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Abstract

An analog electronic implementation by means of operational amplifiers of a

class of hybrid dissipative systems in R3 is presented. The switching systems

have two unstable hyperbolic focus-saddle equilibria with the same stability in-

dex, a positive real eigenvalue and a pair of complex conjugated eigenvalues

with negative real part. The analog circuit generates signals that oscillate in

an attractor located between the two unstable equilibria, and may present sat-

uration states at the moment of energizing it, i.e., if the initial voltage on the

capacitors doesn’t belong to the basin of attraction the circuit will end on a

saturation state.

Keywords: Electronic implementation, piecewise linear systems, hybrid

systems, analog computation, chaos.

1. Introduction

Hybrid dynamical systems are characterized by the mutual existence of con-

tinuous and discrete dynamics. This type of systems describes behaviors of in-

∗Corresponding author
Email addresses: luis.ontanon@uaslp.mx (L.J. Ontañón-Garćıa ),
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teresting and somehow common phenomena such as switched electrical circuits

and systems involving both digital and analog components, physical systems af-

fected by impact, sliding or friction forces and stimulus-driven biological systems

[1, 2]. Considering the latter systems, the mathematical modelling by hybrid

dynamics results as an important tool for understanding the nonlinear dynam-

ics of several biological and medical systems due to the many discontinuities

they may present. Examples of this can relate on threshold–triggered firing in

neurons, on–off switching of gene expression and division in cells among others

[3, 4, 5].

An interesting example of hybrid dynamical systems is represented by piece-

wise linear (PWL) systems, particularly the ones described by the unstable dis-

sipative systems (UDS) theory [6, 7, 8, 9]. The outline of this theory lies on the

characterization of linear system onto two types depending on their eigenvalues.

Considering switching systems with states lying in R3, the stability index of

type I refers to one negative real eigenvalue and one pair of complex conjugated

eigenvalues with positive real part. Likewise, the stability index of type II refers

to one positive real eigenvalue and one pair of complex conjugated eigenvalues

with negative real part.

Scientists have taken advantage of these types of indexes in the design of

chaotic dissipative attractors by the adjustment of the location of their equilibria

and their combination. The idea of the method started from the fact that

almost any attractor reported so far in the literature presents a combination of

equilibria that can be characterized between these two types of stability indexes

depending on their eigenvalues. To account for this, one may consider the well

known Lorenz system and the Chua’s circuit reported in [10, 11]. These systems

have three unstable equilibria corresponding to the following: one with stability

index II located in the center and two with stability index I to the left and right

sides. As it is known, the characteristic wing–like oscillations produced by the

systems are generated only around the equilibria with a corresponding stability

index I, while the equilibria of index II works as a commutation directing the

orbit to either side. This wing-like oscillation, is possible only if the eigenvectors

2

FEMAT
Tachado

FEMAT
Texto insertado
of PWL systems

FEMAT
Tachado

FEMAT
Texto insertado
Some advantages can be exploited from

FEMAT
Tachado

FEMAT
Texto insertado
designing

FEMAT
Tachado

FEMAT
Texto insertado
locating

FEMAT
Texto insertado


FEMAT
Tachado

FEMAT
Texto insertado
is

FEMAT
Texto insertado
3D 

FEMAT
Tachado

FEMAT
Texto insertado
Such

FEMAT
Tachado

FEMAT
Texto insertado
Thus



of the equilibria are connected in such way that the trajectory oscillating exits

from one unstable eigendirection to another stable one.

In the last decades, a tendency to design more complex dynamics in systems

without considering the combination of the two types of equilibria with different

stability indexes have emerged, i.e., designing systems that produce oscillations

around its equilibria considering only one of the two types of stability indexes I

or II. The case of the stability index I is very common, the idea is to generate

scrolls located along one or several axis [6, 7, 8, 12, 13, 14] forming grids. Each

of the overall systems reported therein results in a switching heteroclinic orbit

that changes domain oscillating chaotically between the equilibria. On the other

hand, the design of systems with only equilibria of stability index II is not as

straightforward. The complexity of designing circuits with stability index II lies

on the intrinsic characteristic of the stable focus-saddle type equilibria and the

narrow basin of attraction in which the orbit lies, since if the system is initial-

ized outside the basin, the trajectory will increase without limits. Recently, an

outstanding approach on generating homoclinic chaotic orbits from this type of

stability index has come to light [9]. The idea of the method is to bound the

trajectory of a system between at least two equilibria with stability index II.

