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In this paper, a globally stabilizing PID-type control scheme with a generalized saturating structure for
robot manipulators under input constraints is proposed. It gives rise to various families of bounded PID-
type controllers whose implementation is released from the exact knowledge of the system parameters
and model structure. Compared to previous approaches of the kind, the proposed scheme is not only
characterized by its generalized structure but also by its very simple tuning criterion, the simplest hitherto
obtained in the considered analytical framework. Experimental results on a 3-degree-of-freedom direct-
drive manipulator corroborate the efficiency of the proposed approach.
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1. Introduction

Over recent years, sophisticated control schemes have been proposed. However, in actual appli-
cations where robot manipulators are involved, Proportional-Integral-Derivative (PID) algorithms
seem to be a regular practice (Rocco, 1996; Visioli & Legnani, 2002). Since it has not been possible
to develop a global proof of the stability properties provided through their classical linear form,
alternative versions of these controllers using nonlinear structures, mainly oriented to guarantee
global stabilization, have been proposed for instance in (Arimoto, 1995; Kelly, 1998; Santibáñez
& Kelly, 1998; Sun, Songyu, Shao & Liu, 2009). However, these modified algorithms consider that
actuators can provide any required torque value which is impossible in practice.

In order to ensure a proper operation of the robots, it is important to design control schemes that
take into account the natural constraints of real actuators. Otherwise, unexpected behaviors and
related risks could take place in view of the saturation nonlinearity that generally relates the con-
troller outputs to the plant inputs in actual feedback systems (Chen & Wang, 1988; Kapasouris &
Athans, 1990; Krikelis & Barkas, 1984; Zavala-Ŕıo, Aguilera-González, Mart́ınez-Sibaja, Astorga-
Zaragoza & Adam-Medina, 2013). Under the consideration of such a restriction, various schemes
have been proposed in the literature. For instance, state-feedback controllers with Saturating-
Proportional (SP) and Saturating-Derivative (SD) actions (Kelly, Santibáñez & Berghuis, 1997;
Santibáñez & Kelly, 1996; Santibáñez, Kelly & Reyes, 1998), as well as output-feedback schemes
(Loŕıa, Kelly, Ortega & Santibáñez, 1997; Santibáñez & Kelly, 1997), were some of the earlier pro-
posals. These algorithms involve exact gravity compensation, accurate position and velocity vectors
(or the latter replaced by the dirty derivative of the former), and the use of specific saturation func-
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tions. Alternative PD-type controllers, involving generalized saturation functions, were presented in
(Zavala-Ŕıo & Santibáñez, 2006) and (Zavala-Ŕıo & Santibáñez, 2007) in order to obtain alternative
saturating structures and/or give rise to improved closed-loop performances. Parametric depen-
dency has been further alleviated through adaptive approaches (Colbaugh, Barany & Glass, 1997;
Laib, 2000; López-Araujo, Zavala-Ŕıo, Santibáñez & Reyes, 2013a,b; Zergeroglu, Dixon, Behal &
Dawson, 2000). The proposal in (Colbaugh et al., 1997) consists of an algorithm with a switching
(variable) structure from a non-adaptive SP-SD type controller (without gravity compensation) to
a (linear) PD regulator with discontinuous adaptive gravity compensation. Those in (Zergeroglu et
al., 2000) and (Laib, 2000) are state and output feedback (respectively) regulators that keep the
structure of the SP-SD controller of (Kelly et al., 1997) but involve adaptive gravity compensa-
tion, where the region of attraction of the desired equilibrium can be enlarged by increasing the
control gain values. The works in (López-Araujo et al., 2013a) and (López-Araujo et al., 2013b)
present a generalized state-feedback scheme and an output-feedback algorithm (respectively), both
achieving global regulation —avoiding input saturation— through a fixed (non-varying) continuous
structure. The above-cited adaptive approaches prove to be useful under parameter uncertainty
but remain partially model dependent by involving the regression matrix implicated in the linear
structural characterization of the gravity force vector with respect to its parametric coefficient set.

On the other hand, semiglobal regulation has been achieved through bounded PID controllers
with different saturating structures in (Alvarez-Ramı́rez, Kelly & Cervantes, 2003) and (Alvarez-
Ramı́rez, Santibáñez & Campa, 2008). The stability analysis in these works is carried out through
the singular perturbation methodology which shows the existence of an appropriate tuning mainly
characterized by the requirement of sufficiently small integral action gains and high enough propor-
tional and derivative ones. As far as the authors are aware, the first saturating PID-type controller
for global regulation was developed in (Gorez, 1999). Nevertheless, the structure of the proposed
algorithm is quite complex. Other works have devoted efforts to solve the global PID regulation
problem for manipulators with bounded inputs through simpler structures, giving rise to the SP-
SI-SD type algorithm developed in (Meza, Santibáñez & Hernández, 2005) via passivity theory and
later on in (Su, Müller & Zheng, 2010) through Lyapunov stability analysis, and to the SPD-SI
type scheme presented in (Santibáñez, Kelly, Zavala-Ŕıo & Parada, 2008). Furthermore, in addition
to the actuator torque constraints, recent studies have incorporated the saturation effects of the
electronic control devices of practical PID regulators (Orrante-Sakanassi, Santibáñez & Campa,
2010; Santibáñez, Camarillo, Moreno-Valenzuela & Campa, 2010; Yarza, Santibáñez & Moreno-
Valenzuela, 2011). Exponential and/or global asymptotic stabilization conditions were established
under these natural restrictions for various implementation structures that are common in indus-
trial robots.

The above cited bounded PID-type approaches solve the formulated problem under input and
data restrictions. However, some design particularities and/or the developed closed-loop analyses
have generally conducted to restrictive tuning criteria that include a set of conditions that are
either not all necessary or more strict than really needed, which hinders the tuning task, and
whose applicability remains valid for the particular saturating structure considered in the control
design.

In this paper, a globally stabilising PID-type control scheme with a generalized saturating struc-
ture for robot manipulators under input constraints is proposed. It gives rise to various families
of bounded PID-type controllers that include the SP-SI-SD and SPD-SI structures as particular
cases, among others. In addition to the achievement of the global regulation objective without the
need for the exact knowledge of the system parameters and model structure, the proposed scheme
is not designed or analysed using a particular sigmoidal function to cope with the input constraints
but may involve any one within a well-characterized set of saturation functions. Moreover, and
very importantly, the developed closed-loop analysis gives rise to a very simple control gain se-
lection criterion, which proves to be an important progress over previous approaches of the kind.
Simplification of the tuning conditions for PID-type controllers has been a research subject for sev-
eral years (Hernández-Guzmán, Santibáñez & Silva-Ortigoza, 2008; Kelly, 1995; Orrante-Sakanassi,
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Santibáñez & Hernández-Guzmán, 2014a,b) and had never been achieved to be as simple as it is
shown in this paper. Experimental results on a 3-degree-of-freedom (DOF) direct-drive manipulator
corroborate the proposed contribution.

2. Preliminaries

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij represents the element of X at its ith

row and jth column, and yi denotes the ith element of y. 0n stands for the origin of Rn and In

represents the n × n identity matrix. ‖ ∙ ‖ stands for the standard Euclidean norm for vectors, i.e.

‖y‖ =
√∑n

i=1 y2
i , and induced norm for matrices, i.e. ‖X‖ =

√
λmax{XT X} where λmax{XT X}

represents the maximum eigenvalue of XT X. The image of B ⊂ Rn under ψ : Rn → Rm is denoted
ψ(B). For a continuous scalar function ψ : R → R, ψ′ denotes its derivative, when differentiable,
D+ψ its upper right-hand (Dini) derivative, i.e. D+ψ(ς) = lim suph→0+

ψ(ς+h)−ψ(ς)
h , with D+ψ = ψ′

at points of differentiability (Khalil, 2002, Appendix C.2), and ψ−1 its inverse, when invertible.
Consider the n-DOF serial rigid manipulator dynamics with viscous friction (Arimoto, 1996,

§2.1), (Sciavicco & Siciliano, 2000, §6.2), (Lewis, Dawson & Abdallah, 2004, §7.2)

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (generalized coordinates), velocity, and acceleration
vectors, H(q) ∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈ Rn are respectively the
vectors of Coriolis and centrifugal, viscous friction, gravity, and external input generalized forces,
with F ∈ Rn×n being a positive definite constant diagonal matrix whose entries fi > 0, i = 1, . . . , n,
are the viscous friction coefficients, and g(q) = ∇U(q), with U(q) being the gravitational potential
energy, or equivalently

U(q) = U(q0) +
∫ q

q0

gT (r)dr (2a)

with

∫ q

q0

gT (r)dr =
∫ q1

q01

g1(r1, q02, . . . , q0n)dr1 +
∫ q2

q02

g2(q1, r2, q03, . . . , q0n)dr2

+ ∙ ∙ ∙ +
∫ qn

q0n

gn(q1, . . . , qn−1, rn)drn (2b)

for any1 q, q0 ∈ Rn. Some well-known properties characterizing the terms of such a dynamical model
are recalled here (Arimoto, 1996, §2.1), (Lewis et al., 2004, §3.3), (Kelly, Santibáñez & Loŕıa, 2005,
Chap. 4). Subsequently, we denote Ḣ the rate of change of H, i.e. Ḣ : Rn ×Rn → Rn×n : (q, q̇) 7→[

∂Hij

∂q (q)q̇
]
.

