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ABSTRACT
Global Saturating-Proportional Saturating-Derivative (SP-SD) type continuous con-
trol for the finite-time or (local) exponential stabilization of mechanical systems with
bounded inputs is achieved avoiding velocity variables in the feedback, and further
simplified through desired conservative-force compensation. The proposed output-
feedback controller is not a simple extension of the on-line compensation case but
it rather proves to entail a closed-loop analysis with considerably higher degree of
complexity that gives rise to more involved requirements. Interestingly, the proposal
even shows that actuators with higher power-supply capabilities than in the on-line
compensation case are required. Other important analytical limitations are further
overcome through the developed algorithm. Experimental tests on a multi-degree-
of-freedom robot corroborate the efficiency of the proposed approach.

KEYWORDS
Output feedback; finite-time stabilization; mechanical systems; desired
conservative-force compensation; bounded inputs

1. Introduction

An output-feedback global continuous control scheme for the finite-time and ex-
ponential stabilization of mechanical systems with bounded inputs has been re-
cently proposed and thoroughly motivated in (Zamora-Gómez, Zavala-Ŕıo & López-
Araujo, 2017). Guaranteeing the corresponding formulated control objective under
the explicit consideration of input constraints and the explicit choice on the system
trajectory convergence, under the exclusive consideration of position variables in the
feedback, are among the main characteristics that distinguish such an approach from
continuous finite-time controllers developed for mechanical systems before its appear-
ance: (Hong, Xu & Huang, 2002; Sanyal & Bohn, 2015; Zhao, Li, Zhu & Gao, 2010)
(see for instance (Zamora-Gómez et al., 2017, §1) for a brief description of such previ-
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ous works). But there is still an important distinction: while the cited previous works
are mainly state-feedback approaches that rely on the dynamic inversion technique
—or exact compensation of the whole dynamics— (except for one of the two con-
trollers presented in (Hong et al., 2002)), and the only output-feedback extension
(formulated in (Hong et al., 2002)) is based on (model-based) finite-time observers,
the scheme in (Zamora-Gómez et al., 2017) exploits the inherent passive nature of
mechanical systems, avoiding state reconstruction. This is done by keeping a (sat-
urating) Proportional-Derivative type structure with exclusive compensation of the
conservative-force (vector) term as a direct way to suitably reshape the closed-loop
potential energy so as to set the desired posture as the only equilibrium position
on the whole configuration space; damping is further injected through a (model-free)
dynamic dissipation subsystem whose output is involved in the feedback as a damped-
derivative action. Through such a control scheme (which avoids reproduction of any
other term of the open-loop dynamics apart from the described on-line compensation
of the conservative forces), the system model dependence of the designed algorithm
is considerably reduced, consequently simplifying the control structure and decreasing
the inherent inconveniences of modelling inaccuracies as well as the implied computa-
tion burden. But these advantages could still be potentiated by replacing the (unique)
on-line compensation term by the conservative-force term exclusively evaluated at
the desired position (Kelly, Santibáñez & Loŕıa, 2005, Chapter 8). Such a desired
conservative-force compensation idea was first developed in an unconstrained-input
conventional (infinite-time) stabilization framework by (Takegaki & Arimoto, 1981)
and, ever since its introduction in the literature, it has been the subject of diverse
studies (Kelly, 1997), been at the core of control design advancements (Zavala-Ŕıo
and Santibáñez, 2007), and proven to be widely appreciated in view of its simplicity
and simplification improvements. This constitutes the main motivation of this work
which aims at developing a desired-conservative-force-compensation extension of the
output-feedback SP-SD-type (Saturating-Proportional Saturating-Derivative) finite-
time/exponential stabilization scheme from (Zamora-Gómez et al., 2017). Far from
what one could expect, such a design task is not as simple or direct as a simple re-
placement of the on-line compensation term by the desired one. Such a replacement
turns out to keep the required (desired) closed-loop equilibrium position but not its
uniqueness. Contrarily to the on-line compensation case [where the open-loop con-
servative forces are (ideally) cancelled out], in the desired compensation case further
design requirements prove to be needed so as to ensure that the control-induced poten-
tial energy component dominates the open-loop one (in order to guarantee uniqueness
of the desired closed-loop equilibrium configuration). This was already pointed out in
the unconstrained-input conventional case (Takegaki & Arimoto, 1981), where such a
domination goal was shown to be achieved through a P control (vector) term with a(n
absolutely) stronger growing rate than that of the open-loop conservative force term
in any direction (at every point) on the configuration space; in particular, under the
simple consideration of uncoupled linear P and D control actions, this was shown to be
achieved by simply fixing P gains higher than the highest (induced) norm value of the
Jacobian matrix of the conservative force term (assuming that such a Jacobian matrix
is bounded) (Tomei, 1991). But the solution of the referred uniqueness issue cannot
be that simple in the analytical context considered here —under the consideration
of input constraints, the contemplated type of trajectory convergence (finite-time or
exponential) and the generalized form of the SP-SD controller components— in view
of the special functions involved in the SP-SD terms to guarantee the achievement of
the formulated stabilization goal. This represents an important analytical challenge
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to which this work succeeds to give a solution enjoying the technical benefits from
desired conservative-force compensation.

It is further worth highlighting that the exhaustive analysis developed here fur-
ther brings to the fore that actuators with higher power-supply capabilities than in
the on-line-compensation case are required. This results from the worst-case type de-
sign (analytical) procedure followed to guarantee the achievement of the previously
described domination feature of the controller-induced conservative force term over
the open-loop system one. As a matter of fact, it is the permanence of the open-loop
conservative-force term on the system dynamics which is at the origin of the design
complication and higher degree of complexity of the closed-loop analysis (with respect
to the on-line compensation case where such a term is absent in view of its cancel-
lation). For instance, a further complication to be dealt with —and overcome in this
work— is on the support of the controller ability to transit from finite-time to exponen-
tial stabilization through a simple control parameter. Indeed, for exponential stability
purposes, the counterbalanced (in the desired-compensation sense) open-loop conser-
vative forces turn out to lack of the properties required in the homogeneity-oriented
analytical framework within which (Zamora-Gómez et al., 2017) and this work are de-
veloped. Thus, such a stabilization case has to be treated differently. This work gives
a suitable solution to such an additional complication of the closed-loop analysis by
supporting the exponential stabilization case through a strict Lyapunov function.

After the publication of (Zamora-Gómez et al., 2017), continuous output-feedback
finite-time stabilization of Euler-Lagrange systems was treated in (Cruz-Zavala, Nuño
& Moreno, 2017). In that work, the output-feedback version of the energy shaping
plus damping injection control design methodology from (Loŕıa, Kelly, Ortega & San-
tibáñez, 1997; Ortega, Loŕıa, Kelly & Praly, 1994) was extended to the finite-time
regulation case. Four particular controller cases were presented differing on the type
of compensation of the term related to the gradient of the open-loop potential en-
ergy function, among desired and on-line (respectively denominated as the cases of
compensation and cancellation of the EL-system potential energy in (Cruz-Zavala et
al., 2017)), and on the bounded or unbounded control structure. The bounded con-
troller versions were characterized by the use of specific saturation functions and the
application of the control gains to the shaped error correction actions (and not di-
rectly to the error variables prior to the shaping). In particular, such external weighting
leads the control gains to act on the PD-action bounds, generating the need (at every
setting or change on the control gain values) for an additional verification and even-
tual adjustment on the considered saturation function bounds to guarantee the input
saturation avoidance requirements. Further, in the desired compensation case, local
exponential stability cannot be concluded through the analytical procedure developed
therein. Such limitations are surpassed through the proposal developed in this work,
characterized by the generalized structuring on (each one of) the SP-SD actions and
the dynamic dissipation subsystem, the direct application of the control gains to the
error variables —prior to the shaping on the SP-SD actions— which liberates the SP-
SD action structures (bounds) from additional verifications and adjustments at every
setting or change on the (control gain) tuning, and the more thorough closed-loop anal-
ysis and consequent requirement specifications, including the suitable solution given
to the proof on its ability to include exponential (in addition to finite-time) stabiliza-
tion among the control design choices. Experimental corroboration of the developed
scheme on a multi-degree-of-freedom (DOF) robotic device is included as a comple-
mentary distinction of this work. Both, the desired and on-line compensation versions,
were included in the experimental study.
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2. Preliminaries

