
This is a pre-print of an article published in International Journal of Control, 
Automation and Systems. The final authenticated version is available online 
at: https://doi.org/10.1007/s12555-012-9203-4  
 

https://doi.org/10.1007/s12555-012-9203-4


Submission to International Journal of Control, Automation, and Systems 1

Output-Feedback Adaptive Control for the Global Regulation of
Robot Manipulators with Bounded Inputs

Daniela J. López-Araujo, Arturo Zavala-Río, Víctor Santibáñez, and Fernando Reyes

Abstract: In this paper, an output-feedback adaptive scheme for the global position stabi-
lization of robot manipulators with bounded inputs is proposed. Compared to the previous
output-feedback adaptive approaches developed in a bounded-input context, the proposed free-of-
velocity feedback controller guarantees the adaptive regulation objective: globally, avoiding dis-
continuities throughout the scheme, preventing the inputs to reach their natural saturation bounds,
and imposing no saturation-avoidance restriction on the control gains. Moreover, the developed
scheme is not restricted to the use of a specific saturation function to achieve the required bound-
edness, but may involve any one within a set of smooth and non-smooth (Lipschitz-continuous)
bounded passive functions that include the hyperbolic tangent and the conventional saturation as
particular cases. Experimental results corroborate the efficiency of the proposed scheme.

Keywords: Adaptive control, output feedback, global regulation, bounded inputs, robot manipu-
lators.

1. INTRODUCTION

Since the publication of [1], the Proportional-Deriva-
tive with gravity compensation (PDgc) controller has proved
to be a useful technique for the regulation of robot manip-
ulators. In its original form, it achieves the global stabi-
lization objective under ideal conditions, for instance: un-
constrained input, availability of all the link positions and
velocities, and exact knowledge of the system parameters.
Unfortunately, in actual applications, such underlying as-
sumptions are not generally satisfied, giving rise to un-
expected or undesirable effects like input saturation and
those related to such a nonlinear phenomenon [2], noisy
responses and/or deteriorated performance [3], or steady-
state errors [4]. However, such inconveniences have not
necessarily rendered useless the PDgc technique. Inspired
by this control method, researchers have developed al-
ternative (nonlinear or dynamic) PDgc-based approaches
that deal with the limitations on the actuator capabilities
and/or on the available system data, while keeping the nat-
ural energy properties of the original PDgc controller: def-
inition of a unique arbitrarily-located closed-loop equilib-
rium configuration and motion dissipation. For instance,
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extensions of the PDgc controller that cope with the in-
put saturation phenomenon have been developed under
various analytical frameworks in [5, 6, 7, 8, 9, 10]. In-
deed, assuming the availability of the exact value of all
the system parameters and accurate measurements of all
the link positions and velocities, a bounded PDgc-based
approach was proposed in [5] and [6]. In these works, the
P and D terms (at every joint) are, each of them, explicitly
bounded through specific saturation functions; a continu-
ously differentiable one —more precisely, the hyperbolic
tangent function— is used in [5] and the conventional non-
smooth one in [6]. In view of their structure, this type of
algorithms have been denoted SP-SD controllers in [11].
Further, two alternative schemes, that prove to be simpler
and/or give rise to improved closed-loop performances,
were recently proposed in [7]. The first approach includes
both the P and D actions (at every joint) within a single
saturation function, while in the second one all the terms
of the controller (P, D, and gravity compensation) are cov-
ered by one of such functions, with the P terms internally
embedded within an additional saturation; the exclusive
use of a single saturation (at every joint) including all the
terms of the controller was further achieved through de-
sired gravity compensation in [12]. Moreover, free-of-
velocity-measurement versions of the SP-SD controllers
in [6] and [5] —still depending on the exact values of
the system parameters— are obtained through the design
methodologies developed in [8] and [9]. In [8], global
regulation is proved to be achieved when each velocity
measurement is replaced by the dirty derivative [13] of
the respective position in the SP-SD controller of [6]. A
similar replacement in a more general form of the SP-SD
controller is proved to achieve global regulation through
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the design procedure proposed in [9] (where an alternative
type of dirty derivative, that involves a saturation func-
tion in the auxiliary dynamics that gives rise to the es-
timated velocity, results from the application of the pro-
posed methodology). Furthermore, an output-feedback
dynamic controller with a structure similar to that result-
ing from the methodology in [9], but which considers a
single saturation function (at every joint) where both the
position errors and velocity estimation states are involved,
was proposed in [10] (where a dissipative linear term on
the auxiliary state is added to the saturating velocity error
dynamics involved for the dirty derivative calculation).