Property 1: H(q) is a continuously differentiable matrix function being positive definite, sym-
metric, and bounded on Rn, i.e. such that μmIn ≤ H(q) ≤ μMIn, ∀q ∈ Rn, for some constants
μM ≥ μm > 0.

1Since g(q) is the gradient of the gravitational potential energy U(q), a scalar function, then, for any q, q0 ∈ Rn, the inverse

relation U(q) = U(q0)+
∫ q

q0
gT (r)dr is independent of the integration path (Khalil, 2002, p. 120). Eq. (2b) considers integration

along the axes. This way, on every axis (i.e. at every integral in the right-hand side of (2b)), the corresponding coordinate

varies (according to the specified integral limits) while the rest of the coordinates remain constant.
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Property 2: The Coriolis matrix C(q, q̇) satisfies:

2.1. ‖C(q, q̇)‖ ≤ kC‖q̇‖, ∀(q, q̇) ∈ Rn × Rn, for some constant kC ≥ 0;

2.2. for all (q, q̇) ∈ Rn×Rn, q̇T
[

1
2Ḣ(q, q̇) − C(q, q̇)

]
q̇ = 0 and actually Ḣ(q, q̇) = C(q, q̇)+CT (q, q̇).

Property 3: The viscous friction coefficient matrix satisfies fm‖q̇‖2 ≤ q̇T F q̇ ≤ fM‖q̇‖2, ∀q̇ ∈ Rn,
where 0 < fm , mini{fi} ≤ maxi{fi} , fM .

Property 4: The gravity force term g(q) is a continuously differentiable bounded vector function
with bounded Jacobian matrix2 ∂g

∂q . Equivalently, every element of the gravity force vector, gi(q),
i = 1, . . . , n, satisfies:

4.1. |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive constant Bgi;

4.2. ∂gi

∂qj
, j = 1, . . . , n, exist and are continuous and such that

∣
∣
∣ ∂gi

∂qj
(q)
∣
∣
∣ ≤

∥
∥
∥∂g

∂q (q)
∥
∥
∥ ≤ kg, ∀q ∈ Rn,

for some positive constant kg, and consequently |gi(x) − gi(y)| ≤ ‖g(x) − g(y)‖ ≤ kg‖x − y‖,
∀x, y ∈ Rn.

In this work, we consider the (realistic) case where the absolute value of each input τi is con-
strained to be smaller than a given saturation bound Ti > 0, i.e., |τi| ≤ Ti, i = 1, . . . , n. More
precisely, letting ui represent the control variable (controller output) relative to the ith degree of
freedom, we have that

τi = Tisat(ui/Ti) (3)

where sat(∙) is the standard saturation function, i.e. sat(ς) = sign(ς)min {|ς|, 1}. Let us note, from
Eqs. (1) and (3), that Ti ≥ Bgi (see Property 4.1), ∀i ∈ {1, . . . , n}, is a necessary condition for the
robot manipulator to be stabilizable at any desired equilibrium configuration qd ∈ Rn. Thus, the
following assumption turns out to be important within the analytical setting considered here.

Assumption 1: Ti > αBgi, ∀i ∈ {1, . . . , n}, for some scalar α ≥ 1.

The control scheme proposed in this work involves functions fulfilling the following definition.

Definition 1: Given a positive constant M , a nondecreasing Lipschitz-continuous function σ :
R→ R is said to be a generalized saturation with bound M if

(a) ςσ(ς) > 0, ∀ς 6= 0;
(b) |σ(ς)| ≤ M , ∀ς ∈ R.

If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤ M , σ is said to be a linear saturation for (L,M) (Teel, 1992).

Functions satisfying Definition 1 have the following properties.

Lemma 1: Let σ : R → R be a generalized saturation with bound M and let k be a positive
constant. Then

1. lim|ς|→∞ D+σ(ς) = 0;
2. ∃σ′

M ∈ (0,∞) such that 0 ≤ D+σ(ς) ≤ σ′
M , ∀ς ∈ R;

3. |σ(kς + η) − σ(η)| ≤ σ′
Mk|ς|, ∀ς, η ∈ R;

4. |σ(kς)| ≤ σ′
Mk|ς|, ∀ς ∈ R;

2Property 4 is satisfied for instance by robot manipulators having only revolute joints (Kelly et al., 2005, §4.3).
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5. σ2(kς)
2kσ′

M
≤
∫ ς
0 σ(kr)dr ≤ kσ′

M ς2

2 , ∀ς ∈ R;

6.
∫ ς
0 σ(kr)dr > 0, ∀ς 6= 0;

7.
∫ ς
0 σ(kr)dr → ∞ as |ς| → ∞;

8. if σ is strictly increasing, then
(a) ς[σ(ς + η) − σ(η)] > 0, ∀ς 6= 0, ∀η ∈ R;
(b) for any constant a ∈ R, σ̄(ς) = σ(ς + a) − σ(a) is a strictly increasing generalized

saturation function with bound M̄ = M + |σ(a)|;
9. if σ is a linear saturation for (L, M) then, for any continuous function ν : R→ R such that

|ν(η)| < L, ∀η ∈ R, we have that ς
[
σ
(
ς + ν(η)

)
− σ

(
ν(η)

)]
> 0, ∀ς 6= 0, ∀η ∈ R.

Proof. Items 3 and 4 are a direct consequence of the Lipschitz-continuity of σ and item 2 of
the statement (as analogously stated for instance in (Khalil, 2002, Lemma 3.3) under continuous
differentiability). The rest of the items are proven in (López-Araujo et al., 2013a).

3. The proposed control scheme

We propose a Proportional-Integral-Dissipative type control scheme with generalized form

u(q, q̇, φ) = −sd(q̄, q̇, φ) − sP (KP q̄) + sI(KIφ) (4)

where q̄ = q − qd, for any constant (desired equilibrium position) vector qd ∈ Rn; φ ∈ Rn is an
auxiliary state vector coming from the integral-action dynamics defined as3

φ̇ = −q̇ − εK−1
P sP (KP q̄) (5)

KP ∈ Rn×n and KI ∈ Rn×n are positive definite diagonal matrices —i.e., KP = diag[kP1, . . . , kPn]
and KI = diag[kI1, . . . , kIn] with kPi > 0 and kIi > 0, ∀i = 1, . . . , n— such that

kPm , min
i
{kPi} > kg (6)

(see Property 4.2); for any x ∈ Rn, sP (x) =
(
σP1(x1), . . . , σPn(xn)

)T
and sI(x) =

(
σI1(x1), . . . , σIn(xn)

)T
, with σPi(∙), i = 1, . . . , n, being (suitable) linear saturation functions

for (LPi,MPi) and σIi(∙), i = 1, . . . , n, being strictly increasing generalized saturation func-
tions with bounds MIi, such that

LPi > 2Bgi (7a)

MIi > Bgi (7b)

i = 1, . . . , n; sd : Rn × Rn × Rn → Rn is a continuous vector function satisfying

sd(q̄, 0n, φ) = 0n (8)

3Under time parametrization of the system trajectories, (5) adopts the (equivalent) form φ(t) = φ(0) −
∫ t
0

[
q̇(ς) +

εK−1
P sP

(
KP q̄(ς)

)]
dς, for any initial condition (q, q̇, φ)(0) ∈ Rn × Rn × Rn.
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∀q̄ ∈ Rn, ∀φ ∈ Rn,

q̇T sd(q̄, q̇, φ) > 0 (9)

