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We present a parameterized method to design multivibrator circuits via piecewise-linear (PWL)
chaotic systems, which can exhibit double-scroll oscillations. The circuit is conformed exploiting
a parametric modulation that manipulates the equilibrium stability of each linear subsystem.
Chua’s oscillator is used as benchmark to illustrate the effectiveness of the proposed method to
design multivibrator circuits. Thus, our proposal allows one the design of the three configurations
of a multivibrator: Monostable, Astable, and Bistable. Potential applications are illustrated
designing a pulse generator and a full S-R flip flop device based on our all-in-one multivibrator
circuit.

Keywords : Multivibrator circuits, PWL Systems, Chaos-based design.

1. Introduction

Chaos is now known to be useful. In fact, under certain conditions, is a desirable feature of systems and
circuits. The dynamical richness of chaotic behavior has significant potential applications to real-world
problems, including secure communications, persistent excitation, information processing and encryption,
to mention but a few [Ott, 2002; Strogatz, 2001; Tam et al. , 2007]. Actually, the intentional induction
of chaotic behavior into a system, i.e. its chaotification, might be beneficial to achieve a wide variety of
alternative goals [Chen & Dong , 1998; Kapitaniak , 2000; Stark & Hardyuand , 2003]. Over the last twenty
years, significant efforts have been devoted to the design of simple electronic circuits with chaotic behavior
[Carroll & Pecora, 1995; Yu et al., 2010]. In particular, we are interested in using chaos theory to design
multivibrator electronic circuits in order to have different configurations dynamically available.

A multivibrator circuit is a simple two-state systems that has only one of three possible configurations,
these are: (i) Astable. In this configuration, the multivibrator circuit is unstable on both of its states. As a
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consequence, the circuit spends a determined time-period in one state and flips to the other where spends
a time-period, and then moves back to the first one, where the cycle is repeated continuously. Therefore,
this configuration is used to generate 0 and 1 sequences. Usually, astable multivibrators are use in phase
locked loop (PLL) systems to derive an output signal with its phase and frequency matched to those of
the input signal [Sasaki et al. , 1996]. (ii) Monostable. In this configuration, one state of the circuit is
stable while the other is unstable. As such, the system may spend some time in the unstable state, but
eventually will move into the stable state and remain there afterwards. This configuration can be used, for
instance, to define a time-period of activity measured from an event. Monostable multivibrator might be
used to implement a pulse waveform with an adjustable width in communication systems, digital systems,
PLL circuits, and power electronics systems. Actually, the monostable configuration can be realized using
operational transresistance amplifiers [Lo & Chien, 2006]. (iii) Bistable. In this configuration both states
are stable. This implies that the circuit remains in its current state, until being force to change to the
other by an external event or trigger. The multivibrator system in bistable configuration can be use as
a fundamental building block of a register or memory device. This circuit is usually realized using basic
logic gates and can behave as a flip-flop; however, recent efforts have been devoted to study alternative
topologies and realizations [Kosta et al., 2003].

We are interested in propounding alternative topologies for these three configurations of multivibrator
circuits. Our concern is in regards to the question: Is there a chaotic system that can be exploited to

reproduce any of the three multivibrator configurations? Intuitively, the answer is affirmative if we think
that: (i) The classical chaotic systems by Lorenz or Chen can display two scrolls around two distinct
unstable equilibria [Lorenz, 1963; Chen & Ueta, 1999; Ueta & Chen, 2000]. Then, if we associate each
scroll to a state in the circuit, the astable configuration might be recovered. (ii) The classical Rössler
system exhibits only one scroll around the equilibrium [Rösler, 1976]. Hence, the monostable configuration
can be recovered as an electronic circuit that reproduces the Rössler oscillator. And finally, (iii) There are
several PWL systems that exhibit what is known as bistable chaos, that is, two stable scrolls coexists for
the same system [Bartissol & Chua, 1988; Chua et al., 1993]. Then, if we associate to each scroll a different
logical state, the third multivibrator configuration can be directly recovered. Therefore, the challenge is to
find a dynamic architecture capable of conciliating the different chaotic behaviors among the three above
scenarios towards an alternative general topology of multivibrator circuits. This challenge seems solvable by
accounting the fact that chaotic attractors similar to the classical attractors by Lorenz, Chen and Rössler
can be obtained from the parametric modulation of a three-dimensional systems [Lü et al., 2002; Lu &
Chen, 2002; Campos-Cantón et al., 2007, 2008].