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij denotes the element of X at its
ith row and jth column, Xi represents the ith row of X and yi stands for the ith element
of y. With m = n, X > 0 (conventionally) denotes that X is positive definite while,
for a symmetric matrix X, λm(X) and λM (X) respectively stand for its minimum
and maximum eigenvalues. 0n represents the origin of Rn and In the n × n identity
matrix. We denote R>0 = {x ∈ R : x > 0} and R≥0 = {x ∈ R : x ≥ 0} for scalars,
and Rn

>0 = {x ∈ Rn : xi > 0, i = 1, . . . , n} and Rn
≥0 = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}

for vectors. ‖ · ‖ stands for the standard Euclidean norm for vectors and induced norm
for matrices. An (n − 1)-dimensional sphere of radius c > 0 on Rn is denoted Sn−1

c ,
i.e. Sn−1

c = {x ∈ Rn : ‖x‖ = c}. For a continuously differentiable scalar function
f : Rn → R and a vector function g : Rn → Rn, we denote Dgf the directional
derivative of f along g, i.e. Dgf(x) = ∂f

∂xg(x). We will consider the sign function to be
zero at zero, i.e.

sign(ς) =

{
ς
|ς| if ς 6= 0

0 if ς = 0

and denote sat(·) the standard (unitary) saturation function, i.e. sat(ς) =
sign(ς) min{|ς|, 1}. The contents of the following subsections —except for some com-
plementary properties, assumptions and considerations— were mostly included in
(Zamora-Gómez et al., 2017, §2); some of them are recalled here.

2.1. Mechanical systems

Consider the n-DOF fully-actuated frictionless mechanical system dynamics
(Brogliato, Lozano, Maschke & Egeland, 2007, §6.1)

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized coordinates), velocity, and acceleration
vectors. H(q) ∈ Rn×n is the inertia matrix, which is a continuously differentiable
positive definite symmetric matrix function, and actually

H(q) ≥ µmIn (2)

—which implies ‖H(q)‖ ≥ µm— ∀q ∈ Rn, for some µm > 0. C(q, q̇) ∈ Rn×n is the
Coriolis and centrifugal effect matrix defined through the Christoffel symbols of the
first kind, which satisfies

Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇) (3a)

∀q, q̇ ∈ Rn, and consequently

zT
[

1
2
Ḣ(x, y)− C(x, y)

]
z = 0 (3b)
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∀x, y, z ∈ Rn, Ḣ denoting the rate of change of H, i.e. Ḣ : Rn × Rn → Rn×n with
Ḣij(q, q̇) = ∂Hij

∂q (q)q̇, i, j = 1, . . . , n; C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn, whence we
have that

C(q, aq̇)bq̇ = C(q, bq̇)aq̇ = C(q, abq̇)q̇ = C(q, q̇)abq̇ (4)

∀q, q̇ ∈ Rn, ∀a, b ∈ R; and

‖C(x, y)‖ ≤ ψ(x)‖y‖ (5)

∀x, y ∈ Rn, for some ψ : Rn → R≥0. g(q) = ∇Uol(q), with Uol : Rn → R being the
potential energy function of the open-loop system, or equivalently1

Uol(q) = Uol(q0) +
∫ q

q0

gT (z)dz (6)

for any q, q0 ∈ Rn; and τ ∈ Rn is the external input (generalized) force vector.
In this work, we consider the (realistic) bounded input case, where the absolute

value of each input τi is constrained to be smaller than a given saturation bound
Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n. More precisely, letting ui represent the control
variable (controller output) relative to the ith degree of freedom, we have that

τi = Tisat(ui/Ti) (7)

Further assumptions are stated next.

Assumption 2.1. The inertia matrix is bounded, i.e. ‖H(q)‖ ≤ µM , ∀q ∈ Rn, for
some µM ≥ µm > 0.

Assumption 2.2. ψ(·) in (5) is bounded and consequently ‖C(x, y)‖ ≤ kC‖y‖, ∀x, y ∈
Rn, for some kC ≥ 0.

Assumption 2.3. The conservative (generalized) force vector g(q) is a continuously
differentiable bounded vector function with bounded Jacobian matrix ∂g

∂q , or equiva-
lently,

2.3.1. every element of the conservative force vector, gi(q), i = 1, . . . , n, satisfies:
|gi(q)| ≤ Bgi, ∀q ∈ Rn, for some non-negative constant Bgi;

2.3.2. ∂g
∂x exists and is continuous and such that

∥∥∥∂g∂q (q)
∥∥∥ ≤ kg, ∀q ∈ Rn, for some non-

negative constant kg, and consequently ‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀x, y ∈ Rn.

Assumption 2.4. Ti > ηBgi, ∀i ∈ {1, . . . , n}, for some scalar η ≥ 1.

Assumptions 2.1–2.3 apply e.g. for robot manipulators having only revolute joints
(Kelly et al., 2005, §4.3).

Remark 2.1. By (2), the inverse matrix of H(q), denoted H−1(q), exists and
keeps analog analytical properties. More precisely, H−1(q) is a continuously differ-
entiable positive definite matrix function, and actually, under the additional con-

1The integration in (6) takes into account the conservative nature of g, as pointed for instance in (Mendoza,

Zavala-Ŕıo, Santibáñez & Reyes, 2015, Note 1, p. 2009).
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sideration of Assumption 2.1: (1/µM )In ≤ H−1(q) ≤ (1/µm)In —which implies
1/µM ≤ ‖H−1(q)‖ ≤ 1/µm— ∀q ∈ Rn, with µM ≥ µm being the positive constants
characterized through (2) and Assumption 2.1. 4

2.2. Local homogeneity, finite-time stability and δ-exponential stability

As in (Zamora-Gómez et al., 2017), this work is developed within the analytical frame-
work of local homogeneity (Zavala-Ŕıo & Fantoni, 2014), which states a formal analyt-
ical platform permitting to handle vector fields with bounded components (and conse-
quently, control design under the consideration of input constraints, which would not
be formally possible within the conventional coordinate-dependent context of homo-
geneity (Bhat & Bernstein, 2005)). Definitions and results in such an analytical context
are strongly related to family of dilations δrε , defined as δrε(x) =

(
εr1x1, . . . , ε

rnxn
)T ,

∀x ∈ Rn, ∀ε > 0, with r = (r1, . . . , rn)T , where the dilation coefficients r1, . . . , rn
are positive scalars. Other fundamental concepts involved in the analytical context
underlying this work are those of homogeneous norm —with respect to the family
of dilations δrε , or simply r-homogeneous norm: a positive definite continuous func-
tion being r-homogeneous of degree 1— (Kawski, 1990; M’Closkey & Murray, 1997;
Zavala-Ŕıo & Zamora-Gómez, 2017), denoted ‖ · ‖r, and r-homogeneous (n−1)-sphere
of radius c > 0: Sn−1

r,c = {x ∈ Rn : ‖x‖r = c}.
Consider an n-th order autonomous system

ẋ = f(x) (8)

where f is a vector field being continuous on an open neighborhood of the origin
D ⊂ Rn and such that f(0n) = 0n, and let x(t;x0) represent the system solution with
initial condition x(0;x0) = x0. A fundamental concept underlying this work is that of
a (globally) finite-time stable equilibrium, as defined in (Bhat & Bernstein, 2005).

Remark 2.2. The origin is a globally finite-time stable equilibrium of system (8) if
and only if it is globally asymptotically stable and finite-time stable. 4

Theorem 2.1. (Zavala-Rı́o & Fantoni, 2014) Consider system (8) with D = Rn.
Suppose that f is a locally r-homogeneous vector field of degree α with domain of
homogeneity D ⊂ Rn. Then, the origin is a globally finite-time stable equilibrium of
system (8) if and only if it is globally asymptotically stable and α < 0.