∀q̇ 6= 0n, ∀q̄ ∈ Rn, ∀φ ∈ Rn,

‖sd(q̄, q̇, φ)‖ ≤ κ‖q̇‖ (10)

∀(q̄, q̇, φ) ∈ Rn × Rn × Rn, for some constant κ > 0, and

|ui(q, q̇, φ)| = | − sdi(q̄, q̇, φ) − σPi(kPiq̄i) + σIi(kIiφi)| < Ti (11)

i = 1, . . . , n, ∀(q̄, q̇, φ) ∈ Rn × Rn × Rn, for suitable bounds MPi and MIi of σPi(∙) and σIi(∙); and
ε (in (5)) is a positive constant satisfying

ε < εM , min{ε1, ε2} (12)

where

ε1 ,

√
β0βP μm

μ2
M

, ε2 ,
fm

βM + (fM+κ)2

4β0kP m

<
fm

βM
, ε3

with

β0 , 1 − max

{
kg

kPm
, max

i

{
2Bgi

LPi

}}

, βP , min
i

{
kPi

σ′
PiM

}

, βM , kCBP + μMσ′
PM

BP ,

√√
√
√

n∑

i=1

(
MPi

kPi

)2

, σ′
PM , max

i
{σ′

PiM}

(observe that by inequalities (6) and (7a): 0 < β0 < 1), σ′
PiM being the positive bound of D+σPi(∙),

in accordance to item 2 of Lemma 1, and μm, μM , kC , fm, fM , Bgi, and kg as defined through
Properties 1–4.

Remark 1: In order to preserve the main feature of PID-type controllers, the vector function sd

in (4) shall not involve any term of the open-loop system dynamics (whether as online or desired
compensation) or the exact value of any of its parameters. In general, sd will include a derivative-
action term (acting on the derivative of the position error, i.e. on the velocity vector) and may
involve some form of the proportional and/or the integral ones, as illustrated in Appendix A.

Remark 2: A closed loop analysis under stationary conditions (q̈ = q̇ = φ̇ = 0n) reveals the main
functions of the integral action. On the one hand, the auxiliary dynamics in (5) forces the desired
configuration qd to be the unique closed-loop equilibrium position, eliminating steady-state con-
figuration errors, consequently overcoming the main limitation of approaches that consider exact
(online or desired) gravity compensation (Kelly et al., 1997; Santibáñez & Kelly, 1996; Santibáñez
et al., 1998; Zavala-Ŕıo & Santibáñez, 2006, 2007). Such an equilibrium position is additionally
guaranteed to have the required stability properties, in accordance to the global regulation objec-
tive, under the satisfaction of inequalities (6) and (7a), as can be concluded from the closed-loop
analysis developed in Section 4. On the other hand, the saturating integral (rightmost) term in
the right-hand side of (4) shall compensate for the steady-state gravity forces. This is the reason
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why inequalities (7b) are required, since they ensure that g(Rn) be the image under sI of some
subset Φ ∈ Rn (in the subspace related to the auxiliary state variable φ), thus guaranteeing suit-
able steady-state gravity compensation for all qd ∈ Rn. The relation stated from Φ to g(Rn) under
sI is further rendered injective (one-to-one) through the strictly increasing requirement on the
generalized saturations σIi, i = 1, . . . , n, which guarantees their invertibility. Furthermore, input
saturation is avoided through (11). In this direction, it is important to note that, depending on the
specific choice of the vector function sd, Assumption 1 may be required to be satisfied with some
α strictly greater than unity in order to guarantee the feasibility of the simultaneous fulfillment
of (11) and inequalities (7). For instance, in the particular control structure cases presented in
Appendix A, such a feasibility is achieved by requiring α = 3, as pointed out in Remark 6. A
similar condition on the control input bounds has been required by other approaches where input
constraints have been considered (Colbaugh et al., 1997). In saturating PID-type schemes from
previous references, a similar or analog condition on the control input bounds remains implicit by
requiring corresponding parameters to be high enough to satisfy conditions coming from the sta-
bility analysis and simultaneously low enough to fulfill the input-saturation-avoidance inequalities.

4. Closed-Loop Analysis

Consider system (1),(3) taking u = u(q, q̇, φ) as defined through Eqs. (4)-(5). Observe that the
satisfaction of (11), under the consideration of (3), shows that

Ti > |ui(q, q̇, φ)| = |ui| = |τi| i = 1, . . . , n ∀(q, q̇, φ) ∈ Rn × Rn × Rn (13)

Hence, the closed-loop dynamics takes the form

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = −sd(q̄, q̇, φ) − sP (KP q̄) + s̄I(φ̄) + g(qd) (14a)

˙̄φ = −q̇ − εK−1
P sP (KP q̄) (14b)

where φ̄ = φ − φ∗ and

s̄I(φ̄) = sI(KI φ̄ + KIφ
∗) − sI(KIφ

∗) (15)

with φ∗ = (φ∗
1, . . . , φ

∗
n)T such that sI(KIφ

∗) = g(qd), or equivalently φ∗
i = σ−1

Ii

(
gi(qd)

)
/kIi, i =

1, . . . , n (recall Remark 2). Observe that, by point 8b of Lemma 1, the elements of s̄I(φ̄) in Eq.
(15), i.e.

σ̄Ii(φ̄i) = σIi(kIiφ̄i + kIiφ
∗
i ) − σIi(kIiφ

∗
i )

i = 1, . . . , n, turn out to be strictly increasing generalized saturation functions.

Proposition 1: Consider the closed-loop system in Eqs. (14), under the satisfaction of inequalities
(7), the conditions on the vector function sd stated through expressions (8)–(11), and Assumption
1 with suitable value of α. Thus, for any positive definite diagonal matrices KI and KP such that
inequality (6) is satisfied, and any ε fulfilling inequality (12), global asymptotic stability of the
closed-loop trivial solution (q̄, φ̄)(t) ≡ (0n, 0n) is guaranteed with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n,
∀t ≥ 0.

Proof. By (13), one sees that, along the system trajectories, |τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This
proves that, under the proposed scheme, the input saturation values, Ti, are never attained. Now,
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in order to carry out the stability analysis, the following scalar function is defined4

V (q̄, q̇, φ̄) =
1
2
q̇T H(q)q̇+εsT

P (KP q̄)K−1
P H(q)q̇+U(q)−U(qd)−gT (qd)q̄+

∫ q̄

0n

sT
P (KP r)dr+

∫ φ̄

0n

s̄T
I (r)dr

(16)

where
∫ q̄
0n

sT
P (KP r)dr =

∑n
i=1

∫ q̄i

0 σPi(kPiri)dri,
∫ φ̄
0n

s̄T
I (r)dr =

∑n
i=1

∫ φ̄i

0 σ̄Ii(ri)dri and recall that
U represents the gravitational potential energy. Note, by recalling Eqs. (2), that the defined scalar
function can be rewritten as

V (q̄, q̇, φ̄) =
1
2
q̇T H(q)q̇ + εsT

P (KP q̄)K−1
P H(q)q̇ + γ0

∫ q̄

0n

sT
P (KP r)dr + Uc

γ0
(q̄) +

∫ φ̄

0n

s̄T
I (r)dr

where

Uc
γ0

(q̄) =
∫ q̄

0n

[g(r + qd) − g(qd) + (1 − γ0)sP (KP r)]T dr

=
n∑

i=1

∫ q̄i

0
[ḡi(ri) − gi(qd) + (1 − γ0)σPi(kPiri)] dri

(17)

with

ḡ1(r1) = g1(r1 + qd1, qd2, . . . , qdn)
ḡ2(r2) = g2(q1, r2 + qd2, qd3, . . . , qdn)

...
ḡn(rn) = gn(q1, q2, . . . , qn−1, rn + qdn)

and γ0 is a constant satisfying

β0
ε2

ε2
1

< γ0 < β0 (18)

(observe, from inequality (12) and the definition of β0, that 0 < β0ε
2/ε2

1 < β0 < 1). Under this
consideration, Uc

γ0
(q̄) turns out to be lower-bounded by

W10(q̄) =
n∑

i=1

w10
i (q̄i) (19a)

where

w10
i (q̄i) ,

{
kli

2 q̄2
i if |q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| −

q̄∗
i

2

)
if |q̄i| > q̄∗i

(19b)

with 0 < kli ≤ (1 − γ0)kPi − kg and q̄∗i = [LPi − 2Bgi/(1 − γ0)]/kPi (note that by inequality (18)
and the definition of β0: 0 < (1−γ0)kPi −kg and q̄∗i > 0); this is proven in Appendix B. From this,

4Note that, in the error variable space, q = q̄+qd and consequently H(q) = H(q̄+qd), C(q, q̇) = C(q̄+qd, q̇) and g(q) = g(q̄+qd).

