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Abstract—The analysis, design and circuit synthesis of a
fractional order switched system is presented in this paper. That
system is capable of showing chaotic oscillations with a fractional
order less than three, i.e., 2.4. The dynamical system is called
fractional order unstable dissipative system (FOUDS); because
it consists of a switching law to display strange attractors. Its
dynamical behavior is explored and a circuit synthesis system is
realized considering operational amplifiers. SPICE simulations
agree with the numerical results.

I. INTRODUCTION

The concept of fractional calculus was proposed by Leibniz
more than 300 year ago. It begins to attract much interest and
importance in various fields of engineering and physics, where
the number of applications has increased rapidly. A fractional
model allows one describe a real object more adequately and
accurately than corresponding integer model [1], [2] due to
the unlimited memory and hereditary properties of a frac-
tional order operator. Moreover the fractional order parameter
improves the system performance by adding one degree of
freedom. The transcendence of the fractional calculus has been
demonstrated to be effective in different contexts; for example
in image processing a fractional differential algorithm could
preserve the information of weak texture, while enhancing
the edge of image [3]. In control theory a fractional order
controller has been reported in some applications such as
backlash vibration suppression control of torsional systems
[4]. In viscoelastic materials, the fractional order damping
element gives a superior model because it is modeled as a
force proportional to the fractional order derivative of the
displacement [5]. In electronic circuits the fractance device
is referred to as a constant phase element (CPE), where
the CPE has shown important applications in the field of
bioimpedance, which measure the passive electrical properties
of biological materials [6]; and so on [7], [8]. More recently,
many researchers have shown growing interest in fractional
order dynamical systems with chaotic behavior. Up to now, a
large number of fractional order systems have been proposed,
such as the fractional order Rössler system [9], fractional
order Chua system [10], Fractional order Chen system [11],
among others [12]. Specifically, engineering applications are
considering fractional order chaotic systems, such as a digital
cryptography approach, and an image encryption method [13],

[14] due the fractional derivatives have complex geometrical
interpretation because the power spectrum of fractional order
chaotic systems fluctuates complexly increasing the chaotic
behavior in frequency domain.

This paper presents the design of a fractional order unstable
dissipative system that generates 2-scroll chaotic attractor. We
propose a electronic circuit for a value of fractional order
α = 0.8. The fractional operator has been approximated
considering the frequency domain approximation, therefore the
fractance device is considered to emulate such approximation,
from practical point of view. We apply operational amplifiers
to design the fractional integrator and nonlinear function.
Finally, we compare the SPICE simulations with the results
of the numerical simulation to illustrate the performance of
the proposed circuit synthesis.

II. PRELIMINARIES

Different definitions of fractional order integration and dif-
ferentiation have emerged during the development of fractional
order theory. Some definitions are the Grünwald-Letnikov
definition, the Cauchy integral formula, the Riemann-Liouville
definition and the Caputo definition [1].

Let L1 = L1[a, b], 0 ≤ a < b <∞, be a class of Lebesgue
integrable function on [a,b].

The Riemman-Liouville definition of a fractional integral
for the function f(t) ∈ L1, of order α > 0, and t > 0, is
given by

Iαf(t) =
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, (1)

where Γ(·) is Euler’s Gamma function. The Caputo definition
of fractional derivative of order α, 0 < α < 1 for continuous
f(t) is given by

Dαf(t) = I1−α
df(t)

dt
=

1

Γ(1− α)

∫ t

0

f ′(t)

(t− τ)α
dt. (2)

The main advantage of using the Caputo definition is due to
the fact of the initial conditions for the fractional order differ-
ential equations, because are the same form as those integer
order differential equations, and there are clear interpretations
of the initial conditions for integer orders, moreover, it has the



benefit of possessing a value of zero when it is applied to a
constant.

The Laplace transform of the fractional integration operator
is

Iα(s) = L

{
tα−1

Γ(α)

}
=

1

sα
, (3)

the implicit fractional differentiation is defined as the dual
operation of the fractional integration. If y(t) = Iα(x(t))
or Y (s) = 1

sαX(s), then x(t) is the αth order fractional
derivative of y(t) defined as

x(t) = Dα(y(t)) or X(s) = sαY (s). (4)

A linear time-invariant fractional order system can be writ-
ten in the following state space form

dαx

dtα
= Ax+Bu, (5)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, with
fractional order α = [α1, α2, . . . , αn]. If αi’s are rationals
numbers in (0, 1], a sufficient condition for stability of system
(5) can be given as follows: If (5) is a commensurate order
system, and its stability can be checked by [15], then (5) is
asymptotically stable if

| arg(λ)| > πα

2
, (6)

is satisfied for all eigenvalues (λ) of matrix A [4].