An alternative stability concept proving to be compatible to the framework of (local)
homogeneity is that of δ-exponential stability, whose definition is found for instance in
(Zamora-Gómez et al., 2017; Zavala-Ŕıo & Zamora-Gómez, 2017).

Remark 2.3. If f in (8) is locally r-homogeneous of degree α = 0 with dilation
coefficients ri = r0, ∀i ∈ {1, . . . , n}, for some r0 > 0, then the origin turns out to be
exponentially stable (in the usual or standard sense (Khalil, 2002, Definition 4.5)) if
and only if it is δ-exponentially stable (Zavala-Ŕıo & Zamora-Gómez, 2017, Remark
2.5). 4

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (9)
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where f and f̂ are continuous vector fields on Rn such that f(0n) = f̂(0n) = 0n.

Lemma 2.1. (Zavala-Rı́o & Zamora-Gómez, 2017, Lemma 2.2) Suppose that, for
some r ∈ Rn

>0, f in (9) is a locally r-homogeneous vector field of degree α < 0, resp.
α = 0, with domain of homogeneity D ⊂ Rn, and that 0n is a globally asymptotically,
resp. δ-exponentially, stable equilibrium of ẋ = f(x). Then, the origin is a finite-time,
resp. δ-exponentially, stable equilibrium of system (9) if

lim
ε→0+

f̂i(δrε(x))
εα+ri

= 0 (10)

i = 1, . . . , n, ∀x ∈ Sn−1
c , resp. ∀x ∈ Sn−1

r,c , for some c > 0 such that Sn−1
c ⊂ D, resp.

Sn−1
r,c ⊂ D.

Remark 2.4. Notice that the condition required by Lemma 2.1 may be equivalently
verified through the satisfaction of

lim
ε→0+

∥∥ε−αdiag
[
ε−r1 , . . . , ε−rn

]
f̂(δrε(x))

∥∥ = 0 (11)

∀x ∈ Sn−1
c (resp. Sn−1

r,c ). In other words, (10) is fulfilled for all i = 1, . . . , n and all
x ∈ Sn−1

c (resp. Sn−1
r,c ) if and only if (11) is satisfied for all x ∈ Sn−1

c (resp. Sn−1
r,c ). 4

2.3. Scalar functions with particular properties

Definition 2.1. A continuous scalar function σ : R→ R will be said to be:

(1) bounded —by M— if |σ(ς)| ≤M , ∀ς ∈ R, for some positive constant M ;
(2) strictly passive if ςσ(ς) > 0, ∀ς 6= 0;
(3) strongly passive if it is a strictly passive function satisfying |σ(ς)| ≥

κ
∣∣a sat(ς/a)

∣∣b = κ
(

min{|ς|, a}
)b, ∀ς ∈ R, for some positive constants κ, a and b.

Let us note that a non-decreasing strictly passive function σ is strongly passive
(Zavala-Ŕıo & Zamora-Gómez, 2017, Remark 2.7).

Remark 2.5. Equivalent characterizations of strictly passive functions are: ςσ(ς) >
0 ⇐⇒ sign(ς)σ(ς) > 0 ⇐⇒ sign(σ(ς)) = sign(ς), ∀ς. 4

Lemma 2.2. (Zavala-Rı́o & Zamora-Gómez, 2017, Lemma 2.3) Let σ : R → R,
σ0 : R→ R and σ1 : R→ R be strongly passive functions and k be a positive constant.
Then:

(1)
∫ ς

0 σ(kν)dν > 0, ∀ς 6= 0;
(2)

∫ ς
0 σ(kν)dν →∞ as |ς| → ∞;

(3) σ0 ◦ σ1 is strongly passive.
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3. The proposed control scheme

Consider the following SP-SD type controller with desired conservative-force compen-
sation

u(q, ϑ) = −s1(K1q̄)− s2(K2ϑ) + g(qd) (12)

where q̄ = q − qd, for any constant —desired equilibrium position— qd ∈ Rn; ϑ ∈ Rn

is the output vector variable of an auxiliary subsystem defined as

ϑ̇c = −As3(ϑc +Bq̄) (13a)
ϑ = ϑc +Bq̄ (13b)

K1, K2, A and B are positive definite diagonal matrices —i.e. Ki = diag[ki1, . . . , kin],
i = 1, 2, A = diag[a1, . . . , an], B = diag[b1, . . . , bn], kij > 0, aj > 0, bj > 0, ∀j =
1, . . . , n— with K1 involved in an additional requirement stated below (through (15));
for any x ∈ Rn, si(x) =

(
σi1(x1), . . . , σin(xn)

)T , i = 1, 2, 3, with —for each j =
1, . . . , n— σ3j being a strictly passive function, while σ1j and σ2j are strongly passive
functions such that2

Bj , sup
(ς1,ς2)∈R2

∣∣σ1j(ς1) + σ2j(ς2)
∣∣ < Tj −Bgj (14)

(recall Assumption 2.3.1), all three being locally Lipschitz-continuous on R \ {0}; and
with —for each j = 1, . . . , n— k1j and σ1j additionally required to be such that

|σ1j(k1jς)| > min
{
kg|ς| , 2Bgj

}
(15)

∀ς 6= 0 (recall Assumption 2.3.2).

Remark 3.1. Note that, by (14), we have that —for every j = 1, . . . , n— σ1j and
σ2j shall both be bounded, while σ3j may be freely chosen to be bounded or not. 4

Remark 3.2. The auxiliary subsystem in Eqs. (13) is a version of the dirty derivative
operator (Zamora-Gómez et al., 2017, Remark 8) (applied to the position error vector
variable) with a non-linear structure that will prove to be useful to achieve the control
objective with the focused types of trajectory convergence. 4

Remark 3.3. From the formulation of the proposed scheme, one can verify that the
proper satisfaction of the stated requirements entails that

2Bgj < |σ1j(k1jς)| ≤ sup
(ς1,ς2)∈R2

∣∣σ1j(ς1) + σ2j(ς2)
∣∣ < Tj −Bgj

∀|ς| ≥ 2Bgj/kg, whence one sees that Assumption 2.4 with η = 3 is a necessary con-
dition for the feasibility of the simultaneous fulfilment of (14) and (15). A similar
condition on the control input bounds has been required by other approaches where
input constraints have been considered (Colbaugh, Barany & Glass, 1997; Mendoza,

2Notice that if σ1j and σ2j are (both) chosen to be non-decreasing, then Bj = max
{

limς→∞
[
σ1j(ς) +

σ2j(ς)
]
, limς→−∞−

[
σ1j(ς) + σ2j(ς)

]}
.
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Zavala-Ŕıo, Santibáñez & Reyes, 2015a), generally arising from the worst-case proce-
dure followed to ensure that the analytical requirements that guarantee the result are
fulfilled. 4

Remark 3.4. Let us note that (15) could have been alternatively stated as requiring∣∣σ1j(k1jς)
∣∣ ≥ min

{
k̂1j |ς|, bj

}
for some constants k̂1j > kg and bj > 2Bgj . However, by

stating (15), the existence of constants k̂1j > kg and bj > 2Bgj such that
∣∣σ1j(k1jς)

∣∣ ≥
min

{
k̂1j |ς|, bj

}
> min

{
kg|ς|, 2Bgj

}
, ∀ς 6= 0, is implied. 4

Remark 3.5. Note that the control gains in K2, A and B are not at all restricted
and are consequently free to take any positive value, while those in K1 are the only
ones whose choice remains restricted in accordance to the design requirement stated
through (15) (where they are involved in). 4

Proposition 3.1. Consider system (1),(7) in closed loop with the proposed control
law (12)-(13), under Assumptions 2.1–2.3 and 2.4 with η = 3, and the above stated
design specifications. Thus, global asymptotic stability of the closed-loop trivial solution
q̄(t) ≡ 0n is guaranteed with |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0.