However, for the sake of simplicity, H(q), C(q, q̇), and g(q) are used throughout the paper.
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Property 1 and item 5 of Lemma 1, we have that

V (q̄, q̇, φ̄) ≥
μm

2
‖q̇‖2 − εμM‖K−1

P sP (KP q̄)‖‖q̇‖ + γ0

n∑

i=1

σ2
Pi(kPiq̄i)

2kPiσ′
PiM

+ W10(q̄) +
∫ φ̄

0n

s̄T
I (r)dr

≥ W11(q̄, q̇) + W10(q̄) +
∫ φ̄

0n

s̄T
I (r)dr (20)

with

W11(q̄, q̇) =
μm

2
‖q̇‖2 − εμM‖K−1

P sP (KP q̄)‖‖q̇‖ +
γ0βP

2
‖K−1

P sP (KP q̄)‖2

=
1
2

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)T (
γ0βP −εμM

−εμM μm

)(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)

(21)

By inequality (18), W11(q̄, q̇) is positive definite (since with ε < εM ≤ ε1, in accordance to inequality
(12), any γ0 satisfying (18) renders the matrix in the right-hand side of (21) positive definite) and
observe that W11(0n, q̇) → ∞ as ‖q̇‖ → ∞, while from Eqs. (19) and items 6 and 7 of Lemma 1,
it is clear that W10 and the integral term in the right-hand side of (20) are radially unbounded
positive definite functions of q̄ and φ̄ respectively. Thus, V (q̄, q̇, φ̄) is concluded to be positive
definite and radially unbounded. Its upper right-hand derivative along the system trajectories,
V̇ = D+V (Michel, Hou & Liu, 2008, §6.1A), is given by

V̇ (q̄, q̇, φ̄) = q̇T H(q)q̈ +
1
2
q̇T Ḣ(q, q̇)q̇ + εsT

P (KP q̄)K−1
P H(q)q̈ + εsT

P (KP q̄)K−1
P Ḣ(q, q̇)q̇

+ εq̇T s′P (KP q̄)H(q)q̇ + gT (q)q̇ − gT (qd)q̇ + sT
P (KP q̄)q̇ + s̄T

I (φ̄) ˙̄φ

= q̇T
[
− C(q, q̇)q̇ − F q̇ − g(q) − sd(q̄, q̇, φ) − sP (KP q̄) + s̄I(φ̄) + g(qd)

]
+

1
2
q̇T Ḣ(q, q̇)q̇

+ εsT
P (KP q̄)K−1

P

[
− C(q, q̇)q̇ − F q̇ − g(q) − sd(q̄, q̇, φ) − sP (KP q̄) + s̄I(φ̄) + g(qd)

]

+ εsT
P (KP q̄)K−1

P Ḣ(q, q̇)q̇ + εq̇T s′P (KP q̄)H(q)q̇ + gT (q)q̇ − gT (qd)q̇ + sT
P (KP q̄)q̇

+ s̄T
I (φ̄)

[
− q̇ − εK−1

P sP (KP q̄)
]

= − q̇T F q̇ − q̇T sd(q̄, q̇, φ) − εsT
P (KP q̄)K−1

P F q̇ − εsT
P (KP q̄)K−1

P

[
g(q) + sP (KP q̄) − g(qd)

]

− εsT
P (KP q̄)K−1

P sd(q̄, q̇, φ) + εq̇T C(q, q̇)K−1
P sP (KP q̄) + εq̇T s′P (KP q̄)H(q)q̇

where H(q)q̈ and ˙̄φ have been replaced by their equivalent expressions from the
closed-loop dynamics in Eqs. (14), Property 2.2 has been used and s′P (KP q̄) ,
diag[D+σP1(kP1q̄1), . . . , D+σPn(kPnq̄n)]. The resulting expression can be rewritten as

V̇ (q̄, q̇, φ̄) = − q̇T sd(q̄, q̇, φ) − q̇T F q̇ − εsT
P (KP q̄)K−1

P F q̇ − εγ1s
T
P (KP q̄)K−1

P KP K−1
P sP (KP q̄)

− εWγ1(q̄) − εsT
P (KP q̄)K−1

P sd(q̄, q̇, φ) + εq̇T C(q, q̇)K−1
P sP (KP q̄) + εq̇T s′P (KP q̄)H(q)q̇

where

Wγ1(q̄) = sT
P (KP q̄)K−1

P

[
(1 − γ1)sP (KP q̄) + g(q) − g(qd)

]

=
n∑

i=1

[
(1 − γ1)

kPi
σ2

Pi(kPiq̄i) +
σPi(kPiq̄i)

kPi

[
gi(q) − gi(qd)

]
] (22)
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and γ1 is a constant satisfying

β0
ε

ε2

[
ε3 − ε2

ε3 − ε

]

< γ1 < β0 (23)

(from inequality (12) and the definition of β0, one verifies, after simple developments, that 0 <
β0ε(ε3 − ε2)/[ε2(ε3 − ε)] < β0 < 1; in particular εε2/ε3 < ε < ε2 ⇐⇒ εε2 < εε3 < ε2ε3 ⇐⇒ 0 <
ε(ε3 − ε2) < ε2(ε3 − ε) ⇐⇒ 0 < ε(ε3 − ε2)/[ε2(ε3 − ε)] < 1). Under this consideration, Wγ1(q̄)
turns out to be lower-bounded by

W20(q̄) =
n∑

i=1

w20
i (q̄i) (24a)

where

w20
i (q̄i) =






aiq̄
2
i if |q̄i| ≤ LPi/kPi

bi

kP i

(
|σPi(kPiq̄i)| − LPi

)
+ ai

(
LP i

kP i

)2
if |q̄i| > LPi/kPi

(24b)

with bi = (1−γ1)LPi−2Bgi, ai = min
{

d, bikP i

LP i

}
and d = (1−γ1)kPm−kg (notice, from inequality

(23) and the definition of β0, that bi > 0 and d > 0, hence ai > 0); this is proven in Appendix
C. From this, Properties 1, 2.1 and 3, inequality (10), Definition 1, item 2 of Lemma 1 and the
positive definite character of KP , we have that

V̇ (q̄, q̇, φ̄) ≤ − q̇T sd(q̄, q̇, φ) − fm‖q̇‖2 + εfM‖K−1
P sP (KP q̄)‖‖q̇‖ − εγ1kPm‖K−1

P sP (KP q̄)‖2

+ εκ‖K−1
P sP (KP q̄)‖‖q̇‖ + εkCBP ‖q̇‖

2 + εμMσ′
PM‖q̇‖2 − εWγ1(q̄)

≤ −q̇T sd(q̄, q̇, φ) − εW21(q̄, q̇) − εW20(q̄) (25)

where

W21(q̄, q̇) = γ1kPm‖K−1
P sP (KP q̄)‖2 − (fM + κ)‖K−1

P sP (KP q̄)‖‖q̇‖ +

(
fm

ε
− βM

)

‖q̇‖2

=

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)T

Q21

(
‖K−1

P sP (KP q̄)‖
‖q̇‖

)

with

Q21 =

(
γ1kPm −fM+κ

2

−fM+κ
2

fm

ε − βM

)

=




γ1kPm −

√
kPmβMβ0

(
ε3−ε2

ε2

)

−
√

kPmβMβ0

(
ε3−ε2

ε2

)
βM

(
ε3−ε

ε

)





By inequality (23), W21(q̄, q̇) is positive definite (since with ε < εM ≤ ε2 < ε3, in accordance
to inequality (12), any γ1 satisfying (23) renders Q21 positive definite), while from Eqs. (24) and
inequality (9), it is clear that W20 is a positive definite function of q̄ and the first term in the right-
hand side of (25) is negative definite with respect to q̇ (uniformly in q̄ and φ̄). Hence, V̇ (q̄, q̇, φ̄) ≤ 0
with V̇ (q̄, q̇, φ̄) = 0 ⇐⇒ (q̄, q̇) = (0n, 0n). Further, from the closed-loop dynamics in Eqs. (14),
we see that q̄(t) ≡ q̇(t) ≡ 0n =⇒ q̈(t) ≡ 0n =⇒ s̄I

(
φ̄(t)

)
≡ 0n ⇐⇒ φ̄(t) ≡ 0n (at any (q̄, q̇, φ̄)

on Z = {(x, y, z) ∈ Rn × Rn × Rn : x = y = 0n} with φ̄ 6= 0n, the resulting unbalanced force
term s̄I(φ̄) acts on the closed-loop dynamics forcing the system trajectories to leave Z). Therefore,
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by the invariance theory (Michel et al., 2008, §7.2) —more precisely by5 (Michel et al., 2008,
Corollary 7.2.1)—, the closed-loop trivial solution (q̄, φ̄)(t) ≡ (0n, 0n) is concluded to be globally
asymptotically stable, which completes the proof.