Further, SP-SD-type adaptive algorithms that give rise
to bounded controllers while alleviating the system param-
eter dependence of the gravity compensation term have
been developed in [14, 15, 16]. In [14], global regulation
is aimed through a discontinuous scheme that switches
among two different control laws, under the considera-
tion of state and output feedback. Both considered control
laws keep an SP-SD structure similar to that of [6]; the
first one avoids gravity compensation taking high-valued
control gains (by means of which the closed-loop trajec-
tories are lead close to the desired configuration), and the
second one considers adaptive gravity compensation terms
that are kept bounded by means of a discontinuous auxil-
iary dynamics. Each velocity measurement is replaced by
the dirty derivative of the corresponding position in the
output-feedback version of the proposed algorithm. Un-
fortunately, a precise criterion to determine the switching
moment (from the first control law to the second one) is
not furnished for either of the developed schemes.

In [15], semiglobal regulation is achieved through a state
feedback scheme that keeps the SP-SD structure of [5]
but additionally considers adaptive gravity compensation.
The adaptation algorithm is defined in terms of a discon-
tinuous auxiliary dynamics by means of which the param-
eter estimators are prevented to take values beyond some
pre-specified limits, which consequently keeps the adap-
tive gravity compensation terms bounded.

In [16], a controller that keeps the SP-SD structure of
[5] is proposed, where each velocity measurement is re-
placed by the dirty derivative of the corresponding po-
sition, and an adaptive gravity compensation term, with
initial-condition-dependent bounds, is considered. Based
on the proof developed for the main result, semiglobal reg-
ulation is claimed to be achieved.

Let us note that by the way the SP and SD terms are de-
fined in the above mentioned adaptive schemes, the bound
of the control signal at every link turns out to be defined
in terms of the sum of the P and D control gains. This lim-
its the choice of such gains if the natural actuator bounds
(or arbitrary input bounds) are aimed to be avoided. This,
in turn, restricts the closed-loop region of attraction in the
semiglobal stabilization cases. On the other hand, as far
as the authors are aware, the semiglobal and/or discontin-

uous approaches developed in [16] and [14] are the only
output-feedback bounded adaptive algorithms proposed in
the literature. Moreover, a continuous adaptive scheme,
with continuous auxiliary dynamics, that achieves the reg-
ulation objective globally, avoiding input saturation, and
disregarding velocity measurements in the feedback, is
still missing in the literature, and consequently remains
an open problem. These arguments have motivated the
present work which aims at filling in the mentioned gap.

Let us further note that previous works involving adap-
tive control schemes where the parameter estimates are
aimed to remain bounded within pre-specified values gen-
erally appeal to a discontinuous adaptation dynamics of
the kind of those used in [15] and [14]. This is seen even
in recent works [17, 18, 19]. The discontinuous charac-
ter of such type of adaptation auxiliary dynamics is not
necessarily a drawback, but a bounded adaptive scheme
that avoids discontinuities constitutes a convenient alter-
native developed within a simpler analytical context and
through simpler and/or more natural ways to cope with the
need to bound the parameter estimates. This is achieved
through the approach proposed in this work by consid-
ering the parameter estimators to be the output variables
of the adaptation subsystem instead of assigning them the
role of auxiliary states. The adaptation subsystem states
are in turn liberated from having to be initiated and evolve
within a constrained subset rendering the proposed ap-
proach globally stabilizing in an authentic sense. Indeed,
all the closed-loop system states, including those involved
in the auxiliary adaptation dynamics, can be initiated any-
where. Thus, through its authentic globally stabilizing and
continuous characters, the proposed approach overcomes
the limitations of the previous output-feedback bounded
adaptive regulation approaches. Let us further note that
the scheme developed in this work achieves the neces-
sary exact integration to adopt a structure that does not
involve velocity measurements. The work in [16] avoids
this problem by involving a constant gravity-related re-
gression matrix in the adaptation auxiliary state equation.
However, the resulting parameter-estimate bounds of the
controller in [16] are not arbitrarily fixed, giving a partial
solution to the constrained-input problem. This is suit-
ably solved through the structure adopted by the adap-
tive subsystem designed in this work. Furthermore, as
far as the authors are aware, the approach developed in
this paper is the first output-feedback adaptive scheme that
achieves the regulation task globally through a dynamic
control algorithm with non-varying structure, overcoming
the semiglobal character of the result in [16] as well as
the varying structure nature and analytical complications
of the approach presented in [14].

