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4Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Electrónica, Puebla, Mexico

@E-mail: azavala@ipicyt.edu.mx

Abstract

An output-feedback PID-type control scheme for the global position stabilization of robot manipulators with

bounded inputs is proposed. It guarantees the global regulation objective avoiding input saturation by releasing the

feedback not only from the exact knowledge of the system structure and parameter values but also from velocity

measurements. With respect to previous approaches of the kind, the proposed scheme remains simple while increasing

design/performance-adjustment flexibility. For instance, it does not impose the use of a specific sigmoidal function

to achieve the required boundedness but involves a generalized type of saturation functions. More importantly, it

is characterized by a very simple control-gain tuning criterion, the simplest hitherto obtained in the considered

analytical context. Experimental tests on a 2-degree-of-freedom direct-drive manipulator corroborate the efficiency of

the developed scheme.

I. INTRODUCTION

Despite the advances hitherto achieved in the design of sophisticated control schemes, implementation of the

classical Proportional-Integral-Derivative (PID) controller seems to be a common practice for the regulation of

robot manipulators [1]. This is mainly due to the practical certainty on the achievement of the regulation goal

experienced through its simple linear structure which avoids involving the system model and exact knowledge

of the system parameters. Such benignant characteristics have motivated research work on the stabilization of

manipulators through the classical linear PID controller focusing, for instance, on stability [1] [2], robustness [2]

[3], stability region estimation [2] [4] and tuning [5] [6]. However, through such a simple linear structure, it has

not yet been possible to develop a global proof of the closed-loop stability properties observed in practice. This

is why alternative nonlinear versions of the PID controller, mainly oriented to guarantee global regulation, have
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been proposed for instance in [7] [8]. However, these algorithms implicitly assume that actuators can furnish any

required torque value. Unfortunately, this is not possible in practice in view of the saturation nonlinearity that

generally relates the controller outputs to the plant inputs in actual feedback systems. Furthermore, disregarding

such natural constraints may lead to undesirable system behaviors or degraded closed-loop performances [9]. For

this reason, bounded PID-type approaches have been further developed. For instance, semiglobal regulators with

different saturating PID-type structures have been proposed in [10] [11]. The closed-loop analysis in these works

is developed using the singular perturbation methodology which shows the existence of an appropriate tuning

mainly characterized by the requirement of small enough integral action gains and sufficiently high proportional

and derivative ones. As far as the authors are aware, the first bounded PID-type control law for global regulation was

presented in [12]; the algorithm gives the alternative to include or disregard velocities in the feedback. Nevertheless,

the structure of the proposed scheme is quite complex. Other studies have focused on the solution of the global PID

position stabilization problem for manipulators with constrained inputs through simpler structures, giving rise to

the SP-SI-SD type algorithm developed in [13] via passivity theory and later on in [14] through Lyapunov stability

analysis. In particular, the work in [14] includes a velocity-free version of the presented controller through the

conventional (linear) dirty derivative operator.

The above cited bounded PID-type approaches give a solution to the formulated problem under input and data

restrictions. In this direction, special interest have output-feedback schemes, like the velocity-free extensions of

the algorithms developed in [12] [14], since they achieve regulation not only without the need for the exact

knowledge of the system structure and parameter values but also through the exclusive feedback of the position

variables. Nevertheless, some design issues and/or the developed stability analyses have generally conducted to

stringent tuning criteria that include a set of conditions that are either not all necessary, or more restrictive than

really needed, or whose derivation is not always exhaustive. As might be expected, the resulting complication has

been naturally adopted by the previously cited velocity-free algorithms, which generally limits their closed-loop

performance improvement ability. This brings to the fore the convenience to count on an output-feedback bounded

PID-type global scheme with more design flexibility and less and/or simpler implementation restrictions giving

rise to wider performance adjustment possibilities, which constitutes our main motivation. Such a design goal is

proven to be achieved in this work through a simple control structure where each one of the P, I and D actions

adopts a generalized saturating form through the implication of suitable bounded smooth or non-smooth (Lipschitz-

continuous) passive functions that are not a priori fixed. More importantly, the proposed output-feedback controller

is mainly characterized by its very simple control-gain tuning criterion, and its efficiency is corroborated through

experimental tests on a 2-degree-of-freedom (DOF) direct-drive manipulator.

Remark 1: Tuning limitations coming from the developed stability analyses has been characteristic of previous

PID-type approaches even in the unconstrained input context [15]. As a matter of fact, simplification of the tuning

conditions for PID-type controllers has been a research subject for several years [5] [6] and had never been achieved

to be as simple as it is shown in this paper. In this direction, it is important to point out that the sense given

in this work to the term tuning is the same one given in [5] [6] [15], referring to the inequality conditions
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on the control parameters —generally in terms of the bound quantifications characterizing Properties 1–4 and

independent of the operation region— obtained through the closed-loop analysis to guarantee the pre-specified

control objective. This differs from the meaning given in other works where control-gain setting aims at coping

with performance requirements or give rise to acceptable system behaviors [16] [17], regularly focusing on closed-

loop response characteristic aspects such as rising time, overshoot or stabilization time. Such response-oriented

tuning procedures are frequently based on linear or linearized models and/or linear-model-based methods. Hence,

the expected performance is generally ensured at or around the set-point where the tuning procedure is applied.