Remark 3: Let us note that the fulfillment of inequality (12) is not necessary but only sufficient
for the closed-loop analysis to hold. As a matter of fact, proving Proposition 1 through inequality
(12) is tantamount to show the existence of some ε∗ ≥ εM such that, for any ε ∈ (0, ε∗), global
stabilization is guaranteed. Hence, the proposed scheme permits successful implementations with
values of ε higher than εM (up to certain limit, ε∗).

Remark 4: Multiple control structures arise from the generalized formulation presented here;
details in this direction are given in Appendix A. This is already an important feature of the
proposed scheme since it does not only provide a unifying approach that includes particular algo-
rithms from previous references, but it further permits the construction of alternative controllers
with innovative saturating structures, thus providing a wide range of possibilities for performance
improvement. Beyond such a general character, an important distinction of the proposed approach
is on its very simple control-gain tuning criterion. Indeed, observe that the control gains in the
approach proposed in this work are not tied to the satisfaction of any additional tuning restric-
tion apart from inequality (6), and condition (12) concerning the integral-action-related parameter
ε. This is mainly a result of two original aspects (with respect to previous saturating PID-type
approaches). The first of these is on the developed closed-loop analysis through the lower bound
finding (and respective proofs) of Uc

γ0
(q̄) in V (q̄, q̇, φ̄) (Eq. (17)) and Wγ1(q̄) in V̇ (q̄, q̇, φ̄) (Eq. (22)).

The second one is on the design of the algorithm through the structuring of its terms, by involving
a generalized type of saturation functions whose bound is explicitly considered in their definition
and which are permitted to keep an identity relation with their argument in a region around zero,
and using them to limit the (P/I/D) control actions, i.e. the control-gain-by-scaled closed-loop
(error) variables.6 Such a structuring has been further crucial to state the (strictly) passive charac-
ter of the desired-gravity-compensation error s̄I(φ̄) in Eq. (15) (such that φ̄T s̄I(φ̄) > 0, ∀φ̄ 6= 0n),
which permitted the inclusion of the corresponding controller-induced-potential energy term in the
Lyapunov function, namely the last one in the right-hand side of Eq. (16).

Remark 5: Let us note that the consideration of the viscous friction term in the open-loop dynam-
ics (1) has rendered possible the proof of the global character of the closed-loop stability properties.
This has been a common practice since the earliest PID-type bounded approach of (Gorez, 1999).
The same practice is observed in the subsequent PID-type bounded scheme proposals of (Meza et
al., 2005; Santibáñez et al., 2008) and those reported later on. Other problem formulations in the
constrained input framework have been similarly solved (Aguiñaga-Ruiz, Zavala-Ŕıo, Santibáñez &
Reyes, 2009; Santibáñez & Kelly, 2001; Zavala-Ŕıo, Aguiñaga-Ruiz & Santibáñez, 2011). Of course,
global controllers —in the referred constrained context— whose stability proof could be carried
out in the absence of friction forces would constitute analytically stronger approaches. However,
solutions involving viscous friction are meaningful in practice since such a friction component is an
ever-present phenomenon in the considered type of systems (Armstrong, 1991).

5Corollary 7.2.1 in (Michel et al., 2008) states a version of the global Barbashin-Krasovskii’s theorem that considers autonomous

systems with continuous dynamics and makes use of continuous scalar (Lyapunov) functions and their upper-right derivative

along the system trajectories (in contrast, for instance, with the statement presented in (Khalil, 2002, Corollary 4.2), which

is addressed to autonomous state equations with locally Lipschitz-continuous vector fields and makes use of continuously

differentiable scalar functions).
6Some previous approaches use the control gains to scale the saturation functions (externally) which are in turn used to limit

the closed-loop variables either directly or scaled by other coefficients, giving the (external) control gains the additional role of

control-action bounds.
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5. Experimental Results

In order to corroborate the efficiency of the proposed scheme, several real-time control tests were
implemented on a 3-DOF robot manipulator. The experimental setup, shown in Fig. 1,

is a 3-revolute-joint anthropomorphic-type arm located at the Benemérita Universidad Autónoma
de Puebla, Mexico. The robot actuators are direct-drive brushless servomotors operated in torque
mode, i.e. they act as torque sources (without gear reduction) and receive an analog voltage as a
torque reference signal. Joint positions are obtained using incremental encoders on the motors and
the standard backwards difference algorithm was used to obtain the velocity signals. In order to
get the encoder data and generate reference voltages, the robot includes a motion control board
based on FPGA’s and an electronic interface (more precisely, the MFIO3A model from Precision
MicroDynamic Inc). The control algorithm is executed at a 2.5 millisecond sampling period on a
PC-host computer. A more detailed technical description of this robot is given in (Chávez-Olivares,
Reyes, González-Galván, Mendoza & Bonilla, 2012; Reyes & Rosado, 2005).

For the experimental manipulator, Property 4 is satisfied with Bg1 = 0, Bg2 = 40.29 Nm,
Bg3 = 1.825 Nm and kg = 40.37 Nm/rad.7 The maximum allowed torques (input saturation
bounds) are T1 = 50 Nm, T2 = 150 Nm and T3 = 15 Nm for the first, second and third links,
respectively. From these data, one easily corroborates that Assumption 1 is fulfilled with α = 3.

The proposed scheme in Eqs. (4)-(5) was tested in its SP-SI-SD, SPD-SI, SPID-like and SP-
SID forms, under the respective consideration of expressions (A1)-(A2), (A3)-(A4), (A5)-(A6) and
(A7)-(A8). Letting

σh(ς; M) = Msat(ς/M)

(observe that this is a linear saturation with L = M) and

σs(ς; L,M) =

{
ς if |ς| ≤ L

sign(ς)L + (M − L) tanh
(

ς−sign(ς)L
M−L

)
if |ς| > L

with 0 < L < M , the saturation functions used for the implementation were defined as

σPi(ς) = σh(ς; MPi) , σDi(ς) = σh(ς; MDi) , σIi(ς) = σs(ς; LIi,MIi)

i = 1, 2, 3, in the SP-SI-SD case,

σPi(ς) = σs(ς; LPi,MPi) , σIi(ς) = σs(ς; LIi,MIi)

i = 1, 2, 3, in the SPD-SI case,

σ0i(ς) = σh(ς; M0i) , σPi(ς) = σh(ς; MPi) , σIi(ς) = σs(ς; LIi,MIi)

i = 1, 2, 3, in the SPID-like case and

σPi(ς) = σh(ς; MPi) , σIi(ς) = σs(ς; LIi,MIi)

i = 1, 2, 3, in the SP-SID case. Let us note that with these saturation functions, we have σ′
PiM =

σ′
IiM = σ′

DiM = σ′
0iM = 1, ∀i ∈ {1, 2, 3}, and that in consequence, for all the four controllers,

7A step-by-step derivation of the 3-DOF anthropomorphic robot arm model is developed in (López-Araujo, 2013, Appendix

A). For the particular experimental manipulator considered in this work, the gravity vector with precise values of the involved

parameters is presented in (Reyes & Rosado, 2005). Further results on the parameter identification of this robot are presented

in (Chávez-Olivares et al., 2012).
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inequality (10) is satisfied with κ = maxi{kDi} (see Eqs. (A9)).
For comparison purposes, additional experimental tests were implemented using the bounded

PID-type scheme presented in (Su et al., 2010) (choice made taking into account the analog na-
ture of the compared algorithms: globally stabilizing in a bounded-input context, and the recent
appearance of (Su et al., 2010)), i.e.

u = −KP Tanh(q̄) − KITanh(φ) − KDTanh(q̇) (26a)

φ̇ = η2q̇ + ηTanh(q̄) (26b)

where η is a (sufficiently large) positive constant and Tanh(x) =
(
tanh x1, . . . , tanh xn

)T for any
x ∈ Rn.8 For the sake of simplicity, this algorithm is subsequently referred to as the S10 controller.