Let us further add that, within the bounded-input con-
text, recent works have focused on global tracking through
state feedback [20] and output feedback [21]. Such ap-
proaches were designed assuming exact knowledge of the
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system parameters. The consequences of such an assump-
tion have actually been shown and commented for instance
in [20]. In view of its effectiveness, the dirty-derivative-
based velocity estimation algorithm of [21] has been in-
cluded as part of the scheme developed in this work (just
as the previously cited works on output-feedback control
include the standard dirty derivative or some nonlinear
version of this technique). Notwithstanding, this study
solves the global regulation problem considering that the
exact values of the system parameters are unavailable. The
results obtained in this work show that the main drawback
of the conventional (exact) gravity-compensation-based al-
gorithms is eliminated through the proposed output-feed-
back adaptive approach.

In this paper, we propose an output-feedback adaptive
scheme for the global regulation of robot manipulators
with saturating inputs. It gives rise to a family of bounded
continuous output-feedback adaptive SP-SD-type contro-
llers that include continuous auxiliary adaptation and velo-
city-estimation dynamics. Moreover, the structure of the
proposed scheme permits the P and D control gains to
take any positive value while guaranteeing input saturation
avoidance and global position stabilization. With respect
to the previous output-feedback adaptive approaches de-
veloped in a bounded-input context, the proposed free-of-
velocity feedback controller guarantees the adaptive regu-
lation objective: globally, avoiding discontinuities through-
out the scheme, preventing the inputs to attain their natural
saturation bounds, and imposing no saturation-avoidance
restriction on the choice of the P and D control gains. Fur-
thermore, contrarily to the adaptive schemes of the pre-
viously cited studies, the approach proposed in this work
is not restricted to the use of a specific saturation func-
tion to achieve the required boundedness, but may rather
involve any one within a set of smooth and non-smooth
(Lipschitz-continuous) bounded passive functions that in-
clude the hyperbolic tangent and the conventional satura-
tion as particular cases. Experimental results corroborate
the proposed contribution.

2. PRELIMINARIES

Let X ∈Rm×n and y ∈Rn. Xi j denotes the element of X
at its ith row and jth column, Xi represents the ith row of X ,
and yi stands for the ith element of y. 0n represents the ori-
gin of Rn and In the n×n identity matrix. ‖ ·‖ denotes the

standard Euclidean norm for vectors, i.e. ‖y‖=
√

∑
n
i=0 y2

i ,

and induced norm for matrices, i.e. ‖X‖=
√

λmax(XT X),
where λmax(XT X) represents the maximum eigenvalue of
XT X . The kernel of X is denoted ker(X) while, for m = n,
det(X) denotes the determinant of X . Consider a con-
tinuously differentiable scalar function ζ : R→ R and a
locally Lipschitz-continuous scalar function φ : R→ R,
both vanishing at zero, i.e. ζ (0) = φ(0) = 0. Let ζ ′

denote the derivative of ζ with respect to its argument,

and D+φ stand for the upper-right (Dini) derivative of φ ,
i.e. D+φ(ς) = limsuph→0+

φ(ς+h)−φ(ς)
h [22, App. A.1]

[23, App. I]. Thus φ(ς) =
∫ ς

0 D+φ(r)dr; moreover, (ζ ◦
φ)(ς) = ζ (φ(ς)) =

∫ ς

0 ζ ′(φ(r))D+φ(r)dr.
Let us consider the general n-degree-of-freedom (n-DOF)

serial rigid manipulator dynamics with viscous friction [24]:

H(q)q̈+C(q, q̇)q̇+Fq̇+g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (gen-
eralized coordinates), velocity, and acceleration vectors,
H(q) ∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, Fq̇, g(q),
τ ∈ Rn are, respectively, the vectors of Coriolis and cen-
trifugal, viscous friction, gravity, and external input gener-
alized forces, with F ∈Rn×n being a positive definite con-
stant diagonal matrix whose entries fi > 0, i = 1, . . . ,n,
are the viscous friction coefficients. Some well-known
properties characterizing the terms of such a dynamical
model are recalled here (see for instance [25, Chap. 4];
see further [25, Chap. 14] and [26] concerning Property 3
below); the most commonly well-known are synthesized
and gathered together in Property 1.

Property 1: H(q), C(q, q̇), and F satisfy:

1a. µmIn ≤H(q)≤ µMIn, ∀q∈Rn, for some positive con-
stants µm ≤ µM .

1b. ‖C(q, q̇)‖ ≤ kc‖q̇‖, ∀(q, q̇) ∈ Rn×Rn, for some con-
stant kc ≥ 0.

1c. With Ḣ , d
dt H: q̇T

[ 1
2 Ḣ(q, q̇)−C(q, q̇)

]
q̇ = 0, ∀(q, q̇)

∈Rn×Rn, and actually Ḣ(q, q̇) = C(q, q̇)+CT (q, q̇).

1d. fm‖q̇‖2 ≤ q̇T Fq̇≤ fM‖q̇‖2, ∀q̇ ∈Rn, where 0 < fm ,
mini{ fi} ≤maxi{ fi}, fM .

Property 2: The gravity vector is bounded on Rn, or
equivalently, every element of the gravity vector, gi(q), i =
1, . . . ,n, satisfies |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive
constants Bgi, i = 1, . . . ,n.1

Property 3: The gravity vector can be rewritten as
g(q,θ) = G(q)θ , where θ ∈Rp is a constant vector whose
elements depend exclusively on the system parameters,
and G(q) ∈ Rn×p —the regression matrix— is a contin-
uous matrix function whose elements depend exclusively
on the configuration variables and do not involve any of
the system parameters. Equivalently, the potential energy
function of the robot can be rewritten as U(q,θ) = ϒ(q)θ ,
where ϒ(q) ∈ R1×p —the regression vector— is a contin-
uous row vector function whose elements depend exclu-
sively on the configuration variables and do not involve
any of the system parameters. Actually, GT (q)= ∂

∂q ϒT (q),
or equivalently, ϒ j(q) = ∑

n
i=1
∫ qi

q∗i
Gi j(q1, . . . ,qi−1,ri,q∗i+1,

1Property 2 is not satisfied by all types of robot manipulators
but it is for instance by those having only revolute joints [25,
§4.3]. This work is addressed to robots satisfying Property 2.
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. . . ,q∗n)dri, ∀ j ∈ {1, . . . , p}, with q∗ = (q∗1, . . . ,q
∗
n)

T being
the reference configuration where U(q∗,θ) = 0.2

Property 4: Consider the gravity vector g(q,θ). Let
θM j represent an upper bound of θ j, such that θ j ≤ θM j,
∀ j ∈ {1, . . . , p}, and let θM ,

(
θM1, . . . ,θMp

)T and Θ ,
[−θM1,θM1]× ·· ·× [−θMp,θMp]. By Properties 2 and 3,
there exist positive constants BθM

gi ≥ Bgi, i = 1, . . . ,n, such

that |gi(x,y)|= |Gi(x)y| ≤ BθM
gi , i = 1, . . . ,n, ∀x∈Rn, ∀y∈

Θ. Furthermore, there exist positive constants BGi j , BGi ,
and BG such that |Gi j(x)| ≤ BGi j , ‖Gi(x)‖ ≤ BGi , and
‖G(x)‖ ≤ BG, ∀x ∈ Rn, i = 1, . . . ,n, j = 1, . . . , p.

Let us suppose that the absolute value of each input
τi (ith element of the input vector τ) is constrained to be
smaller than a given saturation bound Ti > 0, i.e. |τi| ≤ Ti,
i = 1, . . . ,n. In other words, letting ui represent the con-
trol signal (controller output) relative to the ith degree of
freedom, we have that

τi = Tisat
(

ui

Ti

)
(2)

i = 1, . . . ,n, where sat(·) is the standard saturation func-
tion, i.e. sat(ς) = sign(ς)min{|ς |,1}.