Reference changes would generally require that the tuning method be executed again at the new set-point. Such a

tuning method frequently implies several parameter-adjustment stages and, rather than being based on inequality

conditions, it regularly involves formulae based on parameter quantifications from input-output tests such as step

responses. It is worth further pointing out that the formerly described control-objective-oriented parameter tuning

may adopt different sights under different problem formulations. For instance, under the consideration of non-

vanishing external disturbances and/or model imprecisions, where practical stabilization —aiming at the convergence

to a (sufficiently small) neighborhood of the desired equilibrium— would generally be a suitable control goal, the

expressions on the control gains obtained from the closed-loop analysis may adopt a robustness orientation such as

the achievement of a pre-specified tolerance level on the steady-state error, as in [3] (where a desired size of the

domain of attraction is simultaneously focused through the control parameter setting).

II. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Throughout this paper, Xij represents the element of X at its ith row and jth column,

and yi denotes the ith element of y. 0n stands for the origin of Rn and In represents the n × n identity matrix.

‖ · ‖ denotes the standard Euclidean norm for vectors, i.e. ‖y‖ =
√∑n

i=1 y
2
i , and induced norm for matrices, i.e.

‖X‖ =
√
λmax{XTX} where λmax{XTX} represents the maximum eigenvalue of XTX . For a continuous scalar

function ψ : R→ R, ψ′ denotes its derivative, when differentiable, D+ψ its upper right-hand (Dini) derivative, i.e.

D+ψ(ς) = lim suph→0+
ψ(ς+h)−ψ(ς)

h , with D+ψ = ψ′ at points of differentiability [18, Appendix C.2], and ψ−1

its inverse, when invertible.

Consider the n-DOF serial rigid robot manipulator dynamics with viscous friction [19]

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position, velocity and acceleration vectors, H(q) ∈ Rn×n is the inertia

matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈ Rn are respectively the vectors of Coriolis and centrifugal, viscous friction,

gravity and external input generalized forces, with F ∈ Rn×n being a positive definite constant diagonal matrix

whose entries fi > 0, i = 1, . . . , n, are the viscous friction coefficients, and g(q) = ∇U(q), with U(q) being the

gravitational potential energy, or equivalently

U(q) = U(q0) +

∫ q

q0

gT (r)dr (2a)
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with∫ q

q0

gT (r)dr =

∫ q1

q01

g1(r1, q02, . . . , q0n)dr1 +

∫ q2

q02

g2(q1, r2, q03, . . . , q0n)dr2

+ · · ·+
∫ qn

q0n

gn(q1, . . . , qn−1, rn)drn (2b)

for any1 q, q0 ∈ Rn. Some well-known properties characterizing the terms of such a dynamical model are recalled

here [19, Chap. 4]. Subsequently, we denote Ḣ the rate of change of H , i.e., Ḣ : Rn × Rn → Rn×n : (q, q̇) 7→[
∂Hij

∂q (q)q̇
]
.

Property 1: H(q) is a continuously differentiable matrix function being positive definite, symmetric, and bounded

on Rn, i.e. such that µmIn ≤ H(q) ≤ µMIn, ∀q ∈ Rn, for some constants µM ≥ µm > 0.

Property 2: The Coriolis matrix C(q, q̇) satisfies:

2.1. ‖C(q, q̇)‖ ≤ kC‖q̇‖, ∀(q, q̇) ∈ Rn × Rn, for some constant kC ≥ 0;

2.2. for all (q, q̇) ∈ Rn × Rn, q̇T
[

1
2Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0 and actually Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇).

Property 3: The viscous friction coefficient matrix satisfies fm‖q̇‖2 ≤ q̇TF q̇ ≤ fM‖q̇‖2, ∀q̇ ∈ Rn, where

0 < fm , mini{fi} ≤ maxi{fi} , fM .

Property 4: The gravity force term g(q) is a continuously differentiable bounded vector function with bounded

Jacobian matrix2 ∂g
∂q . Equivalently, every element of the gravity force vector, gi(q), i = 1, . . . , n, satisfies:

4.1. |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive constant Bgi;

4.2. ∂gi
∂qj

, j = 1, . . . , n, exist and are continuous and such that
∣∣∣ ∂gi∂qj

(q)
∣∣∣ ≤ ∥∥∥∂g∂q (q)

∥∥∥ ≤ kg , ∀q ∈ Rn, for some

positive constant kg , and consequently |gi(x)− gi(y)| ≤ ‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀x, y ∈ Rn.

Let us suppose that the absolute value of each input τi is constrained to be smaller than a given saturation bound

Ti > 0, i.e., |τi| ≤ Ti, i = 1, . . . , n. More precisely, letting ui represent the control variable (controller output)

relative to the ith degree of freedom, we have that

τi = Ti sat(ui/Ti) (3)

where sat(·) is the standard saturation function, i.e. sat(ς) = sign(ς) min {|ς|, 1}. From Eqs. (1) and (3), one sees

that Ti ≥ Bgi, ∀i ∈ {1, . . . , n}, is a necessary condition for the manipulator to be stabilizable at any desired

equilibrium configuration qd ∈ Rn. Thus, the following assumption turns out to be important within the analytical

setting considered here.

Assumption 1: Ti > αBgi, ∀i ∈ {1, . . . , n}, for some scalar α ≥ 1.

The control scheme proposed in this work involves functions fulfilling the following definition [20].