At all the experiments, the desired joint positions were fixed at qd =
(
qd1, qd2, qd3

)T =
(
π/4, π/4, π/2

)T [rad]. The initial conditions were q(0) = q̇(0) = 03, and φ(0) = 03 was taken
for the algorithms obtained through the proposed design methodology, while φ(0) = η2q̄(0) was
taken for the S10 controller in view of the way how it is presented in (Su et al., 2010) (recall
Footnote 8).9

The control and saturation function parameter values were set so as to achieve pre-specified
performance requirements. Three cases were considered respectively referred to as Test 1, 2 and
3. Test 1 consisted in achieving ‖q̄(t1)‖ = 0.3‖q̄(0)‖, for some t1 > 0, with the same time instant
t1 for all the implemented algorithms (thus reaching 70% of the initial distance —in the standard
Euclidean norm sense— to the desired point in the configuration space at the same time instant);
this was accomplished with t1 = 0.52 s. Test 2 consisted in getting closed-loop responses with
as-small-as-possible overshoot (under the conditions derived from the closed-loop analysis) within
a tolerance margin level of 20% of the desired position value at every link. Test 3 consisted in
forcing all the controllers to produce an underdamped closed-loop response characterized by the
same overshoot level at every link; this was achieved with an overshoot level of 1 .2 qdi, i = 1, 2, 3
(i.e. 20% of the desired position value at every link). For the algorithms obtained from the proposed
design methodology, care was taken to set P/I/D gains and saturation function parameters fulfilling
the corresponding conditions arisen from the closed-loop analysis, taking ε = 0.001 s−1 for every
tested controller.10 As for the S10 algorithm, care was also taken to adhere to the input-saturation-
avoidance inequalities and stability conditions (some of which had to be verified numerically)
presented in (Su et al., 2010) (values characterizing Properties 1–3, obtained through the results
presented in (Chávez-Olivares et al., 2012), were used to verify the stability conditions). The
resulting control and saturation function parameter values are shown in Tables C1–C3, whence one
can corroborate that inequalities (6)-(7) are fulfilled by all the controllers obtained through the
proposed scheme, as well as the corresponding saturation-avoidance inequalities (A2), (A4), (A6)
and (A8), through which (11) is guaranteed.

8In place of Eq. (26b), the work in (Su et al., 2010) defines φ(t) = η2q̄(t) + η
∫ t
0 Tanh

(
δP q̄(ς)

)
dς, which imposes the auxiliary

variable initial condition φ(0) = η2q̄(0). Instead, Eq. (26b) —or its (equivalent) time representation φ(t) = φ(0) +
∫ t
0

[
η2q̇(ς) +

ηTanh
(
δP q̄(ς)

)]
dς— keeps the required auxiliary dynamics while permitting any initial condition for φ. This proves to be

more appropriate in the global stabilization framework considered in (Su et al., 2010) (and what is generally expected from an

approach developed within such a framework).
9For the sake of fairness, φ(0) = 03 was initially considered for all the algorithms including the S10 controller. Nevertheless,

preliminary simulation implementations of the S10 controller with such auxiliary variable initial conditions gave rise to ex-

tremely slow closed-loop responses, while with φ(0) = η2q̄(0) the stabilization times were comparable to those arisen with the

algorithms obtained through the proposed design methodology. Thus, in order to avoid controversy, the experimental tests were

implemented taking φ(0) = η2q̄(0) for the S10 controller, while leaving φ(0) = 03 for the rest of the tested algorithms.
10Based on the results presented in (Chávez-Olivares et al., 2012), values characterizing Properties 1–3 ( i.e. μm, μM , kC ,

fm, fM ) were calculated for the considered experimental manipulator. These were used to perform alternative tests under the

fulfillment of inequality (12). Since no substantial differences were observed with respect to similar tests carried out using a

(sufficiently small) common value of ε, the authors opted for these latter case —namely ε = 0.001 s−1 for all the implemented

controllers— to perform the previously described Tests 1, 2 and 3, which emphasizes the relevance/coherence of Remark 3.
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Figs. 2–4, 5-6 and 7-8 respectively show the experimental results of Tests 1, 2 and 3.
One sees from the graphs that at all the experiments the control objective is achieved avoiding

input saturation. In particular, Figure 3 shows the accomplishment of the performance requirement
characterizing Test 1: all the tested controllers achieve to reduce (not necessarily each q̄i, i = 1, 2, 3,
but) the position-error norm to 30% of its initial value at t1 = 0.52 s. Observe further that in Test 2,
all the algorithms obtained from the proposed methodology achieved responses avoiding —or with
negligible— overshoot at all the links, while this was not possible with the S10 controller —under
the saturation-avoidance and stability conditions presented in (Su et al., 2010)— (particularly seen
through the response of q̄2). In order to establish comparison criteria, three performance indices
were evaluated for every controller at every test: the Integral of the Square of the position Error

(ISE), i.e.
∫ tf

t0

[∑3
i=1 q̄2

i (t)
]
dt (with tf the final time of the experiment and t0 the initial time of the

criterion evaluation), the Integral of the Square of the Input torques (ISI), i.e.
∫ tf

t0

[∑3
i=1 u2

i (t)
]
dt,

and the stabilization time, taken as ts = inf
{
te ≥ 0 : ‖q̄(t)‖ ≤ 0.02‖qd‖, ∀t ≥ te

}
. Tables C4–C6

show the resulting values of such performance index evaluations.
One sees from the obtained values that the SPD-SI is the controller with the highest number of

lowest performance index evaluations (6 of the 11 evaluations, indicated by a check mark), thus
resulting the best evaluated algorithm. On the other hand, the S10 controller is the one with the
highest number of highest performance index evaluations (8 of the 11 evaluations, indicated by an
asterisk), thus resulting the worst evaluated algorithm.

6. Conclusions

In this paper, a generalized PID-type control scheme for the global regulation of robot manipula-
tors with bounded inputs has been proposed. With respect to previous approaches of the kind, the
developed scheme achieves the global stabilization objective avoiding input saturation through a
very simple tuning criterion, the simplest hitherto obtained in the considered analytical framework.
Moreover, through its generalized form, the proposed scheme gives rise to multiple particular PID-
type controllers with diverse saturating structures, permitting further innovation in their construc-
tion. This yields a wide range of possibilities for performance improvement, rendering the proposed
design methodology attractive for practical applications. The efficiency of the proposed scheme was
verified through actual implementations on a 3-DOF direct-drive manipulator. The experimental
results showed smooth closed-loop responses with brief transient and minimized steady-state errors
obtained through control signals that remain within the input ranges, thus avoiding saturation.
The ability of the proposed scheme to achieve the control objective in spite of system parameter
inaccuracies and/or model imprecisions was thus corroborated.
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Laib, A. (2000). Adaptive output regulation of robot manipulators under actuator constraints. IEEE Trans-

actions on Robotics and Automation, 16, 29–35.
Lewis, F.L., Dawson, D.M., & Abdallah, C.T. (2004). Robot manipulator control: theory and practice. New

York: Marcel Dekker.
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Appendix A.