Let us note from (1)-(2) that Ti ≥ Bgi (see Property 2),
∀i ∈ {1, . . . ,n}, is a necessary condition for the manipula-
tor to be stabilizable at any desired equilibrium configura-
tion qd ∈ Rn. Thus, the following assumption turns out to
be crucial within the analytical setting considered here:

Assumption 1: Ti > Bgi, ∀i ∈ {1, . . . ,n}.
The control scheme proposed in this work involves spe-

cial functions fitting the following definition.

Definition 1: Given a positive constant M, a nonde-
creasing Lipschitz-continuous function σ : R→ R is said
to be a generalized saturation with bound M if

(a) ςσ(ς) > 0 for all ς 6= 0;
(b) |σ(ς)| ≤M for all ς ∈ R.

Functions meeting Definition 1 own the next properties.

Lemma 1: Let σ : R→ R be a generalized saturation
function with bound M, and k be a positive constant. Then

1. lim|ς |→∞ D+σ(ς) = 0;
2. ∃σ ′M ∈ (0,∞) such that 0≤ D+σ(ς)≤ σ ′M , ∀ς ∈ R;

3. σ2(kς)
2kσ ′M

≤
∫ ς

0 σ(kr)dr ≤ kσ ′Mς2

2 , ∀ς ∈ R;

4.
∫ ς

0 σ(kr)dr > 0, ∀ς 6= 0;
5.
∫ ς

0 σ(kr)dr→ ∞ as |ς | → ∞;
6. if σ is strictly increasing, then, for any constant a,

σ̄(ς) = σ(ς +a)−σ(a) is a strictly increasing gener-
alized saturation function with bound M̄ = M+|σ(a)|.

Proof: See [27]. �

2The reference configuration q∗ is the generalized position
with respect to which U(q,θ) is quantified. In other words,
U(q,θ) represents the amount of work needed to relocate the
system configuration at q departing from q∗.

3. THE PROPOSED CONTROLLER

Let Ma,
(
Ma1, . . . ,Map

)T and Θa, [−Ma1,Ma1]×·· ·×
[−Map,Map], with Ma j, j = 1, . . . , p, being positive con-
stants such that

θ j < Ma j (3a)

∀ j ∈ {1, . . . , p}, and

BMa
gi < Ti (3b)

∀i ∈ {1, . . . ,n}, where, in accordance to Property 4, BMa
gi

are positive constants such that |gi(x,y)|= |Gi(x)y| ≤BMa
gi ,

i = 1, . . . ,n, ∀x ∈ Rn, ∀y ∈ Θa. Let us note that Assump-
tion 1 ensures the existence of such positive values Ma j,
j = 1, . . . , p, satisfying inequalities (3). Notice further
that inequalities (3b) are satisfied if ∑

p
j=1 BGi j Ma j < Ti,

BGi‖Ma‖ < Ti, or BG‖Ma‖ < Ti, i = 1, . . . ,n; as a matter
of fact, ∑

p
j=1 BGi j Ma j, BGi‖Ma‖, or BG‖Ma‖, may be taken

as the value of BMa
gi as long as inequality (3b) is satisfied.

The proposed output-feedback adaptive control scheme
is defined as

u(q,ϑ , θ̂) =−sP(KPq̄)− sD(KDϑ)+G(q)θ̂ (4)

where q̄ = q− qd , for any constant (desired equilibrium
position) vector qd ∈ Rn; G(q) is the regression matrix
related to the gravity vector, according to Property 3, i.e.
such that g(q,θ) = G(q)θ ; KP ∈Rn×n and KD ∈Rn×n are
positive definite diagonal matrices, i.e. KP = diag[kP1, . . . ,
kPn] and KD = diag[kD1, . . . ,kDn] with kPi > 0 and kDi > 0

∀i = 1, . . . ,n; for all x∈Rn: sP(x)=
(

σP1(x1), . . . ,σPn(xn)
)T

and sD(x)=
(

σD1(x1), . . . ,σDn(xn)
)T

, with σPi(·) and σDi(·),
i = 1, . . . ,n, being generalized saturation functions with
bounds MPi and MDi such that