Proof. Observe that —for every j = 1, . . . , n— by (14), we have that, for any
(q, ϑ) ∈ Rn × Rn and any qd ∈ Rn:

|uj(q, ϑ)| =
∣∣− σ1j(k1j q̄j)− σ2j(k2jϑj) + gj(qd)

∣∣
≤
∣∣σ1j(k1j q̄j) + σ2j(k2jϑj)

∣∣+ |gj(qd)|
≤ Bj +Bgj < Tj

From this and (7), one sees that Tj > |uj(q, ϑ)| = |uj | = |τj |, ∀(q, ϑ) ∈ Rn × Rn,
which shows that, along the system trajectories, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n,
∀t ≥ 0. This proves that, under the proposed scheme, the input saturation values, Tj ,
are never attained. Hence, the closed-loop dynamics takes the (equivalent) form

H(q)q̈ + C(q, q̇)q̇ + g(q) = −s1(K1q̄)− s2(K2ϑ) + g(qd)

ϑ̇ = −As3(ϑ) +Bq̇

By defining x1 = q̄, x2 = q̇ and x3 = ϑ, the closed-loop dynamics adopts the 3n-order
state-space representation

ẋ1 = x2 (16a)

ẋ2 = H−1(x1 + qd)[− s1(K1x1)− s2(K2x3)− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)] (16b)

ẋ3 = −As3(x3) +Bx2 (16c)

By further defining x = (xT1 , x
T
2 , x

T
3 )T , these state equations may be rewritten in the

form of system (9) with

f(x) =

 x2

−H−1(qd)[s1(K1x1) + s2(K2x3)]

−As3(x3) +Bx2

 (17a)
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f̂(x) =


0n

−H−1(x1 + qd)[C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)]
−H(x1)[s1(K1x1) + s2(K2x3)]

0n

 (17b)

where

H(x1) = H−1(x1 + qd)−H−1(qd) (18)

Thus, the closed-loop stability property stated through Proposition 3.1 is corroborated
by showing that x = 03n is a globally asymptotically stable equilibrium of the state
equation ẋ = f(x) + f̂(x), which is proven through the following theorem (whose
formulation proves to be convenient for subsequent developments and proofs).

Theorem 3.1. Under the stated specifications, the origin is a globally asymptotically
stable equilibrium of ẋ = f(x) + `f̂(x), ∀` ∈ {0, 1}, —i.e. of both the state equation
ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x),— with f(x) and f̂(x) defined
through Eqs. (17).

Proof. For every ` ∈ {0, 1}, let us define the continuously differentiable scalar function

V`(x1, x2, x3) =
1
2
xT2 H(`x1 + qd)x2 + U`(x1) +

∫ x3

0n

sT2 (K2z)B−1dz (19)

where ∫ x3

0n

sT2 (K2z)B−1dz =
n∑
j=1

∫ x3j

0

σ2j(k2jzj)
bj

dzj

and

U`(x1) ,
∫ x1

0n

sT1 (K1z)dz + `U(x1) (20)

with ∫ x1

0n

sT1 (K1z)dz =
n∑
j=1

∫ x1j

0
σ1j(k1jzj)dzj (21)

and

U(x1) , Uol(x1 + qd)− Uol(qd)− gT (qd)x1 (22a)

=
∫ x1

0n

[g(z + qd)− g(qd)]
Tdz (22b)

=
∫ x1

0n

[ ∫ z

0n

∂g

∂q
(z̄ + qd)dz̄

]T
dz (22c)

10



Observe from Eqs. (22) and Assumption 2.3 that

U(x1) ≤
∫ x1

0n

[ ∫ z

0n

∥∥∥∥∂g∂q (z̄ + qd)
∥∥∥∥dz̄]Tdz

≤
∫ x1

0n

[ ∫ z

0n

kgdz̄

]T
dz =

∫ x1

0n

kgz
Tdz =

n∑
j=1

∫ x1j

0
kgzjdzj (23)

∀x1 ∈ Rn (more specifically from (22c)), and simultaneously that

U(x1) ≤
n∑
j=1

∫ x1j

0
sign(zj)|gj(z + qd)− gj(qd)|dzj ≤

n∑
j=1

∫ x1j

0
sign(zj)2Bgjdzj

∀x1 ∈ Rn (more specifically from (22b)). From these inequalities, Eqs. (20) and (21),
the satisfaction of (15), and Remark 3.4, we have that

U`(x1) ≥
n∑
j=1

∫ x1j

0
sign(zj) min {(k̂1j − `kg)|zj | , (bj − 2`Bgj)}dzj

≥
n∑
j=1

∫ x1j

0
sign(zj) min {k̄`j |zj | , b̄`j}dzj =

n∑
j=1

w`j(x1j) , S`(x1) (24a)

with

w`j(x1j) =


k̄`j

2 x
2
1j if |x1j | ≤ b̄`j/k̄`j

b̄`j [|x1j | − b̄`j/(2k̄`j)] if |x1j | > b̄`j/k̄`j
(24b)

for some k̂1j > kg and bj > 2Bgj , and any positive constants k̄`j ≤ k̂1j − `kg and
b̄`j ≤ bj − 2`Bgj .

Remark 3.6. One sees from expressions (24) that S`, ` = 0, 1, are positive definite ra-
dially unbounded functions of x1. Observe further that (involving previous arguments
and Remark 2.5)

Dx1U`(x1) = xT1∇x1U`(x1) = xT1

[
s1(K1x1) + `(g(x1 + qd)− g(qd))

]
=

n∑
j=1

|x1j |
[
|σ1j(k1jx1j)|+ ` sign(x1j)(gj(x1 + qd)− gj(qd))

]
≥

n∑
j=1

|x1j |
[
|σ1j(k1jx1j)| − `|gj(x1 + qd)− gj(qd)|

]
≥

n∑
j=1

|x1j |min{(k̂1j − `kg)|x1j | , (bj − 2`Bgj)}

≥
n∑
j=1

|x1j |min {k̄`j |x1j | , b̄`j} > 0 (25)

11



∀x1 6= 0n,3 whence one sees that, for every ` = 0, 1,

∇x1U`(x1) = s1(K1x1) + `[g(x1 + qd)− g(qd)] = 0n ⇐⇒ x1 = 0n (26)

4

Thus, from (19), (24) and (2), we get that

V`(x1, x2, x3) ≥ µm
2
‖x2‖2 + S`(x1) +

∫ x3

0n

sT2 (K2z)B−1dz (27)

whence, under the additional consideration of Lemma 2.2, positive definiteness and
radial unboundedness of V`, ` = 0, 1, is concluded. Further, for every ` ∈ {0, 1}, the
derivative of V` along the trajectories of ẋ = f(x) + `f̂(x), is obtained as

V̇`(x1, x2, x3)

= xT2 H(`x1 + qd)ẋ2 +
[
s1(K1x1) + `[g(x1 + qd)− g(qd)]

]T
ẋ1

+
`

2
xT2 Ḣ(x1 + qd, x2)x2 + sT2 (K2x3)B−1ẋ3

= xT2

[
− `[C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)]− s1(K1x1)− s2(K2x3)

]
+
`

2
xT2 Ḣ(x1 + qd, x2)x2 +

[
s1(K1x1) + `[g(x1 + qd)− g(qd)]

]T
x2

+ sT2 (K2x3)B−1[−As3(x3) +Bx2]

= −sT2 (K2x3)B−1As3(x3)

= −
n∑
j=1

aj
bj
σ2j(k2jx3j)σ3j(x3j)

where, in the case of ` = 1, (3b) has been applied, Note, from the strictly passive
character of σ2j and σ3j (recall Definition 2.1 and Remark 2.5), j = 1, . . . , n, that
V̇`(x1, x2, x3) ≤ 0, ∀(x1, x2, x3) ∈ Rn×Rn×Rn, with Z` , {(x1, x2, x3) ∈ Rn×Rn×Rn :
V̇`(x1, x2, x3) = 0} = {(x1, x2, x3) ∈ Rn × Rn × Rn : x3 = 0n}. Further, from the
system dynamics ẋ = f(x) + `f̂(x) —under the consideration of Remark 3.6 (more
precisely, of (26))— one sees that x3(t) ≡ 0n =⇒ ẋ3(t) ≡ 0n =⇒ x2(t) ≡ 0n =⇒
ẋ2(t) ≡ 0n =⇒ s1(K1x1(t)) + `[g(x1(t) + qd) − g(qd)] ≡ 0n ⇐⇒ x1(t) ≡ 0n
(which shows that (x1, x2, x3)(t) ≡ (0n, 0n, 0n) is the only system solution completely
remaining in Z`), and corroborates that at any (x1, x2, x3) ∈ Z` \ {(0n, 0n, 0n)}, the
resulting unbalanced force terms act on the closed-loop dynamics [ẋ = f(x1, x2, 0n) +
`f̂(x1, x2, 0n) with (x1, x2) 6= (0n, 0n)], forcing the system trajectories to leave Z`,
whence {(0n, 0n, 0n)} is concluded to be the only invariant set in Z`, ` = 0, 1. Therefore,
by the invariance theory (Michel, Hou & Liu, 2008, §7.2) (more precisely by (Michel
et al., 2008, Corollary 7.2.1)), x = 03n is concluded to be a globally asymptotically
stable equilibrium of both the state equation ẋ = f(x) and the (closed-loop) system
ẋ = f(x) + f̂(x).