On the basis of bounded algorithms from previous references, several particular control structures
arise through the proposed generalized scheme. For instance, let KD ∈ Rn be a positive definite
diagonal matrix. An SP-SI-SD algorithm (Meza et al., 2005; Santibáñez & Kelly, 1996) is obtained
by defining

sd(q̄, q̇, φ) = sD(KD q̇) (A1)

giving rise to a control law of the form

u(q, q̇, φ) = −sP (KP q̄) − sD(KD q̇) + sI(KIφ)

where, for any x ∈ Rn, sD(x) =
(
σD1(x1), . . . , σDn(xn)

)T , with σDi(∙), i = 1, . . . , n, being gener-
alized saturation functions with bounds MDi, and the involved bound values, MPi, MDi and MIi,
satisfying

MPi + MDi + MIi < Ti (A2)

An SPD-SI scheme (López-Araujo et al., 2013a; Santibáñez et al., 2008; Zavala-Ŕıo & Santibáñez,
2006) is obtained by defining

sd(q̄, q̇, φ) = sP (KP q̄ + KD q̇) − sP (KP q̄) (A3)

resulting in a controller of the form

u(q, q̇, φ) = −sP (KP q̄ + KD q̇) + sI(KIφ)

with the linear saturations σPi(∙) being strictly increasing and bound values fulfilling

MPi + MIi < Ti (A4)

An SPID-like scheme (López-Araujo et al., 2013a; Yarza et al., 2011; Zavala-Ŕıo & Santibáñez,
2006) is obtained by defining

sd(q̄, q̇, φ) = s0

(
sI(KIφ) − sP (KP q̄)

)
− s0

(
sI(KIφ) − sP (KP q̄) − KD q̇

)
(A5)

where, for any x ∈ Rn, s0(x) =
(
σ01(x1), . . . , σ0n(xn)

)T , with σ0i(∙), i = 1, . . . , n, being linear satu-
ration functions for (L0i,M0i), and the involved linear/generalized saturation function parameters
satisfying

MPi + MIi < L0i ≤ M0i < Ti (A6)

whence, by virtue of item (c) of Definition 1, we have that s0

(
sI(KI φ̄) − sP (KP φ̄)

)
≡ sI(KI φ̄) −

sP (KP φ̄), giving rise to a control law of the form

u(q, q̇, φ) = s0

(
− sP (KP q̄) − KD q̇ + sI(KIφ)

)

Furthermore, the general character of the proposed scheme permits the generation of control laws
with innovative saturating structure. For instance, an SP-SID controller can be obtained by defining

sd(q̄, q̇, φ) = sI(KIφ) − sI(KIφ − KD q̇) (A7)
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resulting in a controller of the form

u(q, q̇, φ) = −sP (KP q̄) + sI(−KD q̇ + KIφ)

with bound values fulfilling

MPi + MIi < Ti (A8)

One can verify that in all the above cases the expressions in (8)-(11) are satisfied. In particular, the
input-saturation-avoidance requirement stated through (11) is accomplished through the fulfillment
of inequalities (A2), (A4), (A6) and (A8). Furthermore, from items 3 and 4 of Lemma 1, one sees
that sd(q̄, q̇, φ) in every one of the above cases in (A1), (A3), (A5) and (A7) satisfies inequality
(10) with

κ = max
i

{σ′
iMkDi} (A9a)

where

σ′
iM =






σ′
DiM in the SP-SI-SD case

σ′
PiM in the SPD-SI case

σ′
0iM in the SPID-like case

σ′
IiM in the SP-SID case

(A9b)

σ′
DiM , σ′

PiM , σ′
0iM and σ′

IiM respectively being the positive bounds of D+σDi(∙), D+σPi(∙), D+σ0i(∙)
and D+σIi(∙), in accordance to item 2 of Lemma 1.

Remark 6: Observe that the input-saturation-avoidance conditions for the particular control
structures presented in this appendix, i.e. inequalities (A2), (A4), (A6) and (A8), imply (all of
them) that MPi+MIi < Ti, while the satisfaction of inequalities (7) implies that MPi+MIi > 3Bgi.
Hence, for the specific choices of sd presented in equations (A1), (A3), (A5) and (A7), the feasibility
of the simultaneous fulfillment of inequalities (7) and the corresponding input-saturation-avoidance
condition —(A2), (A4), (A6) or (A8), respectively— is ensured by requiring the satisfaction of As-
sumption 1 with α = 3. Other particular choices of sd in the generalized scheme (4) could require
different values of α ≥ 1.

Appendix B.

Let q̄∗i , [LPi − 2Bgi/(1 − γ0)]/kPi,

%i(q̄i) , ḡi(q̄i) − gi(qd) + (1 − γ0)σPi(kPiq̄i) , ρi(q̄i) , ḡi(q̄i) − gi(qd) + (1 − γ0)kPiq̄i

S∗
i , {q̄i ∈ R : |q̄i| ≤ q̄∗i }, Si , {q̄i ∈ R : |q̄i| ≤ LPi/kPi} and

w10
i (q̄i) ,

{
kli

2 q̄2
i ∀|q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| −

q̄∗
i

2

)
∀|q̄i| > q̄∗i

where kli and γ0 are constants satisfying 0 < kli ≤ (1 − γ0)kPi − kg and 0 < γ0 < β0 < 1 (which is
fulfilled under the satisfaction of (18)), respectively.

Claim 1: ρi(q̄i) is a strictly increasing function satisfying |ρi(q̄i)| ≥ kli|q̄i|, ∀q̄i ∈ R.
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Proof. Observe that ρi(0) = 0 = [kliq̄i]q̄i=0 and notice from Property 4.2 that dρi

dq̄i
(q̄i) = (1 −

γ0)kPi + dḡi

dq̄i
(q̄i) ≥ (1 − γ0)kPi − kg ≥ kli = d

dq̄i
[kliq̄i] > 0, ∀q̄i ∈ R, which proves the claim.

Claim 2: |%i(q̄i)| ≥ |kliq̄
∗
i sat(q̄i/q̄∗i )|, ∀q̄i ∈ R.

Proof. First, note from item (a) of Definition 1 that σPi(kPiq̄i) = kPiq̄i, ∀q̄i ∈ Si. Furthermore,
observe that S∗

i ⊂ Si. Consequently, |%i(q̄i)| = |ρi(q̄i)| ≥ kli|q̄i| = |kliq̄
∗
i sat(q̄i/q̄∗i )|, ∀q̄i ∈ S∗

i (where
Claim 1 has been considered). On the other hand, from the strictly increasing character of ρi(q̄i)
(according to Claim 1), notice that |%i(q̄i)| = |ρi(q̄i)| ≥ kliq̄

∗
i = |kliq̄

∗
i sat(q̄i/q̄∗i )|, ∀q̄i ∈ Si \ S∗

i .
Finally, observe from the definition of %i(q̄i) that on R \ Si, we have that |%i(q̄i)| ≥ (1 − γ0)LPi −
2Bgi = (1 − γ0)kPiq̄

∗
i > [(1 − γ0)kPi − kg]q̄∗i ≥ kliq̄

∗
i = |kliq̄

∗
i sat(q̄i/q̄∗i )| ∀q̄i ∈ R \ Si.

Claim 3:
∫ q̄i

0 %i(ri)dri ≥ w10
i (q̄i), ∀q̄i ∈ R.

Proof. The proof follows directly from Claim 2 by noting that %i(0) = 0 = [kliq̄
∗
i sat(q̄i/q̄∗i )]q̄i=0,

q̄i%i(q̄i) ≥ q̄i[kliq̄
∗
i sat(q̄i/q̄∗i )] > 0, ∀q̄i 6= 0, and w10

i (q̄i) =
∫ q̄i

0 kliq̄
∗
i sat(ri/q̄∗i )dri.

Appendix C.

For any q̄ ∈ Rn, let ` ∈ {0, . . . , n} be the number of elements of q̄ that satisfy |q̄i| ≤ LPi/kPi.
Without loss of generality, suppose that the first ` elements of q̄ are those fulfilling such inequality,
and let q̄` = (q̄1, . . . , q̄`)T , g`(q) =

(
g1(q), . . . , g`(q)

)T and K`
P = diag[kP1, . . . , kP`]. Under such

considerations, Wγ1(q̄) can be written as

Wγ1(q̄) = Ws
γ1

(q̄) + Wg
γ1

(q̄)

where

Ws
γ1

(q̄) =
∑̀

i=1

(1 − γ1)kPiq̄
2
i +

n∑

i=`+1

(1 − γ1)
kPi

σ2
Pi(kPiq̄i)

Wg
γ1

(q̄) =
∑̀

i=1

q̄i

[
gi(q̄ + qd) − gi(qd)

]
+

n∑

i=`+1

σPi(kPiq̄i)
kPi

[
gi(q̄ + qd) − gi(qd)