The dynamics of this type of systems usually are studied and verified by nu-

merical integration methods which are limited by discretization and computer

memory limitations. An effective alternative to solve this kind of complex prob-

lems can be found in analog, continuous-time computation [15, 16, 17]. One

of the ideas proposed is to prove the feasibility of these methods by means of

an electronic implementation [18, 19, 20]. This physical realization made by

operational amplifiers and linear and nonlinear electronic components, avoids

all the numerical approximations made by the computer, resulting in a com-

plete analog representation of the mathematical system. Usually, the electronic

implementation of the systems with stability index I are easier to implement,

because of the large basins of attraction in which the system lives. This is not

the case for the systems of stability index of type II. Due to the high instability

of the system and wether or not the initial conditions fall into the basins of
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attraction, the electronic implementation of systems with only equilibria of the

stability index type II results in a difficult and interesting challenge.

In order to attend this matter, the electronic implementation of two hybrid

dynamical systems designed with a switching circuit based only on equilibria

of stability index II that produces a homoclinic chaotic orbit is presented. The

resulting orbit is trapped between the commutation surface which divides the

two domains corresponding to the two equilibria of the system. The article

is organized as follows: Section 2 presents the general theory that envelops

the generation of UDS; Section 3 introduces the physical implementation of a

UDS of type II; Section 4 discusses the experimental observations and finally

conclusions are drawn in Section 5.

2. UDS theory

Consider the class of hybrid linear system given by

Ẋ = AX+B, (1)

where X = [x1, x2, x3]
T ∈ R3 is the state vector, B = [Ba, Bb, Bc]

T ∈ R3

stands for a discrete real afine vector, A = [aij ] ∈ R3×3 with i, j = 1, 2, 3

denotes a linear matrix. This type of system presents its equilibrium point

located at X∗ = −A−1B. Following the same notation as in [9], a system with

stability index of the type II will be addressed as a system of the UDS type II.

Therefore, two considerations have to be made in order to call Eq. (1) an UDS

of type II and that it generates an attractor A.

a) The system must satisfy the dissipative condition
∑3

i=1 λi < 0, where

λi, i = 1, 2, 3, are eigenvalues of A. Consider also that one λi is a positive

real eigenvalue, and two λi are complex conjugate eigenvalues with neg-

ative real part Re{λi} < 0, resulting in a stable focus-saddle equilibrium

X∗. This type of equilibria presents an unstable manifold Mu with a fast

eigendirection and a stable manifold M s with a slow spiral eigendirection.

4

FEMAT
Nota adhesiva
Add the references where the theory can be found



0.8 0.85 0.9 0.95 1 1.05
−0.3

−0.2

−0.1

0

0.1

0.2

x
1

a)

x 2

0.8 0.85 0.9 0.95 1 1.05
−1.5

−1

−0.5

0

0.5

1
b)

x
1

x 3

−0.3 −0.2 −0.1 0 0.1 0.2
−1.5

−1

−0.5

0

0.5

1
c)

x
2

x 3

−1.5 −1 −0.5 0 0.5 1
−6

−4

−2

0

2

4
d)

x
1

x 2

−1.5 −1 −0.5 0 0.5 1
−20

−10

0

10

20

30
e)

x
1

x 3

−6 −4 −2 0 2 4
−20

−10

0

10

20

30
f)

x
2

x 3

Figure 1: Projections of the attractor of the System A from eq. (3) with (4) onto the:

a) (x1, x2) plane; b) (x1, x3) plane; c) (x2, x3) plane, with initial condition X0 = (1, 0, 0).

Projections of the attractor of the System B from eq.(6) with (7) onto the: d) (x1, x2) plane;

e) (x1, x3) plane; f) (x2, x3) plane, with initial condition X0 = (0, 0, 0). Results obtained from

the numerical simulation of the systems.

b) The afine vector B must be considered as a discrete function that changes

depending on which domain Di ⊂ R3 the orbit is located. Accordingly

R3 = ∪k
i=1Di. Then a hybrid system based on the continuous linear

system (1) and the discrete function B is given by:

Ẋ = AX+B(X),

B(X) =































B1, if X ∈ D1;

B2, if X ∈ D2;
...