3In any radial direction, U`(x1) is strictly increasing, and consequently x1 = 0n is the unique stationary point

of U`(x1).
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Remark 3.7. As shown in the on-line compensation case developed in (Zamora-
Gómez et al., 2017), it is the dirty-derivative-based auxiliary subsystem in Eqs. (13)
which performs the energy dissipation in the closed-loop system (in the absence of
the velocity variables in the feedback). This is analogously visualized —in the desired
compensation case developed here— through the feedback-system passivity approach
of (Zamora-Gómez et al., 2017, Theorem 2) as follows: under the consideration of
the closed-loop system in Eqs. (16), let e1 = −y2 = −s2(K2x3), e2 = y1 = x2,
ψ(x3) = sT2 (K2x3)B−1As3(x3),

V11(x1, x2) =
1
2
xT2 H(x1 + qd)x2 + U1(x1)

and

V12(x3) =
∫ x3

0n

sT2 (K2z)B−1dz

By previous arguments and developments, V11 and V12 are radially unbounded positive
definite functions in their respective arguments. Following an analysis analog to that
of the proof of Theorem 3.1, one obtains

V̇11 = eT1 y1

and

V̇12 = eT2 y2 − ψ(x3)

with ψ(x3) being positive definite (in its argument). Hence, the closed-loop system in
Eqs. (16) may be seen as a (negative) feedback system connection among a passive
—actually lossless— subsystem Σ1 with dynamic model

Σ1 :


ẋ1 = x2

ẋ2 = H−1(x1 + qd)[− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)− s1(K1x1) + e1]

y1 = x2

and positive definite storage function V11(x1, x2), and a strictly passive subsystem Σ2

with sate model

Σ2 :

{
ẋ3 = −As3(x3) +Be2 , f2(x3, e2)

y2 = s2(K2x3)
(28)

and storage function V12(x3). Moreover, one sees from (28) that f2(0n, e2) = Be2 =
0n =⇒ e2 = 0n, completing the requirements of (Zamora-Gómez et al., 2017, Theo-
rem 2). 4

3.1. Finite-time stabilization

Proposition 3.2. Consider the proposed control scheme under the additional consid-
eration that, for every j = 1, . . . , n, σij, i = 1, 2, are locally ri-homogeneous of (com-
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mon) degree αi = 2r2−r1 —i.e. r1j = r1, r2j = r2 and α1j = α1 = 2r2−r1 = α2 = α2j

for all j = 1, . . . , n— with dilation coefficients such that 2r2 − r1 > 0 > r2 − r1 and
domain of homogeneity Dij = {ς ∈ R : |ς| < Lij ∈ (0,∞]}, and σ3j is locally r1-
homogeneous of degree α3 = r2 —i.e. r3j = r3 = r1 and α3j = α3 = r2 for all
j ∈ {1, . . . , n}— with domain of homogeneity D3j = {ς ∈ R : |ς| < L3j ∈ (0,∞]}.
Thus, global finite-time stability of the closed-loop trivial solution q̄(t) ≡ 0n is guaran-
teed with |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0.

Proof. Since the proposed control scheme is applied —with all its previously stated
specifications— Proposition 3.1 holds and consequently |τj(t)| = |uj(t)| < Tj ,
j = 1, . . . , n, ∀t ≥ 0. Then, all that remains to be proven is that the additional
considerations give rise to the claimed finite-time stabilization. In this direction, let
r̂i = (ri1, . . . , rin)T , i = 1, 2, 3, r = (r̂T1 , r̂

T
2 , r̂

T
3 )T , K3 = diag[k31, . . . , k3n] with k3j = 1,

∀j = 1, . . . , n, D , {(x1, x2, x3) ∈ Rn × Rn × Rn : Kixi ∈ Di1 × · · · × Din , i =
1, 2, 3} = {(x1, x2, x3) ∈ Rn × Rn × Rn : |xij | < Lij/kij , i = 1, 2, 3 , j = 1, . . . , n},
and consider the previously defined state (vector) variables and the consequent closed-
loop state-space representation ẋ = f(x)+ f̂(x), with f and f̂ as defined through Eqs.
(17). Since D defines an open neighborhood of the origin, there exists ρ > 0 such that
Bρ , {x ∈ R3n : ‖x‖ < ρ} ⊂ D. Moreover, for every x ∈ Bρ and all ε ∈ (0, 1], we have
that δrε(x) ∈ Bρ (since ‖δrε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)), and, for every j = 1, . . . , n,

fj(δrε(x)) = εr2jx2j = εr2x2j = ε(r2−r1)+r1x2j = ε(r2−r1)+r1jfj(x)

fn+j(δrε(x)) = −H−1
j (qd)[s1(K1δ

r̂1
ε (x1)) + s2(K2δ

r̂3
ε (x3))]

= −H−1
j (qd)[s1(εr1K1x1) + s2(εr3K2x3)]

= −H−1
j (qd)[εα1s1(K1x1) + εα2s2(K2x3)]

= −H−1
j (qd)ε2r2−r1 [s1(K1x1) + s2(K2x3)]

= −ε(r2−r1)+r2H−1
j (qd)[s1(K1x1) + s2(K2x3)]

= ε(r2−r1)+r2jfn+j(x) (29a)

f2n+j(δrε(x)) = −As3(δr̂3ε (x3)) +Bδr̂2ε (x2)
= −As3(εr3x3) + εr2Bx2

= −Aεα3s3(x3) + εr2Bx2

= εr2 [−As3(x3) +Bx2]

= ε(r2−r3)+r3 [−As3(x3) +Bx2]

= ε(r2−r1)+r3jf2n+j(x) (29b)

whence one concludes that f is a locally r-homogeneous vector field of degree α =
r2−r1, with domain of homogeneity Bρ. Hence, by Theorems 2.1 and 3.1, the origin of
the state equation ẋ = f(x) is concluded to be a globally finite-time stable equilibrium
since r2 < r1. Thus, by Theorem 3.1, Lemma 2.1, and Remarks 2.2 and 2.4, the origin
of the closed-loop system ẋ = f(x) + f̂(x) is concluded to be a globally finite-time
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stable equilibrium provided that r2 < r1, if

L0 , lim
ε→0+

∥∥∥ε−αdiag[ε−r11 , . . . , ε−r1n , ε−r21 , . . . , ε−r2n , ε−r31 , . . . , ε−r3n ]f̂(δrε(x))
∥∥∥

= lim
ε→0+

∥∥∥ε−αdiag[ε−r21 , . . . , ε−r2n ][f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))]T
∥∥∥

= lim
ε→0+

∥∥∥ε−α−r2 [f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))]T
∥∥∥

= lim
ε→0+

εr1−2r2
∥∥∥[f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))]T

∥∥∥ (30)