Chua’s circuit is one of the best known and more studied examples of chaotic systems [Matsumoto,
1984]. Many applications and designs have been proposed using this chaotic circuit. Particularly, [Cafagna
and Grassi, 2005] use it to obtain two logic gates from two state variables, from those chaos-based logic they
implemented two NOR gates and build a standard flip-flop device. Other alternatives to yield logic gates
using chaos have been reported by [Sinha & Ditto, 1998], in this reference the authors introduced the idea
of reconfigurable structures. Nowadays, there is a great interest in developing circuits with different types of
dynamically available logic structures, this is usually referred to as chaos computing (see [Campos-Cantón
et al., 2010; Murali et al., 2003] and references therein). In this paper, we propose a design methodology
to generate a multivibrator circuit based on chaos via parameter modulation in a double-scroll oscillator.
Then, the target is to find a bifurcation parameter such that the same double-scroll oscillator behaves
as any of the configurations of multivibrator: astable, monostable or bistable. Our approach consists on
utilizing a parameterized family of chaotic PWL circuits with different number of scrolls to produced the
different multivibrator configurations. The remainder of the paper is organized as follows. In Section 2,
we introduce a parametric family of PWL chaotic systems depicting attractors with a different number of
scrolls, and formalize the design methodology to generate, departing from chaos, the three multivibrator
configurations described above. In Section 3, we show the circuit realization of our proposed all-in-one
multivibrator based on chaos. Then, we illustrate its potencial applications proposing realization of a pulse
generator and a flip flop device based on our multivibrator circuit. For our flip flop realization, unlike
standard flip flops, the entry (1, 1) is allowed, for this reason is called a full SR flip flop. Finally, in Section
4, the contribution is closed with some concluding remarks.
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2. A PWL Family Of Chaotic Systems

Let us depart from basic notions by considering a PWL dynamical system given by:

ẋ =







A1x + B1, if xσ > d

A2x + B2, if |xσ| ≤ d

A3x + B3, if xσ < −d

(1)

where x = [x1, x2, x3]
⊤ ∈ R

3 is the state vector of the system; xσ is a scalar component of x; the matrices
Ak = {aijk} ∈ R

3×3 and the vectors Bk = [b1k, b2k, b3k]
T ∈ R

3 for k = 1, 2, 3; and d is a real scalar.
The system’s description divides its state space into sections, where locally the trajectories are those of
the corresponding linear vector field (Akx + Bk). Each linear subsystem of (1) has its own equilibrium
point located at χk = −A−1

k Bk, with the stability of the system in its vicinity given by the eigenvalues
of Ak. Letting the eigenvalue spectrum of Ak be Λ = {λ1, λ2, λ3}, we have two possibilities, either all λ

are real, or we have one real and two complex conjugate eigenvalues. Only the second case can yield a
chaotic attractor [Lorenz, 1963; Chen & Ueta, 1999; Bartissol & Chua, 1988]. Then, the eigenvalues of a
PWL chaotic system are one purely real and one complex conjugate pair, denoted in the remainder as λPR

and λCC , respectively. Depending on the signs of the real parts of λPR and λCC , different trajectories are
generated in the vicinity of χk. We have that a positive λPR throws the trajectories away from χk, while
a negative λPR moves the trajectories towards it. In regards to λCC , the imaginary part of λCC induces
spinning motion around χk. Hence, if we have a negative λPR and the real part of λCC is positive, the
trajectories around χk behave like an unstable focus, i.e., the trajectories spin away from the equilibrium.
Contrarily, if the real part of λCC is negative, the trajectories spin towards the equilibrium.