1Since g(q) is the gradient of the gravitational potential energy U(q), a scalar function, then, for any q, q0 ∈ Rn, the inverse relation

U(q) = U(q0) +
∫ q
q0
gT (r)dr is independent of the integration path [18, p. 120]. Eq. (2b) considers integration along the axes. This way, on

every axis (i.e. at every integral in the right-hand side of (2b)), the corresponding coordinate varies (according to the specified integral limits)

while the rest of the coordinates remain constant.
2Property 4 is satisfied for instance by manipulators having only revolute joints [19, §4.3].
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Definition 1: Given a positive constant M , a nondecreasing Lipschitz-continuous function σ : R→ R is said to

be a generalized saturation with bound M if

(a) ςσ(ς) > 0, ∀ς 6= 0;

(b) |σ(ς)| ≤M , ∀ς ∈ R.

If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤M , σ is said to be a linear saturation for (L,M).

Functions satisfying Definition 1 have the following properties proven in [20].

Lemma 1: Let σ : R→ R be a generalized saturation with bound M and let k be a positive constant. Then,

1. lim|ς|→∞D+σ(ς) = 0;

2. ∃σ′M ∈ (0,∞) such that 0 ≤ D+σ(ς) ≤ σ′M , ∀ς ∈ R;

3. σ2(kς)
2kσ′M

≤
∫ ς

0
σ(kr)dr ≤ kσ′M ς2

2 , ∀ς ∈ R;

4.
∫ ς

0
σ(kr)dr > 0, ∀ς 6= 0;

5.
∫ ς

0
σ(kr)dr →∞ as |ς| → ∞;

6. if σ is strictly increasing then, for any constant a ∈ R, σ̄(ς) = σ(ς + a) − σ(a) is a strictly increasing

generalized saturation function with bound M̄ = M + |σ(a)|.

III. THE PROPOSED CONTROL SCHEME

The proposed output-feedback controller with generalized SP, SI and SD terms is defined as

u(q, ϑ, φ) = −sP (KP q̄)− sD(KDϑ) + sI(KIφ) (4)

where q̄ = q − qd, for any constant desired equilibrium position vector qd ∈ Rn; φ, ϑ ∈ Rn are the output vector

variables of the integral-action dynamics, defined as3

φ̇c = −εK−1
P sP (KP q̄) (5a)

φ = −q̄ + φc (5b)

and the velocity estimation auxiliary subsystem, defined as

ϑ̇c = −AK−1
D sD

(
KD(ϑc +Bq̄)

)
(6a)

ϑ = ϑc +Bq̄ (6b)

(comments related to this subsystem are given in Appendix A), respectively; KP = diag[kP1, . . . , kPn], KD =

diag[kD1, . . . , kDn], KI = diag[kI1, . . . , kIn], A = diag[a1, . . . , an] and B = diag[b1, . . . , bn], with kDi > 0,

kIi > 0, ai > 0, bi > 0, ∀i = 1, . . . , n, and positive P gains such that

kPm , min
i
{kPi} > kg (7)

3Under time parametrization of the system trajectories, the integral-action dynamics in Eqs. (5) adopts the (equivalent) integral-equation form

φ(t) = φ(0) + q̄(0)− q̄(t)−
∫ t
0 εK

−1
P sP

(
KP q̄(ς)

)
dς , for any initial vector values φ(0), q̄(0) ∈ Rn.
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For any x ∈ Rn,

sP (x) =
(
σP1(x1), . . . , σPn(xn)

)T
sD(x) =

(
σD1(x1), . . . , σDn(xn)

)T
sI(x) =

(
σI1(x1), . . . , σIn(xn)

)T
with σPi(·), i = 1, . . . , n, being linear saturation functions for (LPi,MPi), σDi(·), i = 1, . . . , n, being generalized

saturation functions with bounds MDi, and σIi(·), i = 1, . . . , n, being strictly increasing generalized saturation

functions with bounds MIi, such that

LPi > 2Bgi (8a)

MIi > Bgi (8b)

MPi +MDi +MIi < Ti (8c)

i = 1, . . . , n; and ε (in Eq. (5a)) is a positive constant satisfying

ε < εM , min{ε1, ε2, ε3} (9)

where

ε1 ,

√
β0βPµm
µ2
M

, ε2 , 2β0βmkPm , ε3 ,
fm

βM +
f2
M

2β0kPm

<
fm
βM

, ε4 (10a)

with

β0 , 1−max

{
kg
kPm

,max
i

{
2Bgi
LPi

}}
, βP , min

i

{
kPi
σ′PiM

}
, βm , min

i

{
ai

bikDi

}

βM , kCBP + µMσ
′
PM , BP ,

√√√√ n∑
i=1

(
MPi

kPi

)2

, σ′PM , max
i
{σ′PiM}

(10b)

(observe that by inequalities (7) and (8a): 0 < β0 < 1), σ′PiM being the positive bound of D+σPi(·), in accordance

to item 2 of Lemma 1, and µm, µM , kC , fm, fM , Bgi and kg as defined through Properties 1–4. A block diagram

of the proposed scheme is shown in Fig. 1.

Remark 2: Note that the input-saturation-avoidance condition (8c) implies that MPi + MIi < Ti, while the

satisfaction of inequalities (8a)-(8b) implies that MPi + MIi > 3Bgi. Hence, the feasibility of the simultaneous

fulfillment of inequalities (8) is ensured by requiring the satisfaction of Assumption 1 with α = 3. This is a

consequence of the way how the closed-loop analysis is addressed, and its worst-case procedure followed at every

step giving rise to conditions with certain degree of conservativeness and of a consequent failure tolerance margin.