= 0

for all x ∈ S3n−1
c = {x ∈ R3n : ‖x‖ = c}, for some c > 0 such that S3n−1

c ⊂ D. Hence,
from (17b), under the consideration of (4), we have, for all such x ∈ S3n−1

c :∥∥∥[f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))]T
∥∥∥

=
∥∥∥−H−1(εr1x1 + qd)[C(εr1x1 + qd, ε

r2x2)εr2x2 + g(x1 + qd)− g(qd)]

−H(εr1x1)[s1(εr1K1x1) + s2(εr3K2x3)]
∥∥∥

≤
∥∥∥−H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥
+
∥∥∥H−1(εr1x1 + qd)

∥∥∥∥∥∥g(εr1x1 + qd)− g(qd)
∥∥∥

+
∥∥∥H(εr1x1)[εα1s1(K1x1) + εα2s2(K2x3)]

∥∥∥
whence, through a procedure similar to the one developed to obtain expressions (29),
and the consideration of Assumption 2.3.2, we get∥∥∥[f̂n+1(δrε(x)), . . . , f̂2n(δrε(x))]T

∥∥∥
≤ ε2r2

∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥+
∥∥∥H−1(εr1x1 + qd)

∥∥∥kgεr1‖x1‖

+ ε2r2−r1
∥∥∥H(εr1x1)[s1(K1x1) + s2(K2x3)]

∥∥∥
and consequently, from (30) (recalling that by design specifications: r1 > r2 > 0), we
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get

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+ kg‖x1‖ lim

ε→0+
ε2(r1−r2)

∥∥∥H−1(εr1x1 + qd)
∥∥∥

+ lim
ε→0+

‖H(εr1x1)[s1(K1x1) + s2(K2x3)]‖

≤ ‖H−1(qd)C(qd, x2)x2‖ lim
ε→0+

εr1 + kg‖x1‖‖H−1(qd)‖ lim
ε→0+

ε2(r1−r2)

+ ‖s1(K1x1) + s2(K2x3)‖ lim
ε→0+

‖H(εr1x1)‖

≤ ‖s1(K1x1) + s2(K2x3)‖ · ‖H(0n)‖ = 0

(31)

(note, from (18), that ‖H(0n)‖ = ‖H−1(qd) − H−1(qd)‖ = 0), which completes the
proof.

Corollary 3.1. Consider the proposed control scheme taking σij, i = 1, 2, 3, j =
1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞) (32)

with constants βij = βi such that

0 < β1 < 1 , β2 = β1 , β3 =
1 + β1

2
(33)

Thus, global finite-time stability of the closed-loop trivial solution q̄(t) ≡ 0n is guaran-
teed with |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0.

Proof. Note that, given any rij > 0, for every ς ∈ (−Lij , Lij): εrij ς ∈ (−Lij , Lij) and
σij(εrij ς) = sign(εrij ς)|εrij ς|βij = εrijβij sign(ς)|ς|βij = εrijβijσij(ς), ∀ε ∈ (0, 1]. Hence,
under the consideration of expressions (33), for every j = 1, . . . , n, we have, for any
r1j = r1 > 0, that taking r2j = r2 = (1 + β1)r1/2 and r3j = r3 = r1, σij , i = 1, 2, are
locally ri-homogeneous of degree α1j = α1 = r1β1 = 2r2 − r1 = r3β2 = α2 = α2j with
domain of homogeneity Dij = {ς ∈ R : |ς| < Lij}, and σ3j is locally r1-homogeneous
of degree α3j = α3 = (1 + β1)r3/2 = (1 + β1)r1/2 = r2 with domain of homogeneity
D3j = {ς ∈ R : |ς| < L3j}. The requirements of Proposition 3.2 are thus concluded to
be satisfied with 0 < β1 < 1 =⇒ r2 − r1 < 0 < 2r2 − r1.

Remark 3.8. Since the results of this section depart from the application of the
proposed control scheme, the cases of Proposition 3.2 with r2 ≥ r1 and Corollary
3.1 with β1 ≥ 1 are particular cases of Proposition 3.1 where the closed-loop trivial
solution q̄(t) ≡ 0n is globally asymptotically (but not finite-time) stable. It is further
worth pointing out that with r2 = r1 —or analogously β1 = 1 in the case of Corollary
3.1— we have that εr2−r1 = 1, ∀ε > 0. Hence, in this case, developments analog to
those giving rise to inequalities (31) lead to L0 ≤ kg‖x1‖‖H−1(qd)‖, and consequently,
Lemma 2.1 (under the consideration of Remark 2.3) cannot be applied to conclude
(local) exponential stability (contrarily to the on-line gravity compensation case of
(Zamora-Gómez et al., 2017)). Nevertheless, exponential stability is next proven to be
achieved (locally), through an alternative (strict-Lyapunov-function-based) analytical
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procedure, for the special case obtained under the consideration of (32) with βij = 1,
i = 1, 2, 3, j = 1, . . . , n (which implies β1 = 1 ⇐⇒ r2 = r1). 4

3.2. Exponential stabilization

Corollary 3.2. Consider the proposed control scheme taking —for every i = 1, 2, 3
and j = 1, . . . , n— σij as in (32) with βij = 1, i.e. such that

σij(ς) = ς ∀|ς| ≤ Lij ∈ (0,∞) (34)

Thus: |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0, and the closed-loop trivial solution
q̄(t) ≡ 0n is globally asymptotically stable and (locally) exponentially stable.

Proof. See Appendix A.

4. Experimental results

The proposed control scheme was implemented through experimental tests on a Geo-
metric Touch Haptic Device (http://www.geomagic.com). This was used in (Nuño &
Ortega, 2018), where a technical description of such a 3-DOF robotic device is pre-
sented. As in (Nuño & Ortega, 2018), the gravity (conservative) force vector has been
modelled as

g(q) =

 0

105 sin(q2 + q3) + 137 cos q2

105 sin(q2 + q3)

× 10−4 [Nm]

whence the values introduced through Assumption 2.3 are obtained as Bg1 = 0, Bg2 =
242× 10−4 Nm, Bg3 = 105× 10−4 Nm and kg = 299× 10−4 Nm/rad. Input saturation
bounds were further valued as Tj = 1 Nm, j = 1, 2, 3, whence Assumption 2.4 can be
taken to be fulfilled with η = 3. For the sake of simplicity, units will be subsequently
omitted.

For the application of the proposed design methodology, let us define the functions

σu(ς;β, ᾱ) = sign(ς) max{|ς|β, ᾱ|ς|} (35a)

σb(ς;β, ᾱ,M) = sign(ς) min{|σu(ς;β, ᾱ)|,M} (35b)

for constants β > 0, ᾱ ∈ {0, 1} and M > 0. Examples are shown in (Zamora-Gómez
et al., 2017, §5).

Based on the functions in Eqs. (35), we define —for every j = 1, 2— those involved
in the implementations performed in this section as

σij(ς) = σb(ς;βi, ᾱij ,Mij) i = 1, 2 (36a)
σ3j(ς) = σu(ς;β3, ᾱ3j) (36b)
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Figure 1. Finite-time vs exponential stabilization

with ᾱij = 0, i = 1, 2, 3, j = 1, 2, 3. Conditions on their parameters under which (15)
is fulfilled are:

k1j > kg(2Bgj)(1−β1)/β1 (37a)

M1j > 2Bgj (37b)

(this is shown in Appendix B). Let us note, from the involved functions, as defined
through Eqs. (36), that Bj = M1j + M2j , j = 1, 2 (see (14) and Footnote 2). Thus,
by fixing Mij = 0.4, i = 1, 2, j = 1, 2, the inequalities from expressions (14) and
(37b) have been simultaneously satisfied. The rest of the control gain/parameter values
were chosen taking care that the design requirements were always satisfied. All the
implementations were run taking the desired configuration at qd = (π/6 π/4 π/6)T

[rad] and initial conditions: q(0) = (−0.00963 0.02467 − 0.01834)T [rad], q̇(0) =
(0 0 0)T .