The concern in this contribution is about of finding a parametric modulation for the PWL chaotic
system in (1) such that a multivibrator circuit can be designed. Thus, motivated by facts in the previous
paragraph, we have that the stability properties and location of the equilibrium points of (1) can be
changed modulating the entries of the pair (Ak,Bk) for each linear subsystem (k = 1, 2, 3). In fact, it is
sufficient to modulate a single entry aiσk or bik of Ak or Bk, respectively, to provoke significant changes in the
dynamics of the system due to rejection or attraction of trajectories to the corresponding equilibrium points.
Henceforth, motivated by this observation, we have the possibility to generate alternative chaotic attractor
parameterizing the linear functions aiσkxσ +bik at each subsystem. In what follows, our observations about
the dynamical features of the PWL chaotic systems are generalized into a methodology to design the three
configurations of our multivibrator chaotic circuit.

The dynamical features of the PWL chaotic systems give us some basic requirements for the operation of
(1) as a multivibrator circuit. First, it is necessary that the overall system be dissipative such that the PWL
trajectories will be bounded. Aside from this basic requirement, we found that for the emergence of chaos
all the linear subsystems must have a purely real (λPR) and a pair of complex conjugate (λCC) eigenvalues.
By taking care of attending these basic requirements, alternative chaotic attractors with different numbers
of scrolls can be generated as described in Appendix A. In particular, a multivibrator circuit is designed
based on chaos via parametric modulation in a double-scroll attractor. As a summary, the next two steps
define our proposed design algorithm.

Step 1: Consider a PWL system of the form:

ẋ = Akx + Bk, for xσ ∈ Sk, k = 1, 2, 3. (2)

the state space of (2) is divided in terms of the σth component of state variable (σ = 1, 2 or 3). For each
section Sk ⊂ R, the entries aiσk of Ak ∈ R3×3 and bik of Bk ∈ R3 change their values while the rest of
the entries of Ak and Bk remain constant. As the trajectories switch from one linear subsystem to the
next, they move into the vicinity of equilibriums with different locations and stability features, which are
determined by the current values of aiσk and bik.

Step 2: Add a modulation parameter ǫk such that the linear segment aiσkxσ + bik, gives the desired
equilibrium point location and stability features for each subsystem of (2):

ǫk(aiσkxσ + bik), for k = 1, 2, 3. (3)
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Fig. 1. Schematic diagram of the parameterized Chua’s circuit.

where, by tuning the modulation parameter ǫk ∈ [−E,E] ⊂ R, one can derive different chaotic attractor
features that correspond to the three multivibrator configurations.

Following the above steps, construction of multivibrator circuits can be realized controlling the para-
meters ǫk. Next, we illustrate the parametric modulation design using as example the benchmark circuit
by Chua [Bartissol & Chua, 1988; Chua et al., 1993].

3. Parametric Modulation Of Chua’s Circuit

The effectiveness of the proposed methodology is illustrated by using Chua’s chaotic systems [Bartissol
& Chua, 1988; Chua et al., 1993], one possible electronic realization of this system is shown in Figure
1. In its adimensional form, Chua’s system can be written as a PWL system in the form (1) given by
[Barajas-Ramirez et al., 2003]:

Ak =





a11k 10 0
1 −1 1
0 −15 −0.0385



 , Bk =





b1k

0
0



 (4)

for k = 1, 2, 3; with σ = 1, d = 1. Some typical values are the following: a111 = a113 = −3.2, a112 = 2.7,
b11 = 5.9, b12 = 0, and b13 = −5.9. The proposed parametric modulation, (ǫka11k, ǫkb1k), results on
the following linear segments: ǫ1(−3.2x1 + 5.9), ǫ2(2.7x1), and ǫ3(−3.2x1 − 5.9). This modulation can be
electronically realized as a combination of the resistance values R1, R4, and R5 on the circuit in Figure 1.