...

Bk, if X ∈ Dk.

(2)

The equilibria of system (2) are X∗

i = −A−1Bi, with i = 1, . . . , k, and each

entry Bi of the hybrid system will be considered in order to preserve the stability

of system (2). To exemplify the theory of UDS of type II, two different systems

will be considered.
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Figure 2: Projection of the basin of attraction of the system (2) with (3) onto the (x1, x2)

plane with x3 = 0. Marked with white the initial conditions that fall into the attractor.

2.1. System A

The first one is given in the same form as in [9] as follows:

A =











0 1 0

0 0 1

0.15 −10 −1











,B =











0

0

Bc











, (3)

where Bc commutes according to the value of x1 as follows:

Bc(x1) =







−10, if x1 ≥ 1;

0 otherwise.
(4)

The commutation surface is located at the x1 = 1 plane. With this commu-

tation law, the hybrid system results with the corresponding equilibrium points

X∗

1 = (0, 0, 0) and X∗

2 = (66.6667, 0, 0), displacing only along the x1 axis. In

case that a displacement along different axes is intended, a different commuta-

tion law and surface should be designed.

It is also important to mention that due to the unstable properties of the

focus-saddle equilibria, this dynamical system presents only one narrow region of
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stability and an attractor is intended to be formed between the equilibrium point

of the system. Meaning that at least two equilibrium points previously located

are needed to trap the trajectory between them. The basin of attraction of the

system was calculated by means of a numerical simulation in order to visualize

this. Figure 2 depicts the projection of the basin onto the plane (x1, x2) with

x3 = 0, considering some of the possible values that the circuit may present at

the moment of being energized. The white boxes present initial conditions that

fall in the attractor, while the black boxes are initial conditions that escape to

infinity. It can be appreciated that for values of x2, x3 = 0 when x1 < 0 none

of the initial conditions fall into the attractor. Notice that even for (0, 0, 0) the

trajectory escapes the attractor. Therefore the initial condition in which the

system is initialized must be considered between the equilibria, preferably along

the x1 axis, otherwise the system will be initialized out of the basin of attraction

and then expand to infinity. This is one of the main difficulties on working with

systems that fall in the UDS type II category. Figure 1 a), b), and c) depicts

the projections of the attractor generated by the system (3) with (4) onto the

(x1, x2), (x1, x3) and (x2, x3) planes, respectively. In Figure 1 a) and b) it can be

appreciated the trapped homoclinic attractor between the commutation surface

oscillating between the equilibria. Notice that the size of the attractor is very

small, oscillating only between 0.8 ≥ x1 ≥ 1.05.

By a further analysis of the system some basic properties are described

next. The eigenvalues of (3) are (0.0150,−0.5075± 3.1237i), corresponding to

the unstable focus equilibrium point mentioned above. The largest Lyapunov

exponent of the system was calculated by the approach described by Wolf et.

al. [21], resulting in the positive value 0.015, proving it is chaotic.

The volume density V(t) of the system given by Eq. (3) may be determined

by the divergence of the flow, represented as follows:

∇V =
∂ẋ1

∂x1

+
∂ẋ2

∂x2

+
∂ẋ3

∂x3

= −1, (5)

hence the system is dissipative. Another important property is that the system

7



Figure 3: Schematic diagram of the x1 and x2 states of System A from eq. (2) with (3) and

(4).

Ẋ = AX presents a natural symmetry under the transformation (x1, x2, x3) 7→

(−x1,−x2 − x3), therefore, a new hybrid system may be designed in order to

generate a symmetric attractor.

2.2. System B

The second system to be analyzed will be given by:

A =











0 0.1 0

0 0 −0.1

−1.3 2.5 −0.15











,B =











0

0

Bc











, (6)

where Bc also commutes according to the value of x1 as follows:

Bc(x1) =







10, if x1 ≥ 0.5;

−1 otherwise.
(7)
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Figure 4: Schematic diagram of the x3 state of the System A form eq. (2) with (3) and (4).