MPi +MDi < Ti−BMa
gi (5)

i = 1, . . . ,n;3 ϑ ∈Rn (the velocity estimator) and θ̂ ∈Θa⊂
Rp (the parameter estimator) are the output vector vari-
ables of auxiliary dynamic subsystems defined as

q̇c =−AK−1
D sD

(
KD(qc +Bq̄)

)
(6a)

ϑ = qc +Bq̄ (6b)

and

φ̇c =−εΓGT (q)sP(KPq̄) (7a)

θ̂ = sa
(
φc−Γϒ

T (q)
)

(7b)

where A∈Rn×n, B∈Rn×n, and Γ∈Rp×p are positive def-
inite diagonal matrices, i.e. A = diag[a1, . . . ,an] and B =

3Note that the satisfaction of inequalities (3) guarantees pos-
itivity of the right-hand side of inequalities (5). As will be seen,
inequalities (5) constitute the tuning criterion on MPi and MDi
through which the input variables ui are prevented to reach their
natural saturation bound Ti along the closed loop trajectories.
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diag[b1, . . . ,bn] with ai > 0 and bi > 0 for all i = 1, . . . ,n,
and Γ = diag[γ1, . . . ,γp] with γ j > 0 for all j = 1, . . . , p;
qc and φc are the state vectors of the auxiliary dynamics
in Eqs. (6a) and (7a) respectively; ϒ(q) is the regres-
sion vector related to the potential energy function, ac-
cording to Property 3, i.e. such that U(q,θ) = ϒ(q)θ ; for

all x ∈ Rn: sa(x) =
(

σa1(x1), . . . ,σap(xp)
)T

, with σa j(·),
j = 1, . . . , p, being strictly increasing generalized satu-
ration functions with bounds Ma j satisfying inequalities
(3); and ε is a positive constant satisfying

ε < εM ,min{ε0,ε1,ε2} (8)

where ε0 ,
√

µm
µ2

MβP
, ε1 ,

fm
βM+ f 2

M/2
, ε2 , 2βm, with βP ,

maxi {σ ′PiMkPi}, βm , mini

{
ai

bikDi

}
, βM , kcBP + µMβP,

BP,
√

∑
n
i=0 M2

Pi, σ ′PiM being the positive bound of D+σPi(·)
in accordance to point 2 of Lemma 1, and µm, µM , kc, fm,
and fM as defined in Property 1.

Remark 1: Observe that the control scheme in (4),(6)-
(7) does not involve the exact values of the elements of
θ . It only requires the satisfaction of inequalities (3). In
other words, only strict bounds Ma j of θ j, j = 1, . . . , p, —
i.e. any set of them satisfying inequalities (3b)— are in-
volved. Notice further that a suitable choice of ε does not
require the exact knowledge of the system parameters ei-
ther. Indeed, observe, on the one hand, that an estimation
of the right-hand side of inequality (8) may be obtained
by means of upper and lower bounds of the system pa-
rameters and viscous friction coefficients (more precisely,
nonzero lower bounds of µm and fm, and upper bounds
of µM , kc, and fM; see Property 1). On the other hand,
the satisfaction of inequality (8) is not necessary but only
sufficient for the closed-loop analysis to hold, as shown
in the following section, which permits the consideration
of values of ε higher than εM (up to certain limit) without
destabilizing the closed loop. Note further that the veloc-
ity vector q̇ is not involved in any of the expressions in
Eqs. (4),(6)-(7) either. /