Tuning the parameters ǫk three different chaotic regimes can be produced by the system in (4). In
particular, if the modulating parameters are set to the following values ǫ1 = 0.35, ǫ2 = 0.8, and ǫ3 = 0.35,
a double-scroll attractor is generated. Figure 2(a) shows its projection onto the plane (x1, x2). In Figure
2(b), the time evolution of the state x1 for this chaotic regime is shown. Notice that the value of x1 flips
from positive to negative continuously. Next, the modulating parameters are set to ǫ1 = 0.35, ǫ2 = 0.5,
and ǫ3 = 0.35. With these values the system in (4) enters into a regime where two stable chaotic attractors
coexist, this is usually called bistable chaos. That is, for a set of initial conditions, the system evolves
oscillating chaotically around one equilibrium point. Alternatively, for another set of initial conditions,
the system evolves on a different chaotic attractor around the opposite equilibrium point. This behavior
is illustrated in the Figures 2(c) and 2(e). Specifically, the projection on the plane (x1, x2) of the chaotic
attractor in Figure 2(c) corresponds to a positive initial condition, while the projection on Figure 2(e)
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is obtain from a negative initial condition. In this case, the time evolution of the state x1, shown in
Figures 2(d) and 2(f), remains with the same sign as the corresponding initial condition. Finally, setting
the modulating parameters to ǫ1 = 0.35, ǫ2 = 0.5, and ǫ3 = 0.4 the system in (4) enters a chaotic regime
with only one stable single-scroll attractor. As shown in Figure 2(g), for this set of modulating parameters
the stable attractor is located on the positive side of the plane (x1, x2). Observing the time evolution of the
state x1, shown on Figure 2(h), one can see that, if the initial condition is negative after a transitory period,
the trajectory moves into the positive side where it remains oscillating on the stable chaotic attractor.

An analogy between the three multivibrator circuits configurations and the chaotic regimes of Chua’s
system is summarized as follow.

i) Astable: This corresponds to the double-scroll chaotic regime, in it the sign of x1 oscillates
continuously from one state (positive) to the other (negative). The modulating parameters are set
to the following values ǫ1 = 0.35, ǫ2 = 0.8, and ǫ3 = 0.35. Figure 2(a) shows its projection onto the
plane (x1, x2). In Figure 2(b), the time evolution of the state x1 for this chaotic regime is shown.
Notice that the value of x1 flips from positive to negative continuously.

ii) Bistable: This corresponds to the case when the system exhibits bistable chaos, in it the sign
of x1 remains oscillating around one of the states (positive or negative) indefinitely. This behavior
is illustrated in the Figures 2(c) and 2(e). Specifically, the projection on the plane (x1, x2) of the
chaotic attractor in Figure 2(c) corresponds to a positive initial condition, while the projection
on Figure 2(e) is obtain from a negative initial condition. In this case, the time evolution of the
state x1, shown in Figures 2(d) and 2(f), remains with the same sign as the corresponding initial
condition. The modulating parameters are set to ǫ1 = 0.35, ǫ2 = 0.5, and ǫ3 = 0.35.

iii) Monostable: This corresponds to the single-scroll chaotic regime, in this case one of the states
(positive x1) is stable, while the other (negative x1) is not. Then, the ultimately x1 will oscillate
around only one of the equilibrium points despite initial conditions. Setting the modulating param-
eters to ǫ1 = 0.35, ǫ2 = 0.5, and ǫ3 = 0.4 the system in (4) enters a chaotic regime with only one
stable single-scroll attractor. As shown in Figure 2(g), for this set of modulating parameters the
stable attractor is located on the positive side of the plane (x1, x2). Observing the time evolution
of the state x1, shown on Figure 2(h), one can see that, if the initial condition is negative after a
transitory period, the trajectory moves into the positive side where it remains oscillating on the
stable chaotic attractor.

The transient behavior produced by the initial conditions on the corresponding multivibrator config-
urations is expected because the proposed designs are based on chaotic systems. This chaotic feature is
actually useful to show that addition to astable and bistable configurations, the same circuit can behave
as monostable by simply adjusting the modulating parameters as indicated.