In this case the commutation surface is located at the x1 = 0.5 plane. The

hybrid system results with two equilibrium points X∗

1 = (7.6923, 0, 0) and X∗

2 =

(−0.7692, 0, 0) from the commutation law. The corresponding eigenvalues result

in (0.05,−1±0.5i), assuring that the system falls into the scope of the UDS type

II systems. The divergence of the system in the same way as the eq. (5) results

in ∇V = −0.15. The largest Lyapunov exponent of the system results in the

positive value 0.6027. Due to the dynamics of the system, the attractor is also

trapped in the commutation surface oscillating between the equilibria. This can

be appreciated from the projections of the attractor onto the (x1, x2), (x1, x3)

and (x2, x3) planes depicted in Figure 1 d), e) and f), respectively. Similar

considerations as in System A regarding the initial conditions must be taken in

order to trap the trajectory of the system. In this case, the attractor presents

a much greater oscillation bounded between −1.5 ≥ x1 ≥ 1, but the position of

the attractor also corresponds to the commutation surface at x1 ≥ 0.5. Notice
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that even the form of the attractors is very similar due to the instability of the

equilibria.

Now that both systems have been analyzed, the electronic implementation

will be described next.

Figure 5: Schematic diagram of the hybrid System A from eq. (4) respect to the value of x1.

3. Tri-Stable Electronic Circuit Implementation

The electronic implementation of both systems was realized considering the

properties of analog computing through the operational amplifiers (Op-Amps)

as described in [15]. The principal advantage of this type of components is that

the output they provide is completely analog, meaning that the response of the

circuit will be exactly what the equations describe. This represents a great

advantage in comparison to microcontrollers or any other digital components

which discretize the results. Besides, any change that need to be implemented

in the value of parameters can be easily carried out by changing the linear value

10



Figure 6: Schematic diagram of the x1 and x2 states of System B from eq. (2) with (6) and

(7).

of the resistors, in comparison to circuits based on nonlinear components such

as inductor and capacitors.

The configurations of the Op-Amp were implemented as follows, the equa-

tions of System A given by (2) with (3) are ẋ1 = x2, ẋ2 = x3 and ẋ3 =

0.15x1 − 10x2 − x3 +Bc(x1). Integrating both sides of the equations will result

in x1 =
∫

x2dt, x2 =
∫

x3dt and x3 =
∫

(0.15x1 − 10x2 − x3 +Bc(x1))dt, which

can be implemented through an integration configuration. The summation on

x3 can be implemented with the summing configuration of the Op-Amp, and the

parameter multiplication can be realized by adjusting the values of the resistors

in the amplifying properties of the inverse amplifier configuration.

The schematic diagram of the electronic implementation of the System A

is depicted in Figures 3 and 4. The first and second equations of System A

from eqs. (2) with (3) were implemented by the Op-Amps U1A, U1B and U1C,

and U1D, U2A and U2B of Figure 3, connected in inverting amplifier, inverting

integrator and voltage follower configurations, respectively.

The third state is represented by U2C, U2D, U3A-U3D and U4A from Figure

4. Here the states x1, x2 and x3 along with their corresponding coefficients are

11



obtained with U2C,U2D, U3A and U3B in inverting amplifier configuration,

respectively. The signals generated are added along with the output of the

commutation law fx (which corresponds to Bc) in U4A in a summing amplifier

configuration and then integrated in U3A continued by a voltage follower to

stabilize the output. The discrete function B given by Eq. (4) that changes

betweenB1 and B2 depending on the values taken from the x1 state, is developed

by the circuit shown in Figure 5. This circuit was generated with U4B-U4D

and U9, connected in an inverting amplifier and comparator configurations,

comparing the state x1 with the constant voltage of V1 through a LM319N

component.

Figure 7: Schematic diagram of the x3 state of System B from eq. (2) with (6) and (7).