III. FREQUENCY DOMAIN APPROACH

In order to implement the fractional order unstable dissi-
pative system throughout this work is considered the Charef
method. The method consists of finding a rational approxima-
tion for the fractional operator based on Bode diagrams [16],
the idea is obtain a linear approximation that has a similar
frequency response as 1/sα, by finding zeros and poles of a
transfer function. The order and accuracy of transfer function
depends on the desired bandwidth and discrepancy between
the actual and the approximate magnitude. It is important to
consider that the operator 1/sα has a Bode diagram typical
by −20α dB/decade. So we use the approach to develop
an approximation of fractional order in Laplace domain [17].
The fractional integrator of order α can be represented by
the transfer function as shown in (3), furthermore in [16] the
slope with −20α dB/decade is approximated by a set of zig
zag lines joined together with alternate slopes of 0 dB/decade
and −20 dB/decade. According to [16] the fractional operator
1/sα can be approximated if a frequency range ωmax, a corner
frequency pT and the discrepancy y dB between the actual and
approximate line are specified as

H(s) =
1

sα
≈ 1(

1 + s
pT

) ≈ ∏N−1
i=0

(
1 + s

zi

)
∏N−1
i=0

(
1 + s

pi

) . (7)

Then the poles and zeros of the function (7) can be obtained
as follows
first pole, p0 = pT 10[y/20α]

first zero, z0 = p010[y/10(1−α)]

second pole, p1 = z010[y/10α]

second zero, z1 = p110[y/10(1−α)]

...
N th zero, PN−110[y/10(1−α)]

(N + 1)th pole, pN = zN−110[y/10α].

Where N is given by

N = Integer

 log
(
ωmax
p0

)
log(ab)

+ 1, (8)

the frequency corner pT is determined in −3α dB, p0 is
determined by the specified error, and pN is determined by
N , and a, b are given by

a = 10[y/10(1−α)],
b = 10[y/10α],

(9)

where a, b are defined as the ratio of a zero to a previous
pole and the ratio of a pole to a previous zero, respectively.
Therefore, the approximation to 1/s0.8 with discrepancy error
of y = 2dB, pT = 10−2rad/s, ωmax = 102rad/s, N = 4 is
given by

1

s0.8
≈ 5.235s3 + 1453s2 + 5306s+ 254.9

s4 + 658.1s3 + 5700s2 + 658.2s+ 1
, (10)

more approximations can be found in [10], [18].

IV. FRACTIONAL ORDER CHAOTIC SYSTEM

The fractional order unstable disspative system is described
by [19]

Dαx = y,
Dαy = z,
Dαz = −ax− by − cz + f(x),

(11)

with

f(x) =

{
γ, if x ≥ 0.35,
0, otherwise, (12)

where α is the fractional order satisfying 0 < α < 1. When
(a, b, c, γ) = (3.75, 0.7, 0.7, 2.5), the equilibrium points and
their corresponding eigenvalues are

E1 = (0, 0, 0), − 1.6513, 0.4757± 1.4299i
E2 = (0.66, 0, 0), −1.6513, 0.4757± 1.4299i.

Considering the equation (6) we can determine a minimal
commensurate order to keep the chaotic behavior in the
system. In this case the order it is α > 0.7956, then we
selected α = 0.8. The numerical simulation of (11) with
α = 0.8 is shown in Fig. 1, and the spectrum of Lyapunov
exponents are LE1 = 0.1216, LE2 = 0 and LE3 = −2.5481.
The spectrum of Lyapunov exponents is determined from a
time serie, taken into account the algorithm proposed in [20].
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Fig. 1. a) Projections of the attractors onto the xy-plane. b) Chaotic signals
of the fractional order chaotic system against to time.

Fig. 2. The diagrammatic sketch of (11).