4. Designing the multivibrator circuit

The chaos-based multivibrator can be realized using the Chua’s circuit as is shown in Figure 1. A mathe-
matical model of the Chua’s circuit is given by [Bartissol & Chua, 1988; Chua et al., 1993]:





ẋ1

ẋ2

ẋ3



 =





α(x2 − x1 − f(x1))
x1 − x2 + x3

−βx2 + γx3



 (5)

where f(x1) is the so-called Chua’s nonlinear negative resistance, which is describe as follows:

f(x1) =























b1x1 − c1, if x1 > 1;

ax1, if |x1| < 1;

b2x1 + c2, if x1 < −1.

with ci = bi − a, i = 1, 2.
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Fig. 2. Chaotic attractors of the parameterized Chua’s system: (a) Projection onto (x1, x2) and (b) x1 time series. (c)
Projection onto (x1, x2) and (d) x1 time series with positive initial condition. (e) Projection onto (x1, x2) and (f) x1 time
series with negative initial condition. (g) Projection onto (x1, x2) and (h) x1 time series negative initial condition.

The relationship between the electronic components of Figure 1 and the parameters of equation (5)
are:

α =
C2

C1

, β =
C2R

2

L
, γ =

C2Rr

L
,

a = −
RR2

R1R3

, bi = −
RR2

R1R3

+
R

Rj

where the pair of indexes (i, j) are (1,4) or (2,5), exclusively. The double-scroll chaotic attractor is generated
in this circuit with the following component values: C1 = 100 nF, C2 = 1, µF, L=67.1 mH, r=2.57 Ω,
R2=R3= 220 Ω. The resistors R, R1, R4 and R5 are 5 kΩ potentiometers tune to the following values:
R = 1003 Ω, R1 = 790 Ω, and R4 = R5 = 1700 Ω. Adjustments of R1, R4 and R5 give us the possibility
to restructure the Chua’s circuit in order to accomplish the modulating parameter ǫk (k = 1, 2, 3), and in
turn the multivibrator configurations as discussed previously. Explicitly, the parameterized Chua’s circuit
is given by:





ẋ1

ẋ2

ẋ3



 =





αx2 − α(ǫkx1 + ǫkf(x1))
x1 − x2 + x3

−βx2 + γx3



 (6)

Notice that parametric modulation algorithm described in subsection 2.1, corresponds to altering the
entire linear segment of the PWL function. That is, the modulating parameter directly affects both the
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Astable Bistable Monostable

ǫ1, ǫ2, ǫ3 Values: 0.35, 0.8, 0.35 0.35, 0.5, 0.35 0.35, 0.5, 0.4

R1 Tune to: 825 Ω 884 Ω 884 Ω
R4 Tune to: 3.058 kΩ 4.062 kΩ 4.062 kΩ
R5 Tune to: 3.058 kΩ 4.062 kΩ 3.515 kΩ

Circuit’s attractor
Figure:

3(a) 3(b) and (c) 3(d)

state x1, and the nonlinear negative resistance f(x1). In order to be written as in (5), the parameterized
Chua’s circuit is rewritten as:





ẋ1

ẋ2

ẋ3



 =





α(x2 − x1 − G(x1))
x1 − x2 + x3

−βx2 + γx3



 (7)

where

G(x1) =























(ǫ1(1 + b1) − 1)x1 − ǫ1c1, if x1 > 1;

(ǫ2(1 + a) − 1)x1, if |x1| < 1;

(ǫ3(1 + b2) − 1)x1 + ǫ3c2, if x1 < −1.

(8)

Equation (8) is the parameterized representation of the Chua’s nonlinear negative resistor, which can
be obtained in the circuit of Figure 1 tuning the potentiometers R1, R4, and R5 as follows:

R1 =
−R

ǫ2(1 + a) − 1
;

R4 =
−R

ǫ2(1 + a) − ǫ1(1 + b1)
; (9)

R5 =
−R

ǫ2(1 + a) − ǫ3(1 + b2)

The Table 1 shows the potentiometer values, corresponding to the modulating parameters (ǫk), such
that the Chua’s circuit behaves as each of the multivibrator configurations. The simulation of the multivi-
brator circuit based on chaos, was carried out on a standard electronic circuit design/simulation software.
The second column of Table 1 corresponds to the astable configuration, with the potentiometer values
shown, the parameterized Chua’s circuit has the double-scroll attractor in Figure 3 (a). The third col-
umn corresponds to the bistable multivibrator, in this case, since two single-scroll attractors coexist, the
resulting attractors are shown in Figures 3 (b) and 3 (c), for positive and negative initial conditions,
respectively. Lastly, the fourth column shows the potentiometer values for a monostable configuration, the
resulting chaotic attractor of is presented in Figure 3 (d).