]

with
∑k2

i=k1
(∙)i = 0 when k2 < k1. Note that mini=1,...,`{kPi} ≥ mini=1,...,n{kPi} = kPm while

|σPi(kPiq̄i)| ≥ LPi, ∀|q̄i| ≥ LPi/kPi, and consequently

Ws
γ1

(q̄) ≥
∑̀

i=1

(1 − γ1)kPmq̄2
i +

n∑

i=`+1

(1 − γ1)LPi

kPi
|σPi(kPiq̄i)|

On the other hand, from Property 4 we have that, on every (position error) coordinate axis (recall
that on axis i, q̄j = 0, ∀j 6= i), q̄i

[
gi(q̄ + qd)− gi(qd)

]
≤ kg q̄

2
i while σPi(kPiq̄i)

[
gi(q̄ + qd)− gi(qd)

]
≤

2Bgi
|σPi(kPiq̄i)|, and consequently

Wg
γ1

(q̄) ≥ −
∑̀

i=1

kg q̄
2
i −

n∑

i=`+1

2Bgi

kPi
|σPi(kPiq̄i)|
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From the above expressions, one sees that

Wγ1(q̄) ≥
∑̀

i=1

[
(1 − γ1)kPm − kg

]
q̄2
i +

n∑

i=`+1

[
(1 − γ1)LPi − 2Bgi

]

kPi
|σPi(kPiq̄i)|

or more generally (for any ordering on the elements of q̄)

Wγ1(q̄) ≥
n∑

i=1

wγ1

i (q̄i)

where

wγ1

i (q̄i) =






[
(1 − γ1)kPm − kg

]
q̄2
i if |q̄i| ≤ LPi/kPi

[
(1−γ1)LP i−2Bgi

]

kP i
|σPi(kPiq̄i)| if |q̄i| > LPi/kPi

Finally, by defining bi = (1 − γ1)LPi − 2Bgi, d = (1 − γ1)kPm − kg, ai = min
{

d, bikP i

LP i

}
and

ci = max
{

biLP i

kP i
− d
(

LP i

kP i

)2
, 0
}
≥ 0, it is clear that d ≥ ai and bi

kP i
|σPi(kPiq̄i)| ≥ bi

kP i
|σPi(kPiq̄i)| −

ci = bi

kP i

(
|σPi(kPiq̄i)| − LPi

)
+ ai

(
LP i

kP i

)2
, and consequently

Wγ1(q̄) ≥
n∑

i=1

w20
i (q̄i)

with

w20
i (q̄i) =






aiq̄
2
i if |q̄i| ≤ LPi/kPi

bi

kP i

(
|σPi(kPiq̄i)| − LPi

)
+ ai

(
LP i

kP i

)2
if |q̄i| > LPi/kPi
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Figure 1. Experimental setup: 3-DOF direct-drive robot manipulator
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Figure 2. Test 1: position errors
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Figure 3. Test 1: position-error norm ratio ‖q̄(t)‖/‖q̄(0)‖
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Figure 4. Test 1: control signals
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Figure 5. Test 2: position errors
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Figure 6. Test 2: control signals
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Figure 7. Test 3: position errors
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Figure 8. Test 3: control signals
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Table 1. Control and saturation function parameter values for Test 1

parameter SP-SI-SD SPD-SI SPID-like SP-SID S10 units

diag

[
300
5000
300

]

diag

[
450
8500
410

]

diag

[
750
7500
490

]

diag

[
4000
3500
220

]

Nm/rad
KP

diag[17, 75, 8.5] Nm

diag

[
10
150
12

]

diag

[
75
80
37

]

diag

[
100
40
18

]

diag

[
15
30
0.3

]

Nm/rad
KI

diag[7, 42, 1.9] Nm

diag

[
5
12
11

]

diag

[
20
250
9

]

diag

[
11
30
3

]

diag

[
3
14
0.6

]

Nms/rad
KD

diag[3, 10.5, 4.5] Nm
ε 0.001 0.001 0.001 0.001 s−1

η 100 s/rad
MP1 25 20 40 25 Nm
MP2 86 90 105 81 Nm
MP3 7.5 6 12 6 Nm

LP1/2/3 0.9MP1/2/3 Nm
MI1 5 5 4.8 15 Nm
MI2 41 41 41 50 Nm
MI3 2 2 2 5 Nm

LI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 Nm
MD1 10
M01 45

Nm

MD2 15
M02 148

Nm

MD3 1.2
M03 14.5

Nm

28

D
ow

nl
oa

de
d 

by
 [

In
st

itu
to

 P
ot

os
in

o 
de

 I
nv

es
tig

ac
ió

n 
C

ie
nt

íf
ic

a,
 A

.C
.]

 a
t 1

1:
41

 2
3 

M
ar

ch
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

March 13, 2015 International Journal of Control PIDsf11a

Table 2. Control and saturation function parameter values for Test 2

parameter SP-SI-SD SPD-SI SPID-like SP-SID S10 units

diag

[
320
9900
420

]

diag

[
450
8500
300

]

diag

[
750
6500
445

]

diag

[
2000
9000
350

]

Nm/rad
KP

diag[12, 75, 5] Nm

diag

[
10
100
10

]

diag

[
75
80
30

]

diag

[
100
5
25

]

diag

[
20
35
0.5

]

Nm/rad
KI

diag[10, 44, 3.6] Nm

diag

[
10
15
2

]

diag

[
20
250
10

]

diag

[
25
80
4

]

diag

[
6
40
1.5

]

Nms/rad
KD

diag[10, 20, 5.5] Nm
ε 0.001 0.001 0.001 0.001 s−1

η 100 s/rad
MP1 25 20 40 25 Nm
MP2 84 90 105 81 Nm
MP3 7 6 12 5 Nm

LP1/2/3 0.9MP1/2/3 Nm
MI1 5 5 4.8 15 Nm
MI2 41 41 41 50 Nm
MI3 2 2 2 2.5 Nm

LI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 Nm
MD1 10
M01 45

Nm

MD2 24
M02 148

Nm

MD3 1.4
M03 14.5

Nm
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Table 3. Control and saturation function parameter values for Test 3

parameter SP-SI-SD SPD-SI SPID-like SP-SID S10 units

diag

[
4000
5500
300

]

diag

[
500
8500
410

]

diag

[
9800
7500
9950

]

diag

[
5000
8500
1200

]

Nm/rad
KP

diag[38, 82, 8.5] Nm

diag

[
10
300
10

]

diag

[
300
360
200

]

diag

[
120
70
7

]

diag

[
25
30
0.3

]

Nm/rad
KI

diag[7, 42, 1.9] Nm

diag

[
5
12
11

]

diag

[
10
75
5.5

]

diag

[
2
8

0.7

]

diag

[
2
8

0.6

]

Nms/rad
KD

diag[2, 15, 2] Nm
ε 0.001 0.001 0.001 0.001 s−1

η 100 s/rad
MP1 39 44 40 39 Nm
MP2 98 108 105 102 Nm
MP3 9 12 12.6 9.8 Nm

LP1/2/3 0.9MP1/2/3 Nm
MI1 5 5 4.8 10 Nm
MI2 41 41 41 47 Nm
MI3 2 2 2 5 Nm

LI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 0.9MI1/2/3 Nm
MD1 5
M01 45

Nm

MD2 10
M02 148

Nm

MD3 1.2
M03 14.8

Nm
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Table 4. Performance index evaluations for Test 1

perf. index SP-SI-SD SPD-SI SPID-like SP-SID S10

t0 = 0 1.1083 1.3615 1.0517 1.1469 1.2484ISE
t0 = t1 0.0302 0.0268 0.0344 0.0230 0.0472 *
t0 = 0 5872.28 6749.69 7472.93 6876.81 7648.17 *ISI
t0 = t1 4072.12 3528.35 X 5455.78 4940.91 5286.60

ts 1.1550 0.8475 X 1.0776 1.2753 1.4833 *
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Table 5. Performance index evaluations for Test 2

perf. index SP-SI-SD SPD-SI SPID-like SP-SID S10

ISE 1.4329 1.2332 X 1.3948 1.5628 1.6204 *
ISI 5934.73 6542.42 4946.21 5221.65 7642.72 *
ts 1.1500 0.8425 X 1.0550 1.2075 2.6925 *

Table 6. Performance index evaluations for Test 3

perf. index SP-SI-SD SPD-SI SPID-like SP-SID S10

ISE 0.9367 0.7266 X 0.7465 0.8490 0.9382 *
ISI 9288.60 10936.62 11592.94 12852.44 7100.69
ts 1.0875 1.0525 X 1.0975 1.1025 1.4450 *
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