Similar conditions on the control input bounds have been required by other approaches where input constraints

have been considered [21]. Previous saturating PID-type schemes that do not explicitly include a similar or

analog condition on the control input bounds are not always exhaustive in the search for the whole set of explicit

conditions that support the developed closed loop analyses. Moreover, the way how such analyses are addressed
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Fig. 1. Block diagram of the proposed output-feedback control scheme

lead to additional constraints on the control gains which complicate the tuning task and restrict the performance

adjustment/improvement possibilities. Observe that the control gains in the approach proposed in this work are not

tied to the satisfaction of any additional tuning restriction apart from inequality (7) —a standard condition in the

literature [15] [19, Chap. 8]— and condition (9) concerning the integral-action-related parameter ε.

IV. CLOSED-LOOP ANALYSIS

Consider system (1),(3) taking u = u(q, ϑ, φ) as defined through Eqs. (4)–(6). Let us define the variable

transformation 
q̄

ϑ

φ̄

 =


q − qd

ϑc +B(q − qd)

−q̄ + φc − φ∗

 (11)

with φ∗ = (φ∗1, . . . , φ
∗
n)T such that sI(KIφ

∗) = g(qd), or equivalently φ∗i = σ−1
Ii

(
gi(qd)

)
/kIi, i = 1, . . . , n (notice

that their strictly increasing character renders the generalized saturation functions σIi invertible). Observe that from

(8c) and (3), we have for every i ∈ {1, . . . , n} that

Ti > MPi +MDi +MIi ≥
∣∣ui(q̄ + qd, ϑ, φ̄+ φ∗)

∣∣ = |ui| = |τi| ∀(q̄, ϑ, φ̄) ∈ Rn × Rn × Rn (12)

Thus, under the consideration of the variable transformation (11), the closed-loop dynamics adopts the (equivalent)

form

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = −sP (KP q̄)− sD(KDϑ) + s̄I(φ̄) + g(qd) (13a)

ϑ̇ = −AK−1
D sD(KDϑ) +Bq̇ (13b)

˙̄φ = −q̇ − εK−1
P sP (KP q̄) (13c)
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where

s̄I(φ̄) = sI(KI φ̄+KIφ
∗)− sI(KIφ

∗)

Observe that, by item 6 of Lemma 1, the elements of s̄I(φ̄), i.e. σ̄Ii(φ̄i) = σIi(kIiφ̄i + kIiφ
∗
i ) − σIi(kIiφ

∗
i ),

i = 1, . . . , n, turn out to be strictly increasing generalized saturation functions.

Proposition 1: Consider the closed-loop system in Eqs. (13), under the satisfaction of Assumption 1 with α = 3

and inequalities (8). Thus, for any positive definite diagonal matrices A, B, KD, KI and KP such that inequality

(7) is fulfilled, and any ε satisfying inequality (9), global asymptotic stability of the closed-loop trivial solution

(q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0n) is guaranteed with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof: By (12), one sees that, along the system trajectories, |τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This proves that,

under the proposed scheme, the input saturation values, Ti, are never attained. Now, in order to carry out the stability

analysis, the following scalar function is defined

V (q̄, q̇, ϑ, φ̄) =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + U(q)− U(qd)− gT (qd)q̄ +

∫ q̄

0n

sTP (KP r)dr

+

∫ φ̄

0n

s̄TI (r)dr +

∫ ϑ

0n

sTD(KDr)B
−1dr

where
∫ q̄

0n
sTP (KP r)dr =

∑n
i=1

∫ q̄i
0
σPi(kPiri)dri,

∫ φ̄
0n
s̄TI (r)dr =

∑n
i=1

∫ φ̄i

0
σ̄Ii(ri)dri,

∫ ϑ
0n
sTD(KDr)B

−1dr =∑n
i=1

∫ ϑi

0
σDi(kDiri)b

−1
i dri and recall that U represents the gravitational potential energy. Note, by recalling Eqs.

(2), that the defined scalar function can be rewritten as

V (q̄, q̇, ϑ, φ̄) =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + γ0

∫ q̄

0n

sTP (KP r)dr + Ucγ0(q̄)

+

∫ φ̄

0n

s̄TI (r)dr +

∫ ϑ

0n

sTD(KDr)B
−1dr

where

Ucγ0(q̄) =

∫ q̄

0n

[g(r + qd)− g(qd) + (1− γ0)sP (KP r)]
T
dr

=

n∑
i=1

∫ q̄i

0

[ḡi(ri)− gi(qd) + (1− γ0)σPi(kPiri)] dri

with

ḡ1(r1) = g1(r1 + qd1, qd2, . . . , qdn)

ḡ2(r2) = g2(q1, r2 + qd2, qd3, . . . , qdn)
...