4.1. Potential Applications

The proposed all-in-one multivibrator circuit based on chaos can be used to realized different devices. As
an illustration, we present two of its potential applications, namely, a pulse generator and a full SR flip-
flop. In order to realize these devices we construct two auxiliar circuits to control the input and output of
the parameterized Chua’s circuit. Figure 4 shows the schematic diagram of the input control circuit, in it
realization all resistors are equal to 1kΩ, except for R14, which is set to 100kΩ. The schematic diagram for
the output circuit is shown in Figure 5, this circuit basically consists of a low-pass RC filter and a voltage
comparator that gives a two level output.

The pulse generator and flip-flop devices can be realized as illustrated in the block diagram shown
in Figure 6. In the first case, with the parameterized Chua’s circuit in an astable configuration and with
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(a) (b)
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V
1

V 2

(c)

−4 −2 0 2 4

(d)

Fig. 3. Attractors for the three configurations of the multivibrator circuit based on chaos: (a) astable, (b)&(c) bistable, and
(d) monostable.

S

R
V1

R8
R6

R7
R9

R10 R11

R12

R13

R14

U2

U3

U4
U5 Vn

Fig. 4. Schematic diagram of the input circuit for devices based on parameterized Chua’s circuit.

>

V1

Q

R

C

Fig. 5. Schematic diagram of the output circuit for devices based on parameterized Chua’s circuit.

the switch SW open, the oscillations around the equilibria points are converted by the output circuit into
pulses between zero or five volts. In the second case, adjusting the parameters such that the Chua’s circuit
be in its bistable configuration and with the switch SW in its closed position, the oscillations will remain
positive or negative according to the values of the R and S terminal. In what follows, the operation of these
proposed applications is described with more detail:
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Input
circuit

Chua's
circuit

Output
circuit

S

R

Q

SW

V1

Fig. 6. Block diagram of the realization of pulse generator (SW=open) and flip-flop (SW=closed) based on the parameterized
Chua’s circuit.

0 0.05 0.1 0.15 0.2 0.25
−1

0

1

2

3

4

5

6

t(S)

Q

Fig. 7. Irregular pulse train generated by an astable multivibrator based on chaos.

Pulses Generator: The parameterized Chua’s circuit in astable configuration serves as a pulses
generator. It is possible to yield regular or irregular pulses trains. Using values in the second column of
Table 1, the state x1 through a comparator and filtered by a low pass filter is use to generate pulses. The
low pass filter serves to smooth the state x1 in the vicinity of zero. Then, if the state x1 is less than zero the
output correspond to a zero logic state, otherwise the logic state is set to one. Figure 7 shows a irregular
pulses train obtained from the chaotic evolution of Chua’s circuit in astable configuration. A regular pulse
train, can be yield from this setup via a feedback controller that stabilize the Chua’s circuit on a limit
circle orbit.

Full SR Flip-Flop: The parameterized Chua’s circuit in bistable configuration serves as a flip-flip
device. In order to realize this potential application, we construct two auxiliary circuits to control de input
and output of the full SR flip-flop device. The interconnection of the control circuits and the bistable
Chua’s circuit are illustrated in Figure 6. The control input circuit shown in Figure 4 can be used to induce
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0 0.2 0.4 0.6 0.8
time(S)

S
R

Q

Fig. 8. Flip-flop response generated by a bistable multivibrator based on chaos.

the trajectories to oscillate around χ1 or χ3 of the bistable Chua’s circuit. Notice that the operation of the
input control circuit does not affect the dynamics of the Chua’s circuit in the case of S = R. In fact, the
voltage in the node Vn of Figure 4 is given by Vn = V1 + S − R Thus, when S = R, the current through
resistor R14 is equal to zero and there is no input to the Chua’s circuit. The flip-flop control is achieved
restricting the voltage S and R to two voltage levels (low and high). So that when S is high and R is
low, oscillations occur only on the positive side (around χ1). On the other hand, when S is low and R is
high, the oscillations occur around χ3 on the negative side. The output signal Q is taken to be the state
x1 (voltage V1). If x1 is greater than zero, we get the one logic state, otherwise the output is a zero logic
state. The truth table for this circuit is given as follows: If both S and R have the same level, the output Q

retains its previous state. On the other hand, if S is set to zero and R to one, the output is zero; conversely,
if R is zero and S is set to one, the output is one. In this way, the bistable multivibrator operates as a
full SR flip-flop. Figure 8 shows the input and output signals of the bistable multivibrator operating as a
flip-flop. The first signal was introduced in the terminal labeled as S in Figure 4 and the second signal was
at R. The third signal is the output given by the circuit shown in Figure 5.