Through experimental tests that show the efficiency of the proposed approach from
an actual application whence model inaccuracies constitute an inescapable reality,
we further aim at observing a couple of aspects on the closed-loop responses. The
first of these focuses on the performance of the finite-time stabilization in contrast
to analog exponential regulation implementations. Next, finite-time stabilization tests
oriented to conclude on the differences or coincidences among closed-loop responses
obtained through the desired and on-line compensation versions of the developed SP-
SD-type output-feedback scheme —where the type of the compensation term is the
only difference among the implementations— are included.

4.1. Finite-time vs exponential stabilization

Figure 1 shows results obtained taking β1 = β2 = 3/5 and β3 = 4/5, for the finite-time
controller (in accordance to (33)), and the remaining control gain/parameters were
taken, for both (finite-time and exponential) controllers, as: K1 = diag[0.5, 0.5, 0.5]
(satisfying (37a)), K2 = diag[0.3, 0.3, 0.3] and A = B = diag[1, 1, 1]. One sees that
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Figure 2. Desired vs on-line conservative-force compensation

control signals avoiding input saturation took place in both implementations, while
the closed-loop trajectory arising through the exponential stabilizer was observed to
present a longer and more important transient. Moreover, while a notorious steady-
state error —due to modelling imprecisions such as static friction and biased pa-
rameters involved in the gravity vector model— is observed to be obtained with the
exponential controller, a considerably smaller one (almost imperceptible) is noticed to
take place with the finite-time stabilizer. In particular, this observation is very impor-
tant since it corroborates the robustness argument frequently given in the literature
to motivate finite-time controllers over asymptotical (infinite-time) ones. Further tests
repeatedly showed the same result: considerably smaller (always almost imperceptible)
steady-state errors arisen with the finite-time controller compared to those obtained
with the exponential stabilizer, which were generally notorious.

4.2. Desired vs on-line conservative-force compensation

The last test focuses on the comparison among finite-time control implementations
involving the desired and on-line conservative-force compensation versions of the SP-
SD-type control schemes from this work and that from (Zamora-Gómez et al., 2017),
respectively. Of course, for every one of these cases, one can always choose control
gain/parameters such that, for the same initial conditions, either of them outperforms
the other. Thus, what we really focus on, in this section, is in comparing closed-loop
responses when both controllers hold the same control gain/parameter values but dif-
fer only on the type of conservative-force (gravity) compensation. With this goal in
mind, we repeated exactly the finite-time control test of the precedent subsection sim-
ply alternating the referred compensation term. Figure 2 shows the comparison among
the tested controllers, with FTd and FTo denoting the finite-time controllers with de-
sired and on-line compensation term, respectively. No considerable differences among
the closed-loop performances can be appreciated. Several alternative tests performing
the same comparison but with different control characteristics (e.g. different control
gain/parameter value combinations) generally gave rise to a similar result, i.e. suitable
closed-loop responses with no considerable differences among them. We conclude from
these results that the cost on the performance for the implementation simplification
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earned by the desired compensation version of the controller is negligible, in spite of
the open-loop conservative-force term that is left acting on the system in this case.

5. Conclusions

Global SP-SD-type continuous control of mechanical systems with input constraints
guaranteeing finite-time or exponential stabilization has been made possible avoiding
velocity variables in the feedback and further simplified through desired conservati-
ve-force compensation. Far from what one could have expected, this output-feedback
controller is not a simple extension of the on-line compensation case but it has rather
proven to need a closed-loop analysis with considerably higher degree of complex-
ity. Moreover, the proposed approach has overcome the proof on its transition from
finite-time to exponential stabilization, which could not be solved keeping the local-
homogeneity approach of the former in view of the open-loop conservative force which
is kept acting on the closed loop. Experimental tests on a multi-DOF robotic system
have shown the actual ability of the proposed approach to guarantee the considered
types of convergence avoiding input saturation, corroborating the well-known argu-
ment that finite-time control is more robust than asymptotic (infinite-time) stabi-
lization, in the sense that it generally gives rise to more reduced steady-state errors
(resulting from unmodelled phenomena, such as static friction). Furthermore, both the
on-line and desired conservative-force compensation versions of the developed scheme
were tested and actually compared when the only difference among them is on the
type of the referred compensation term. They both gave rise to suitable results with
very small differences among the corresponding closed-loop responses. Thus, the im-
plementation simplifications earned through the desired compensation are concluded
to have a negligible cost on the system performance, passing the bill rather to the
closed-loop analysis.
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Appendix A. Proof of Corollary 3.2

The global asymptotic stability follows from Proposition 3.1. Thus, all that remains to
be proven is the (local) exponential stability property. In this direction, let us consider
the scalar function V2(x1, x2, x3) = V1(x1, x2, x3) + εxT1 H(x1 + qd)x2 − εε0xT2 B−1x3,
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with V1(x1, x2, x3) as defined through Eq. (19) (with ` = 1), i.e.

V2(x1, x2, x3) =
1
2
xT2 H(x1+qd)x2+

∫ x1

0n

sT1 (K1z)dz+Uol(x1+qd)−Uol(qd)−gT (qd)x1

+
∫ x3

0n

sT2 (K2z)B−1dz + εxT1 H(x1 + qd)x2 − εε0xT2 B−1x3

where ε and ε0 are positive constants such that

ε < min{ε1, ε2} (A1)

ε0 > kC%1 + µM (A2)

with

ε1 =
[

k̄1mk̄2mµm
k̄2mµ2

M + k̄1m(ε0/bm)2

]1/2

, ε2 =
k̄1mγ22k̃2m

k̄1mγ22γ33 + k̄1m(γ23/2)2 + γ22(γ13/2)2

k̄1m = min
j
{k̄1j} , k̄2m = min

j
{k2j/bj} , bm = min

j
{bj} (A3)

γ22 = ε0 − kC%1 − µM , γ13 = k2M + (k1M + kg)ε0/(bmµm) (A4a)

γ23 = ε0[āM + kC%2/(bmµm)] , γ33 = ε0k2M/(bmµm) (A4b)

k̃2m = min
j
{k2jaj/bj} , k1M = max

j
{k1j} (A5a)

k2M = max
j
{k2j} , āM = max

j
{aj/bj} (A5b)

µm, µM , kC and kg as defined through (2) and Assumptions 2.1–2.3; %2 is any positive
constant;

%1 = max
x1∈Q1

‖x1‖ =
[ n∑
j=1

[
min{b̄1j/k̄1j , L1j/k1j}

]2
]1/2

(A5c)

and

Q1 = Q11 ∩Q12 = {x1 ∈ Rn : |x1j | ≤ min{b̄1j/k̄1j , L1j/k1j}, j = 1, . . . , n} (A6a)

Q11 = {x1 ∈ Rn : |x1j | ≤ b̄1j/k̄1j , j = 1, . . . , n} (A6b)
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Q12 = {x1 ∈ Rn : |x1j | ≤ L1j/k1j , j = 1, . . . , n} (A6c)

From the proof of Theorem 3.1 (particularly, from inequality (27)), we have that
V2(x1, x2, x3) ≥ µm

2 ‖x2‖2 + S1(x1) +
∫ x3

0n
sT2 (K2z)B−1dz − ε|xT1 H(x1 + qd)x2| −

εε0|xT2 B−1x3|, with S1(x1) as defined through Eqs. (24) (with ` = 1). More precisely,
by observing that S1(x1) =

∑n
j=1 k̄1jx

2
1j/2 onQ11 (recall (A6b)) and s2(K2x3) = K2x3

on Q31 = {x3 ∈ Rn : |x3j | ≤ L2j/k2j , j = 1, . . . , n}, we have that, on Q11 ×Rn ×Q31:

V2(x1, x2, x3)

≥ µm
2
‖x2‖2 +

n∑
j=1

k̄1j

2
x2

1j +
n∑
j=1

k2j

2bj
x2

3j − ε|xT1 H(x1 + qd)x2| − εε0|xT2 B−1x3|

≥ µm
2
‖x2‖2 +

k̄1m

2
‖x1‖2 +

k̄2m

2
‖x3‖2 − εµM‖x1‖‖x2‖ −

εε0
bm
‖x2‖‖x3‖

=
1
2

‖x1‖
‖x2‖
‖x3‖


T

Q1

‖x1‖
‖x2‖
‖x3‖


with

Q1 =

 k̄1m −εµM 0

−εµM µm −εε0/bm
0 −εε0/bm k̄2m


(k̄1m, k̄2m and bm as defined through expressions (A3)) where Assumption 2.1 has
been considered, and since (A1) =⇒ ε < ε1 =⇒ Q1 > 0, we get