ḡn(rn) = gn(q1, q2, . . . , qn−1, rn + qdn)

and γ0 is a constant satisfying

β0
ε2

ε2
1

< γ0 < β0 (14)
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(observe, from inequality (9) and the definition of β0, that 0 < β0ε
2/ε2

1 < β0 < 1). Under this consideration,

Ucγ0(q̄) turns out to be lower-bounded by

W10(q̄) =

n∑
i=1

w10
i (q̄i) (15a)

where

w10
i (q̄i) ,


kli
2 q̄

2
i if |q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| − q̄∗i

2

)
if |q̄i| > q̄∗i

(15b)

with 0 < kli ≤ (1 − γ0)kPi − kg and q̄∗i = [LPi − 2Bgi/(1 − γ0)]/kPi (note that by inequality (14) and the

definition of β0: 0 < (1 − γ0)kPi − kg and q̄∗i > 0); this is proven in [22]. From this, Property 1 and item 3 of

Lemma 1, we have that

V (q̄, q̇, ϑ, φ̄) ≥W11(q̄, q̇) +W10(q̄) +

∫ φ̄

0n

s̄TI (r)dr +

∫ ϑ

0n

sTD(KDr)B
−1dr (16)

where

W11(q̄, q̇) =
1

2

‖K−1
P sP (KP q̄)‖

‖q̇‖

T

Q11

‖K−1
P sP (KP q̄)‖

‖q̇‖


with

Q11 =

 γ0βP −εµM
−εµM µm

 =

 γ0βP − ε
ε1

√
β0βPµm

− ε
ε1

√
β0βPµm µm


By inequality (14), W11(q̄, q̇) is positive definite (since with ε < εM ≤ ε1, in accordance to inequality (9), any

γ0 satisfying (14) renders Q11 positive definite) and observe that W11(0n, q̇)→∞ as ‖q̇‖ → ∞, while from Eqs.

(15) and items 4 and 5 of Lemma 1, it is clear that W10 and the integral terms in the right-hand side of (16) are

radially unbounded positive definite functions of q̄, φ̄ and ϑ, respectively. Thus, V (q̄, q̇, ϑ, φ̄) is concluded to be

positive definite and radially unbounded. Its upper right-hand derivative along the system trajectories, V̇ = D+V

[23, §6.1A], is given by

V̇ (q̄, q̇, ϑ, φ̄) = − q̇TF q̇ − εsTP (KP q̄)K
−1
P F q̇ − εsTP (KP q̄)K

−1
P

[
g(q) + sP (KP q̄)− g(qd)

]
− εsTP (KP q̄)K

−1
P sD(KDϑ) + εq̇TC(q, q̇)K−1

P sP (KP q̄) + εq̇T s′P (KP q̄)H(q)q̇

− sTD(KDϑ)B−1AK−1
D sD(KDϑ)

where H(q)q̈, ˙̄φ and ϑ̇ have been replaced by their equivalent expressions from the closed-loop dynamics in

Eqs. (13), Property 2.2 has been used and s′P (KP q̄) , diag
[
D+σP1(kP1q̄1), . . . , D+σPn(kPnq̄n)

]
. The resulting

expression can be rewritten as

V̇ (q̄, q̇, ϑ, φ̄) = − q̇TF q̇ − εsTP (KP q̄)K
−1
P F q̇ − εγ1s

T
P (KP q̄)K

−1
P KPK

−1
P sP (KP q̄)− εWγ1(q̄)

− εsTP (KP q̄)K
−1
P sD(KDϑ) + εq̇TC(q, q̇)K−1

P sP (KP q̄) + εq̇T s′P (KP q̄)H(q)q̇

− sTD(KDϑ)B−1AK−1
D sD(KDϑ)
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where

Wγ1(q̄) = sTP (KP q̄)K
−1
P

[
(1− γ1)sP (KP q̄) + g(q)− g(qd)

]
=

n∑
i=1

[
(1− γ1)

kPi
σ2
Pi(kPiq̄i) +

σPi(kPiq̄i)

kPi

[
gi(q)− gi(qd)

]]
and γ1 is a constant satisfying

β0

[
max

{
ε

ε2
,
ε

ε3

(
ε4 − ε3

ε4 − ε

)}]
< γ1 < β0 (17)

(from inequality (9) and the definition of β0, one verifies, after simple developments, that 0 < β0

[
max

{
ε/ε2 , ε(ε4−

ε3)/[ε3(ε4 − ε)]
}]
< β0 < 1). Under this consideration, Wγ1(q̄) turns out to be lower-bounded by

W20(q̄) =

n∑
i=1

w20
i (q̄i) (18a)

where

w20
i (q̄i) =

ciq̄
2
i if |q̄i| ≤ LPi/kPi

di
kPi

(
|σPi(kPiq̄i)| − LPi

)
+ ci

(
LPi

kPi

)2

if |q̄i| > LPi/kPi

(18b)

with di = (1− γ1)LPi − 2Bgi, ci = min
{
h, dikPi

LPi

}
and h = (1− γ1)kPm − kg (notice, from inequality (17) and

the definition of β0, that di > 0 and h > 0, hence ci > 0); this is proven in [22]. From this, Properties 1, 2.1 and