5. Conclusions

This paper shows a method to design a multivibrator circuit based on chaos generation. Our method
consists on adding modulation parameters which modify the stability properties of the linear subsystems.
Because the chaos generation is exploited, the multivibrator circuit recovers dynamical features onto the
logic-gate architecture. Thus, the proposed (dynamical) logic structure is more adaptable than static logic-
gates because it can be reconfigurable by parametric modulation. The reconfiguration allows us to achieve
distinct tasks with same circuit. That is, the proposed architecture might serve as components of general
purpose computing devices with a more flexible structure.

In summary, we introduce a chaos-based multivibrator design adaptable to the three classical configu-
rations (astable, monostable, and bistable) via parametric modulation. As a consequence of the parametric
modulation, diverse scrolls might be generated or inhibited around the equilibrium points of a PWL sys-
tem. In this way, although our results are illustrated using a classical benchmark, alternative system can be
exploited in designing multivibrators (as, for example, the PWL version of Dimitrev’s system in Appendix).
Potential applications are shown as (i) a pulse generators circuit and (ii) a full SR flip-flop device.
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Appendix A: An alternative system

In what follows, we show an alternative system that can be used to design multivibrators. By applying
the parametric modulation, chaotic attractors with one, two, or three scrolls are generated with a
potential use as multivibrators. The PWL version of the Dmitriev’s system, proposed in [Campos-
Cantón et al., 2007, 2008], serve us to show our point. The PWL is given by
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Fig. 9. Gallery of chaotic attractors: (a) Triple-scroll around of χ1, χ2, and χ3, ǫ1 = ǫ3 = 1, ǫ2 = −1, (b) Double-scroll
around of χ2, and χ3, ǫ1 = −2, ǫ2 = −1, ǫ3 = 1, (c) Single-scroll around of χ1, ǫ1 = ǫ2 = 1, ǫ3 = −2, (d) Single-scroll around
of χ2, ǫ1 = ǫ3 = 0.25, ǫ2 = −0.75.

Ak =





0 1 0
−1 −0.2465 1
a31k −2.0059 −1.1101



 ; Bk =





0
0

b3k



 (10)

for k = 1, 2, 3; where σ = 1, d = 1

3
, a311 = a313 = −8.0341, a312 = 8.5344, b31 = 5.5228, b32 = 0, and

b33 = −5.5228. The system (10) has three equilibrium points χ1, χ2, χ3. As matrices A, B are written
in (10), the attractor exhibits scrolls around the equilibrium points χ1 and χ3. This is equivalent to
use the modulation parameters ǫ1 = ǫ2 = ǫ3 = 1. By usign ǫ1 = ǫ3 = 1 and ǫ2 = −1, an extra scroll
is generated around χ2 resulting in the triple-scroll attractor shown in Figure 9(a). Now, by changing
the values of modulation parameters to be ǫ1 = −2, ǫ2 = −1, ǫ3 = 1, an alternative double-scroll
attractor is generated around χ2 and χ3. The attractor is reached only with negative initial conditions,
see Figure 9(b). Complementary, for ǫ1 = 1, ǫ2 = −1 and ǫ3 = −2, a similar attractor is generated
around χ1 and χ2, which is only reachable from positive initial conditions. In Figure 9(c), we show
a single scroll attractor around χ1, obtained for ǫ1 = ǫ2 = 1, ǫ3 = −2. In Figure 9(d) is shown a
different single scroll atractor around χ2, the values of modulation parameters are ǫ1 = ǫ3 = 0.25 and
ǫ2 = −0.75.


