β1

while from (32a) we have, for all ς 6= 0, that:

(32a) ⇐⇒ kg(2Bgj)
(1−β0β1)/(β0β1)|ς|1/(β0β1) < k1j |ς|1/(β0β1)

⇐⇒ kβ0β1
g (2Bgj)

1−β0β1 |ς| < kβ0β1

1j |ς|

⇐⇒ kg|ς| < kβ0β1

1j

(
2Bgj
kg

)β0β1−1

|ς|

From these developments we thus get, on
{
ς ∈ R : 0 < |ς| ≤

min
{

2Bgj/kg , L
1/β1

0 /k1j

}}
, that: (32a) =⇒ kg|ς| < |k1jς|β0β1 ,

and consequently, for all
{
ς ∈ R : 0 < |ς| ≤ L1/β1

0 /k1j

}
, that:

(32a) =⇒ min{kg|ς|, 2Bgj} < |k1jς|β0β1 , whence, under the

additional consideration of (32b), we get that:

(32) =⇒ min{kg|ς|, 2Bgj}

<





|k1jς|β0β1 if |ς| ≤ L
1/β1
0j

k1j

Lβ0

0j + (M0j − Lβ0

0j ) tanh

(
|k1jς|β0β1−Lβ00j

M0j−Lβ00j

)
if |ς| > L

1/β1
0j

k1j

=

{
|σ1j(k1jς)|β0 if |σ1j(k1jς)| ≤ L0j

σ+
bs(|σ1j(k1jς)|;β0, 0, L0j ,M0j) if |σ1j(k1jς)| > L0j

=
∣∣σ0j

(
σ1j(k1jς)

)∣∣

∀ς 6= 0.

8.3 On inequalities (34)

From previous arguments, used in Subsection 8.2 (since (32a)
and (34a) are analog inequalities), we have, on

{
ς ∈ R : 0 <

|ς| ≤ 2Bgj/kg}, that: (34a) =⇒ kg|ς| < |k1jς|β0β1 , and con-
sequently, for all ς 6= 0, that: (34a) =⇒ min{kg|ς|, 2Bgj} <
|k1jς|β0β1 , whence, under the additional consideration of (34b), we
get that: (34) =⇒ min{kg|ς|, 2Bgj} < min

{
|k1jς|β0β1 ,Mβ0

1j

}

= |σ1j(k1jς)|β0 =
∣∣σ0j

(
σ1j(k1jς)

)∣∣, ∀ς 6= 0.
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