By the analysis of the three output signals, x1, x2 and x3 given by the

U1C, U2B and U3C Op-Amps, which correspond to x1, x2, x3, respectively, the

equations of the System A will result in the following equation:

12



x1 = −1
R3·C1

∫

(

− R1
R2

x2

)

dt− VC10 ,

x2 = −1
R6·C2

∫

(

− R4
R5

x3

)

dt− VC20 ,

x3 = −1
R17·C3

∫

(

− R7·R10·R16
R8·R9·R20

x1 + R12·R16
R11·R15

x2 + R14·R16
R13·R18

x3 − R16
R19

fx

)

dt− VC30 ;

(8)

where R1-R19 identify the corresponding resistor value, C1-C3 the capacitor

values, VC10 , VC20 and VC30 correspond to the initial voltage on the capacitors

C1, C2, C3 respectively. Therefore, the initial conditions on the system must be

considered throughout these capacitors. The oscillating frequency of the circuit

is given by the integrator components in R3 · C1 = R6 · C2 = R17 · C3 =

1KHz. Although internally the comparator works as an analog Op-Amp, the

switching response is typically 80ns. So this process can be considered as a

discrete one, resulting in a digital and analog component system. Finally, the

term fx, corresponds to the commutation law described in (4). All the values

are displayed in Table 1.

Figure 8: Schematic diagram of the hybrid System B from eq. (7) respect to the value of x1.

In a similar way, the electronic implementation of the System B given by eq.

(6) with (7), is depicted in the schematics from Figure 6 and 7. The x1 and x2

states are represented as the outputs x1 and x2 from the Op-Amps U5A-U5C

13



Table 1: Values and components of the electronic implementation. Any resistance not in-

cluded here is consider with a value of 10kΩ.

Component Value or name Component Value or name

R3,R6,R17,R26,R31,R43 1kΩ U1-U4 & U5-U8 TL084IN

R7 1.5kΩ U9 & U10 LM319N

R45 3kΩ VCC 18V

R35,R44 20kΩ VSS -18V

R32 36kΩ V1 1V

R33 47kΩ V2 10V

R36 50kΩ V3 0.5V

R12,R24,R27 100kΩ V4 -1V

C1-C6 1µF

and U5D, U6A-U6D in Figure 6, which are connected also as inverting amplifier

and inverting integrator. The state x3 is represented by the output signal x3

from Figure 6, which is obtained through the summing amplifier configuration

of the Op-Amp U7C, and integrated in U7D. By the analysis of the three out-

put signals, x1, x2 and x3 given by the U5C, U6C and U8B Op-Amps, which

correspond to x1, x2, x3, respectively, the equations of the System B will result

in the following:

x1 = −1
R26·C4

∫

(

− R25
R24

x2

)

dt− VC40 ,

x2 = −1
R31·C5

∫

(

R28·R30
R27·R29

x3

)

dt− VC50 ,

x3 = −1
R43·C6

∫

(

R33·R42
R32·R34

x1− R36·R38·R42
R35·R37·R39

x2 + R45·R42
R41·R44

x3− R42
R40

fx

)

dt− VC60 ;

(9)

where R25-R43 identify the corresponding resistor value, C4-C6 the capacitor

values with corresponding initial conditions VC40 , VC50 and VC60 , respectively.

Finally, the term fx correspond to the commutation law described in (7), which

is implemented by the Op-Amp U8C and the comparator U10 in Figure 8,

14



commuting between the voltage references V2 and V4 after comparing the state

of x1 with the reference value of V3. All the values are also displayed in Table

1.

4. Experimental observation of the circuits

In order to measure the response of the systems it is important to consider

the initial voltage on the capacitors, which act as the condition from where the

circuits will be initialized. The oscillating activity of both circuits A and B

is extremely sensitive to this initial voltage, since it may take the trajectory

of the system out of its basin of attraction tending to increase the response

without limit onto the Op-Amps saturation states. This is a difficult task to

accomplish in the sense that at the moment of energizing the circuit after a long

period of disconnection, the capacitors will be fully discharged (i.e. VCi(t0) = 0

with i = 1, . . . , 6). This results in some difficulties to System A which as said

before, will not fall into the attractor for the initial value (0, 0, 0) due to the

noise presented in all implementation. However after a brief period of time the

capacitors will begin to charge gradually, affecting in this procedure the initial

state of the system. In numerical simulation this behavior is not presented

because the initial condition can be given in the basin of attraction and there

is not noise.