3, and items 2 of Lemma 1 and (b) of Definition 1, we have that

V̇ (q̄, q̇, ϑ, φ̄) ≤ −εW21(q̄, ϑ)− εW22(q̄, q̇)− εW20(q̄)

where

W21(q̄, ϑ) =
1

2

‖K−1
P sP (KP q̄)‖

‖sD(KDϑ)‖

T

Q21

‖K−1
P sP (KP q̄)‖

‖sD(KDϑ)‖



W22(q̄, q̇) =
1

2

‖K−1
P sP (KP q̄)‖

‖q̇‖

T

Q22

‖K−1
P sP (KP q̄)‖

‖q̇‖


with

Q21 =

γ1kPm −1

−1 2βm

ε

 =

γ1kPm −1

−1 ε2
kPmβ0ε



Q22 =

γ1kPm −fM

−fM 2
(
fm
ε − βM

)
 =

 γ1kPm −
√

2kPmβMβ0

(
ε4−ε3
ε3

)
−
√

2kPmβMβ0

(
ε4−ε3
ε3

)
2βM

(
ε4−ε
ε

)


By inequality (17), W21(q̄, ϑ) and W22(q̄, q̇) are positive definite (since with ε < εM ≤ min{ε2, ε3} < ε4, in

accordance to inequality (9), any γ1 satisfying (17) renders Q21 and Q22 positive definite), while from Eqs. (18),

it is clear that W20 is a positive definite function of q̄. Hence, V̇ (q̄, q̇, ϑ, φ̄) ≤ 0 with V̇ (q̄, q̇, ϑ, φ̄) = 0 ⇐⇒

(q̄, q̇, ϑ) = (0n, 0n, 0n). Further, from the closed-loop dynamics in Eqs. (13), we see that q̄(t) ≡ q̇(t) ≡ ϑ(t) ≡
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Fig. 2. Experimental setup: 2-DOF direct-drive robot manipulator

0n =⇒ q̈(t) ≡ 0n =⇒ s̄I(φ̄(t)) ≡ 0n =⇒ φ̄(t) ≡ 0n. Therefore, by the invariance theory [23, §7.2],

the closed-loop trivial solution (q̄, ϑ, φ̄)(t) ≡ (0n, 0n, 0n) is concluded to be globally asymptotically stable, which

completes the proof.

Remark 3: Note that the fulfillment of inequality (9) is not necessary but only sufficient for the closed-loop

analysis to hold. As a matter of fact, proving Proposition 1 through inequality (9) is tantamount to show the

existence of some ε∗ ≥ εM such that, for any ε ∈ (0, ε∗), global stabilization is guaranteed. Hence, the proposed

scheme permits successful implementations with values of ε higher than εM (up to certain limit, ε∗).

V. EXPERIMENTAL RESULTS

With the aim at corroborating the efficiency of the proposed scheme, several real-time control tests were

implemented on a 2-DOF manipulator. The experimental setup, shown in Fig. 2, is a 2-revolute-joint mechanical

arm located at the Instituto Tecnológico de la Laguna, Mexico, previously used in [20]. The robot actuators are

direct-drive brushless servomotors operated in torque mode, i.e. they act as torque sources and receive an analog

voltage as a torque reference signal. Joint positions are obtained using incremental encoders on the motors. In order

to get the encoder data and generate reference voltages, the robot includes a motion control board based on a DSP

32-bit floating point microprocessor. The control algorithm is executed at a 2.5 millisecond sampling period on a

PC-host computer.

For the experimental manipulator, the various terms characterizing the system dynamics in (1) are given by

H(q) =

2.351 + 0.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

 (19a)

C(q, q̇) =

−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

 (19b)

g(q) =

38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

 and F =

2.288 0

0 0.175

 (19c)
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In particular, Properties 1–4 are satisfied with µm = 0.088 kg·m2, µM = 2.533 kg·m2, kC = 0.1455 kg·m2,

fm = 0.175 kg·m2/s, fM = 2.288 kg·m2/s, Bg1 = 40.29 Nm, Bg2 = 1.825 Nm and kg = 40.373 Nm/rad. The

maximum allowed torques (input saturation bounds) are T1 = 150 Nm and T2 = 15 Nm for the first and second

links respectively. From these data, one easily corroborates that Assumption 1 is fulfilled with α = 3.

The saturation functions used for the implementation were defined as σPi(ς) = MPisat(ς/MPi), σDi(ς) =

MDisat(ς/MDi) and

σIi(ς) =

ς if |ς| ≤ LIi

sign(ς)LIi + (MIi − LIi) tanh
(
ς−sign(ς)LIi

MIi−LIi

)
if |ς| > LIi

(20)

for 0 < LIi < MIi, i = 1, 2.4 Let us note that with these saturation functions, we have σ′PiM = σ′IiM = σ′DiM = 1,

∀i ∈ {1, 2}. The saturation parameters were selected in accordance to inequalities (8) as (all of them expressed in

Nm): MP1 = 86, MP2 = 7, MD1 = 22, MD2 = 4, MI1 = 41, MI2 = 2, and LIi = 0.9MIi, i = 1, 2.

For comparison purposes, additional experimental tests were implemented using the bounded PID-type scheme

presented in [14] (choice made taking into account the analog nature of the compared algorithms: globally stabilizing

in a bounded-input context through output feedback, and the recent appearance of [14]), i.e.

u = −KPTanh(q̄)−KDTanh(ϑ)−KITanh(φ) (21a)

ϑ̇c = −A[ϑc +Bq]

ϑ = ϑc +Bq
(21b)

φ̇c = Tanh(q̄)

φ = η2q̄ + ηφc

(21c)

with η being a (sufficiently large) positive constant and Tanh(x) =
(

tanhx1, . . . , tanhxn
)T

for any x ∈ Rn.5 For

the sake of simplicity, this algorithm is subsequently referred to as the S10 controller.