V. CIRCUIT REALIZATION

This section shows how to link the electronic circuit to gen-
erate the desired dynamical behaviors based on the fractional
order unstable dissipative system. The basic design idea is
outlined as follows. Fig. 2 displays the diagrammatic sketch
of system (11), which depicts the basic strategy of analog
computing. As a straightforward approach, three fractional
order integrators are cascaded, the summing is employed to
form a feedback loop, and a piecewise linear is then utilized
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Fig. 3. Fractance device of 1/sα.
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Fig. 4. Circuit diagram to realize the fractional order unstable dissipative
system (11) for α = 0.8.

to realized the function f(x). From circuit theory, a circuit
may has noninteger order properties. This kind of circuits
are called fractance [1]. The fractance device is an electrical
element which exhibits fractional order impedance properties.
The fractance can be realized as chain, tree or a net grid
type networks [21]. The guidelines to design a fractance were
developed by authors of [1], [18], [21] for any order as shown
in Fig. 3. We select a fractance that approximate fractional
order α = 0.8, that means for the design is considered an
arrangement of five capacitors and five resistors from Fig. 3.
Using circuit theory, we can obtain the transfer function H(s)
between n1 and n2 as follows

H(s) = R1//
1

sC1
// (∆) // (Θ) // (Λ) // (Ψ) , (13)

where ∆ = R2 + 1
sC2 , Θ = R3 + 1

sC3 , Λ = R4 + 1
sC4

and Ψ = R5 + 1
sC5 . Where C0 is the unit parameter. Let

G(s) = H(s)C0 = 1
s0.8 and C0 = 1µF and matching (10)

with (13) the values of resistances and capacitances as follows:
R1 = 39.8MΩ, R2 = 9.839MΩ, R3 = 0.9330MΩ, R4 =
0.09319MΩ, R5 = 0.009555MΩ, C1 = 0.1884µF, C2 =
0.7619µF, C3 = 0.4520µF, C4 = 0.2545µF and C5 =
0.1396µF.

The electronic implementation of the nonlinear function
(12) it is realized by considering the piecewise linear approach
[22] because this method is used to model the behavior of non-
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Fig. 5. a) Circuit simulation of the chaotic attractor with fractional order
α = 0.8. b) Time response of the states variables of the circuit

linear functions. The piecewise linear models for operational
amplifiers can be described by saturated circuits. We consider
the finite-gain of amplifier operational amplifier [22]

v0 =
Av
2

(∣∣∣∣vi +
Vsat
Av

∣∣∣∣− ∣∣∣∣vi − Vsat
Av

∣∣∣∣) i(−) = i(+) = 0

(14)
where Av is voltage gain, Vsat is positive saturation, −Vsat is
negative saturation, and the linear region is defined as −Vsat ≤
v0 ≤ Vsat, the inverting amplifier is converted into an half-
wave rectifier by adding two diodes to generate the vertical
voltage shift as shown in Fig. 4, where resistors Rs1, Rs2
and voltage E control its breakpoint whereas the resistor Rs3
and saturation voltage of opamp set by γ.

The circuit to realize the fractional order unstable dissipative
system (11) with α = 0.8 is displayed in Fig. 4, where the
circuit parameters are Rx = 2.9kΩ, Ry = Rz = 13.8kΩ,
Rs1 = 1kΩ, Rs2 = 1MΩ, Rs3 = 25.37kΩ, and D1 = D2 =
1n4001. Also, in this work the operational amplifier TL081
has been used. Figure 5 shows the circuit simulation of the

chaotic attractor of FOUDS with a fractional order α = 0.8
and and their respective time response, while the transient part
has been eliminated. Finally, the circuit simulation shows that
the results are in agreement with numerical simulations.

VI. CONCLUSION

In this paper, we designed the electronic circuit of a frac-
tional order unstable dissipative system with order α = 0.8,
moreover, the stability theorem of fractional order systems
guarantee that chaos is exhibited in the fractional order un-
stable dissipative system. Furthermore, based on frequency
domain approximation a fractance device is considered to
realize the fractional order operator, therefore, the nonlinear
function was modeled by PWL approximation. It was shown
that voltage saturated function can be synthesized with opamps
and diodes by controlling the breakpoint and the vertical
voltage shift. Finally, we presented a circuit synthesis of the
fractional order unstable dissipative system, as well as SPICE
simulations, which agree with the numerical simulations.
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