V2(x) ≥ c1‖x‖2 (A7)

∀x ∈ Q11 × Rn × Q31, with c1 = λm(Q1)/2 > 0. On the other hand, by analogously
observing that in view of (34) we have s1(K1x1) = K1x1 on Q12 (recall (A6c)), we
get, under the consideration of (23) and Assumption 2.1, that, on Q12 × Rn ×Q31:

V2(x1, x2, x3)

=
1
2
xT2 H(x1 + qd)x2 +

1
2
xT1 K1x1 + Uol(x1 + qd)− Uol(qd)− gT (qd)x1

+
n∑
j=1

k2j

2bj
x2

3j + εxT1 H(x1 + qd)x2 − εε0xT2 B−1x3

≤ µM
2
‖x2‖2 +

k1M

2
‖x1‖2 +

kg
2
‖x1‖2 +

k̄2M

2
‖x3‖2 + εµM‖x1‖‖x2‖+

εε0
bm
‖x2‖‖x3‖

=
1
2

‖x1‖
‖x2‖
‖x3‖


T

Q2

‖x1‖
‖x2‖
‖x3‖
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where

Q2 =

k1M + kg εµM 0

εµM µM εε0/bm

0 εε0/bm k̄2M


with k̄2M = maxj{k2j/bj} (and k1M as defined through expressions (A5)). From simple
developments, one can further verify that (A1) =⇒ ε < ε1 =⇒ Q2 > 0, whence we
get

V2(x) ≤ c2‖x‖2 (A8)

∀x ∈ Q12 × Rn × Q31, with c2 = λM (Q2)/2 > 0. Furthermore, the derivative of V2
along the closed-loop system trajectories is given by

V̇2(x1, x2, x3)

= xT
2 H(x1 + qd)ẋ2 +

1
2
xT

2 Ḣ(x1 + qd, x2)x2 + [s1(K1x1) + g(x1 + qd)− g(qd)]T ẋ1

+ sT
2 (K2x3)B−1ẋ3 + εxT

1 H(x1 + qd)ẋ2 + εxT
1 Ḣ(x1 + qd, x2)x2 + εẋT

1 H(x1 + qd)x2

− εε0xT
2 B

−1ẋ3 − εε0ẋT
2 B

−1x3

= xT
2 [− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)− s1(K1x1)− s2(K2x3)]

+
1
2
xT

2 Ḣ(x1 + qd, x2)x2 + [s1(K1x1) + g(x1 + qd)− g(qd)]Tx2

+ sT
2 (K2x3)B−1[−As3(x3) +Bx2]

+ εxT
1 [− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)− s1(K1x1)− s2(K2x3)]

+ εxT
1 [C(x1 + qd, x2) + CT (x1 + qd, x2)]x2 + εxT

2 H(x1 + qd)x2

− εε0xT
2 B

−1[−As3(x3) +Bx2]

− εε0xT
3 B

−1H−1(x1 + qd)[− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)− s1(K1x1)− s2(K2x3)]

= − sT
2 (K2x3)B−1As3(x3)− εxT

1 [s1(K1x1) + g(x1 + qd)− g(qd)]− εxT
1 s2(K2x3)

+ εxT
2 C(x1 + qd, x2)x1 + εxT

2 H(x1 + qd)x2 + εε0x
T
2 B

−1As3(x3)− εε0xT
2 x2

− εε0xT
3 B

−1H−1(x1 + qd)[− C(x1 + qd, x2)x2 − g(x1 + qd) + g(qd)− s1(K1x1)− s2(K2x3)]

where Eqs. (3) have been applied. By (25), (2), Assumptions 2.1, 2.2 and 2.3.2, Remark
2.1, observing that —in view of (34)— s3(x3) = x3 on Q32 = {x3 ∈ Rn : |x3j | ≤
L3j , j = 1, . . . , n}, and defining Q3 = Q31 ∩ Q32, B2 = {x ∈ Rn : ‖x2‖ ≤ %2} for any
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%2 > 0, and Q1 as in (A6a), we get that, on Q1 × B2 ×Q3:

V̇2(x1, x2, x3)

≤ − xT
3 K2B

−1Ax3 − ε
n∑

j=1

k̄1jx
2
1j + ε|xT

1 K2x3|+ ε|xT
2 C(x1 + qd, x2)x1|+ ε|xT

2 H(x1 + qd)x2|

+ εε0|xT
2 B

−1Ax3| − εε0xT
2 x2 + εε0|xT

3 B
−1H−1(x1 + qd)C(x1 + qd, x2)x2|

+ εε0|xT
3 B

−1H−1(x1 + qd)[g(x1 + qd)− g(qd)]|+ εε0|xT
3 B

−1H−1(x1 + qd)K1x1|
+ εε0|xT

3 B
−1H−1(x1 + qd)K2x3|

≤ − k̃2m‖x3‖2 − εk̄1m‖x1‖2 + εk2M‖x1‖‖x3‖+ εkC%1‖x2‖2 + εµM‖x2‖2 + εε0āM‖x2‖‖x3‖

− εε0‖x2‖2 +
εε0kC%2

bmµm
‖x2‖‖x3‖+

εε0kg

bmµm
‖x1‖‖x3‖+

εε0k1M

bmµm
‖x1‖‖x3‖+

εε0k2M

bmµm
‖x3‖2

= −

‖x1‖
‖x2‖
‖x3‖


T

Q3

‖x1‖
‖x2‖
‖x3‖


(k̃2m, k2M , āM and %1 as defined through expressions (A5)) with

Q3 =

 εk̄1m 0 −εγ13/2

0 εγ22 −εγ23/2

−εγ13/2 −εγ23/2 k̃2m − εγ33


[γ22 (being positive in view of (A2)), γ13, γ23 and γ33 as defined through expressions
(A4)] and since (A1) =⇒ ε < ε2 =⇒ Q3 > 0, we get

V̇2(x) ≤ −c3‖x‖2 (A9)

∀x ∈ Q1 × B2 ×Q3, with c3 = λm(Q3) > 0. Thus, from the simultaneous satisfaction
of inequalities (A7)–(A9) on Q1 ×B2 ×Q3, we conclude —by (Khalil, 2002, Theorem
4.10)— that the origin (x1, x2, x3) = (0n, 0n, 0n) is a (locally) exponentially stable
equilibrium of the closed-loop system, whence the proof is completed.

Appendix B. On inequalities (37)

Observe that on {ς ∈ R : 0 < |ς| ≤ 2Bgj/kg} we have that (recall from Corollaries 3.1
and 3.2 that 0 < β1 ≤ 1):

|ς| ≤ 2Bgj
kg

⇐⇒ |ς|1−β1 ≤
(2Bgj
kg

)1−β1

⇐⇒ kβ1

1j

(2Bgj
kg

)β1−1

|ς| ≤ |k1jς|β1

while from (37a) we have, for all ς 6= 0, that:

(37a) ⇐⇒ kg(2Bgj)(1−β1)/β1 |ς|1/β1 < k1j |ς|1/β1 ⇐⇒ kβ1
g (2Bgj)1−β1 |ς| < kβ1

1j |ς|

⇐⇒ kg|ς| < kβ1

1j

(2Bgj
kg

)β1−1

|ς|
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From these developments we thus get, on {ς ∈ R : 0 < |ς| ≤ 2Bgj/kg}, that: (37a) =⇒
kg|ς| < |k1jς|β1 , and consequently, for all ς 6= 0, that: (37a) =⇒ min{kg|ς|, 2Bgj} <
|k1jς|β1 , whence, under the additional consideration of (37b), we get that: (37) =⇒
min{kg|ς|, 2Bgj} < min{|k1jς|β1 ,M1j} = |σ1j(k1jς)|, ∀ς 6= 0.
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