In all the experiments, the desired joint positions were fixed at qd =
(
qd1, qd2

)T
=
(
π/4, π/4

)T
[rad]. The initial

conditions were q(0) = q̇(0) = 02, and, for the proposed scheme, φc(0) was taken so as to have φ(0) = 02, while

φc(0) = 02 was taken for the S10 controller in view of the way how it is presented in [14] (recall Footnote 5). The

4Note that the achievement of the global regulation task is independent of the specific saturation functions chosen for implementation as

long as the design specifications given in Section III be followed. In the particular experimental case presented here, standard (non-smooth)

saturations were chosen for the SP and SD actions to show the simplicity permitted by the proposed scheme, while the function in (20) was

chosen for the SI actions as an example of a strictly increasing (smooth) saturation that is identical to its argument within a range, permitting

the reproduction of the unconstrained input case when the closed-loop trajectories remain small enough.
5In place of Eqs. (21c), the work in [14] defines φ(t) = η2q̄(t) + η

∫ t
0 Tanh

(
q̄(ς)

)
dς , which imposes the auxiliary variable initial condition

φ(0) = η2q̄(0) (or, equivalently, φc(0) = 0n in the context of Eqs. (21c)). Instead, Eqs. (21c) —or their (equivalent) time representation

φ(t) = φ(0) + η2
[
q̄(t) − q̄(0)

]
+ η

∫ t
0 Tanh

(
q̄(ς)

)
dς— keeps the required auxiliary dynamics while permitting any initial condition for φ

(or, equivalently, for φc in the context of Eqs. (21c)). This proves to be more appropriate in the global stabilization framework considered in

[14] (and what is generally expected from an approach developed within such a framework).

DRAFT April 8, 2015

Page 12 of 24

IET Review Copy Only

IET Control Theory & Applications



13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

Time (s)
q̄ 1

(r
ad

)
 

 
SP-SI-SD S10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

Time (s)

q̄ 2
(r

ad
)

Fig. 3. Experimental results: position errors

control gains for the proposed scheme were selected —under the satisfaction of inequalities (7) and (9)— so as to

get fast responses and avoid overshoot. Such a performance requirement was achieved under an additional control-

parameter adjustment procedure following the guidelines given in Appendix A. As for the S10 algorithm, the

control parameters were tuned so as to get the best possible closed-loop responses while adhering to the saturation-

avoidance inequalities and stability conditions (some of which had to be verified numerically) presented in [14]. The

resulting tuning values were: KP = diag[9000, 500] Nm/rad, KD = diag[10, 4] Nms/rad, KI = diag[1000, 300]

Nm/rad, A = diag[60, 40] s−1, B = [70, 20] s−1 and ε = 0.065 s−1 for the proposed scheme, whence one can

corroborate that inequalities (7) and (9) are fulfilled, and KP = diag[108, 11.5] Nm, KD = diag[0.5, 0.1] Nm,

KI = diag[40.5, 1.9] Nm, A = diag[60, 40] s−1, B = [70, 20] s−1 and η = 170 s/rad for the S10 controller.

Figs. 3 and 4 show the experimental results. Note that the proposed scheme successfully achieved the regulation

objective avoiding overshoot during the transient and preventing input saturation. The S10 controller is also observed

to achieve the stabilization goal preventing input saturation but overshoot could not be avoided under the tuning

procedure presented in [14]. Note further that the control objective has been achieved despite the imminent

measurement noise and unmodelled phenomena, such as the unconsidered friction components (e.g. static and

dry friction forces). Restricted effect of noise on the closed-loop system responses may be seen as a natural

consequence of the output-feedback nature of the proposed approach since only position variables are considered

in the control algorithm, avoiding additional noise corruption from speed measurements. On the other hand, it is

natural to expect the achievement of the position stabilization objective despite the presence of constant perturbation

inputs (of suitable size), or even (suitably bounded) input disturbance terms giving rise to constant values under

static conditions. This is in accordance to the nature of the integral action subsystem, which forces q̄ ≡ 0n to be the

unique position error equilibrium, while the integral-action term (directly acting on the manipulator dynamics) adopts

a suitable steady-state (vector) value to compensate for the static (or constant) perturbation value (in addition to
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Fig. 4. Experimental results: control signals

the gravity effects). For a clearer appreciation on these capabilities of the PID-type proposed approach, additional

simulations were implemented taking model (1),(3) with an additional constant input perturbation term h, i.e.

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ + h, τi = Tisat(ui/Ti), in closed loop with the proposed PID-type scheme

under the consideration of noisy position measurements q̂ = q + ν(t), i.e. with q in Eqs. (4)–(6) replaced by such

a q̂, with ν being a random (noise) variable with Gaussian distribution such that |ν(t)| < ν̄, ∀t, for some (noise)

bound ν̄ > 0. The simulations were implemented taking h = (h1, h2)T , with hi = −0.1Ti, i = 1, 2, i.e. h1 = −15

Nm and h2 = −1.5 Nm, and ν̄ = 0.01 rad. The dynamic properties of the considered experimental manipulator

—or equivalently H(q), C(q, q̇), g(q) and F in Eqs. (19)— were adopted, together with the control gains and

saturation functions and related parameters defined for the above described experimental test (with the proposed

control scheme). The results are shown in Figs. 5 and 6 where, just as a reference, the experimental curves (obtained

with the proposed control scheme) previously shown were included. One observes that the position stabilization

objective is achieved despite the considerable measurement noise level and constant input perturbation that were

added, with simulation curves close to the experimental ones. A notorious effect of the noise on the control signals

is noticed; this is mainly due to the important proportional gain values that were fixed, which considerably magnifies

the corrupted position errors. Notwithstanding, negligible effects of the added noise are observed on the position

error responses, which is an important characteristic from a response-oriented performance viewpoint.