In order to solve this problem there are some possible consideration to be

made, for example, charging the capacitors previously. Take for instance the

circuit of System A. If an electric impulse is given to some of the capacitors

before energizing the circuit, this will affect the initial state. The basin of

attraction of Figure 2 may present a valid range of values to be implemented,

but consider that this basin doesnt belong to the circuit itself. Small variations

on the resistor values and analog components may result in a different basin, as

mentioned Siegelmann and Fishman in [16].

By doing this precharge of the capacitors, the output of the states of both

systems were measured in the oscilloscope, resulting in the voltage outputs

15



Figure 9: Voltage measures of the output signals of the System A in the oscilloscope: a) x1

vs x2, b) x1 vs x3, c) x2 vs x3. Output signals of System B: d) x1 vs x2, e) x1 vs x3, f) x2

vs x3.

screenshots given in Figure 9 for each corresponding system. It can be appre-

ciated the similitude of the states calculated by means of numerical simulation

in Figure 1 with the measured voltage of the electronically implemented circuit

in Figure 9.

The second possibility regarding the instability due to the initial conditions,

is to design an initial switching law in which the origin is taken between the

equilibria and the trajectory of the attractor oscillates in the basin of attraction

of the desired system. After this change to the desired switching law. The idea

is as follows, two commutation laws are implemented. The first one Bn1(xm1)

with n1 = a, b, c and m1 = 1, 2, 3 considered from the time t0 in which the

circuit is energized, until a brief period of time ti where the response of the

circuit has been taken to a valid range of initial conditions. After ti until t∞,

the switching law will be Bn2(xm2) with n2 = a, b, c and m2 = 1, 2, 3.

To exemplify this, take the example of the System A. Instead of the commu-

tation of (4) which results in the equilibriaX∗

1 = (0, 0, 0) andX∗

2 = (66.6667, 0, 0).

Consider the following commutation law:
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the (x1, x2) plane with initial condition X0 = (0, 0, 0). Marked with red line the trajectory

for t < ti. For ti ≤ t ≤ t∞ the trajectory is marked with a blue line and the instant ti is

depicted with a green asterisk.

for t < ti

Bc1(x1) =







−10 if x1 ≥ 0.6;

1 otherwise;

for ti ≤ t ≤ t∞

Bc2(x1) =







−10 if x1 ≥ 1;

0 otherwise.

(10)

With the commutation law from (10), System A will present the following

equilibria: for t < ti X
∗

1 = (−6.6667, 0, 0) and X∗

2 = (66.6667, 0, 0); for ti ≤ t ≤

t∞ X∗

1 = (0, 0, 0) and X∗

2 = (66.6667, 0, 0). Now the initial condition (0, 0, 0)

falls between the equilibria as expected, and the trajectory of the system for

t < ti oscillates in the positive range of x1. This is depicted in the attractor

of the system (3) with (10) in the numerical simulation projected for t < ti in

Figure 10. In which for t < ti the trajectory is marked with a red line, the instant

ti is depicted with a green asterisk, and for ti ≤ t ≤ t∞ the trajectory is marked

with a blue line. The initial condition is X0 = (0, 0, 0). So the proposed method

solves the problem of the saturation on the amplifiers previously discussed.
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5. Concluding remarks

The electronic implementation based on two equilibrium points with stabil-

ity index 2 using the UDS theory is presented. To generate a system whose

trajectory oscillates between two of these points, it is necessary to design a

hybrid system that changes to the closest equilibrium point of the subsystem

whenever the trajectory is starting to move away from the actual equilibrium

point. If the hybrid system is initialized far away of the commutation surface,

the resulting systems will be unstable with no corresponding attractor. How-

ever, due to the saturation property of the op-amp the resulting circuit will

not be unstable only fixed at saturated values. Since the system is built with

components which present certain tolerance to their specific value, the circuit

basin of attraction is fairly different to the proposed systems, causing in this

saturation states instead of the oscillations at the moment of energizing it.

This type of circuits may be useful due to their easy-to-destabilized prop-

erties to some tilt detection applications, or in analog neuronal networks as

described in [16, 17]. The study of this matter will be reported elsewhere.
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Ordaz, A parameterized family of single-double-triple-scroll chaotic oscilla-

tions, Rev. Mex. Fis. 54(6), (2008).
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