VI. CONCLUSIONS

An output-feedback PID-type scheme for the global position stabilization of robot manipulators with bounded

inputs was proposed. It has proven to relax the complexity of previous approaches of the kind by keeping a simple

structure while increasing design/performance-adjustment flexibility. More importantly, it is characterized by its

very simple control-gain tuning criterion. This has been the consequence of the designed structure and closed-
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Fig. 5. Simulation results with noise and constant input perturbation: position errors
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Fig. 6. Simulation results with noise and constant input perturbation: control signals

loop analysis, which have released the control gain selection from unnecessary restrictive conditions while being

exhaustive on the search for additional requirements that render feasible the tuning procedure. The efficiency of the

proposed algorithm has been corroborated through experimental tests on a 2-DOF direct-drive manipulator.
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APPENDIX A

The performance-oriented tuning procedure that was used to obtain the experimental results shown Section V is

sketched as follows:

1. Set the saturation function parameters (MIi, MDi, MPi, LPi) so as to guarantee the satisfaction of inequalities

(8).

2. Set the velocity-estimation-subsystem parameters ai such that 1/ai be six to ten times the sampling period

of the controller, and bi ≥ ai to speed up the velocity estimation (or motion dissipation) or bi < ai to reduce

inertial effects (inherent to the velocity estimation dynamics), such as oscillations.

3. Run simulations/experiments with low control gains/coefficients, under the consideration of (7).

4. Increase the integral gains, kIi, in order to strengthen the elimination of position errors, aiming at reducing

stabilization times.

5. Increase the proportional gains, kPi, in order to reduce the rise time (speed up the closed-loop response).

6. Increase the derivative gains, kDi, in order to reduce inertial effects (particularly added by the integral actions),

such as the overshoot.

7. Adjust ε adhering to (9), if possible, or increasing its value as far as the closed-loop stability permits it.

8. Repeat the steps 4–7 until the best possible response is obtained.

Comments

(a) On the saturation function parameters (concerned in step 1). Although different values of the saturation

function parameters may lead to different effects on the closed-loop performance, their main purpose is to

guarantee input-saturation avoidance, through the satisfaction of inequality (8c), simultaneously ensuring the

accomplishment of conditions (8a)-(8b) arisen from the closed-loop analysis. We restrict their usage to such

a purpose by simply requiring the satisfaction of inequalities (8).

(b) On the velocity-estimation-subsystem parameters (concerned in step 2). In its original linear form, where no

saturation function is involved, the dirty derivative operator —implemented in the proposed approach through

the velocity estimation (nonlinear) subsystem in Eqs. (6)— acts like a set of low-pass filters on the velocity

variables, each of them with time constant 1/ai and gain bi/ai. Step 2 is stated giving such a sense to the

concerned parameters. Even with the (benign) change resulting from the inclusion of the nonlinear function

sD in the velocity-estimation-subsystem dynamics, keeping such an interpretation of the concerned parameters

for their adjustment proves to contribute to the achievement of acceptable closed-loop performances.

(c) On the integral-action-related coefficient ε (concerned in step 7). In view of Remark 3, arbitrarily small values

of ε could be initially tested as long as the stabilization objective be achieved, and further adjustments can then

be considered towards the achievement of a performance requirement (lowering down the initial value if the

initial test calls into question the suitable accomplishment of the stability requirements or, in the contrary case,
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as indicated in step 7 aiming at contributing to lower down the stabilization time; if no notorious performance

improvement is entailed through its adjustment, it can remain fix during the performance-oriented tuning

procedure). Of course, fulfilment of (9) analytically guarantees a correct choice of ε, which could however be

conservative. Opting for the satisfaction of (9) leads to the evaluation of expressions (10) at every readjustment

of the control parameters. Observe that such expressions (10) are in terms of the control and saturation function

parameters as well as the bound values characterizing Properties 1–4, which may in turn be estimated through

lower and/or upper bounds on the system parameters.
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[6] Hernández-Guzmán, V.M., Santibáñez, V., Silva-Ortigoza, R.: ‘A new tuning procedure for PID control of rigid robots’, Advanced Robotics,

2008, 22, (9), pp. 1007-1023

[7] Arimoto, S.: ‘Fundamental problems or robot control: Part I, innovations in the realm of robot servo-loops’, Robotica, 1995, 13, (1), pp.

19–27

[8] Kelly, R.: ‘Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions’, IEEE Transactions on

Automatic Control, 1998, 43, (7), pp. 934–938

[9] Corradini, M.L., Cristofaro, A., Orlando, G.: ‘Robust stabilization of multi input plants with saturating actuators’, IEEE Transactions on

Automatic Control, 2010, 55, (2), pp. 419–425.

[10] Alvarez-Ramirez, J., Kelly, R., Cervantes, I.: ‘Semiglobal stability of saturated linear PID control for robot manipulators’, Automatica,

2003, 39, (6), pp. 989–995
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