Remark 2: The auxiliary subsystem in Eqs. (6) is an
alternative version of the dirty derivative (applied to q̄) in-
volving the saturation vector function sD(·) in its dynam-
ics. In its conventional form, where the function sD(·) is
not included (or equivalently, which is obtained by replac-
ing sD(·) in (6a) by the identity function), it leads (through
its output variable ϑ ) to the derivative of q̄ (or equiva-
lently, to the velocity vector q̇) with every of its compo-
nents going through a first-order low-pass filter. This is
commonly done in practice to bound the high frequency
gains, giving rise to a causal (approximated) derivative
operator. The consideration of sD(·) in (6a) proves to be
helpful to show the expected stability/convergence closed-
loop properties, as will be seen in Section 4. The auxiliary
subsystem in Eqs. (7), for its part, is the adaptation al-

gorithm. Its particular form gives rise to parameter esti-
mates evolving within pre-specified limits, avoiding dis-
continuities throughout its dynamical structure. Let us
note that the ε-term in the adaptation subsystem forces qd
to be the unique equilibrium configuration of the closed-
loop system. This eliminates the steady-state position er-
ror generated by conventional approaches that include ex-
act gravity compensation through generally-inexact (or bi-
assed) parameter estimates. Further, inequality (8) states
a (sufficient) condition that guarantees the required stabil-
ity/convergence properties. It is obtained from the closed-
loop analysis, by looking for the conditions through which
the involved Lyapunov function adopts the required ana-
lytical properties. This will be corroborated later on in the
following section. /

4. CLOSED-LOOP ANALYSIS

Consider system (1)-(2) taking u = u(q,ϑ , θ̂) as defined
through (4),(6)-(7). Define the variable transformation q̄

ϑ

φ̄

=

 q−qd
qc +B(q−qd)

φc−ΓϒT (q)−φ ∗

 (9)

with φ ∗ =
(
φ ∗1 , . . . ,φ ∗p

)T such that sa(φ ∗) = θ , or equiv-
alently, φ ∗j = σ

−1
a j (θ j), j = 1, . . . , p.4 Observe that, from

the satisfaction of inequalities (3) and (5), we have that∣∣ui
(
q̄ + qd ,ϑ ,sa(φ̄ + φ ∗)

)∣∣ ≤ MPi + MDi + BMa
gi < Ti, i =

1, . . . ,n, ∀(q̄,ϑ , φ̄) ∈ Rn×Rn×Rn, whence, in view of
(2), one sees that

Ti >
∣∣ui
(
q̄+qd ,ϑ ,sa(φ̄ +φ

∗)
)∣∣= |ui|= |τi| ,

i = 1, . . . ,n , ∀(q̄,ϑ , φ̄) ∈ Rn×Rn×Rn (10)

Thus, under the consideration of Property 3 and the vari-
able transformation (9), the closed-loop dynamics adopts
the (equivalent) form

H(q)q̈+C(q, q̇)q̇+Fq̇

=−sP(KPq̄)− sD
(
KDϑ

)
+G(q)s̄a(φ̄) (11a)

ϑ̇ =−AK−1
D sD(KDϑ)+Bq̇ (11b)

˙̄
φ =−ΓGT (q)

[
εsP(KPq̄)+ q̇

]
(11c)

where s̄a(φ̄) = sa(φ̄ +φ ∗)−sa(φ ∗). Observe that, by point
6 of Lemma 1, the elements of s̄a(φ̄), i.e. σ̄a j(φ̄ j) = σa j(φ̄ j
+ φ ∗j )−σa j(φ ∗j ), j = 1, . . . , p, turn out to be strictly in-
creasing generalized saturation functions.

Remark 3: Let us note, from Eqs. (11) under station-
ary conditions: q̈ = q̇ = ϑ̇ = 0n and ˙̄

φ = 0p, that qd proves
to be the unique equilibrium position of the closed-loop

4Notice that their strictly increasing character renders invert-
ible the generalized saturations σa j , j = 1, . . . , p.
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system —or equivalently, 0n is the unique equilibrium po-
sition error of the closed loop— while the parameter esti-
mation error equilibrium vector φ̄e turns out to be defined
by the solutions of the equation G(qd)s̄a(φ̄e) = 0n, and
consequently s̄a(φ̄e) ∈ ker(G(qd)). /

Proposition 1: Consider the closed-loop system in Eqs.
(11) under the satisfaction of Assumption 1 and inequal-
ities (3) and (5). Then, for any positive definite diagonal
matrices KP, KD, A, B, and Γ, and any ε satisfying in-
equality (8), the trivial solution (q̄,ϑ , φ̄)(t) ≡ (0n,0n,0p)
is stable and, for any initial condition (q̄, q̇,ϑ , φ̄)(0) ∈
Rn ×Rn ×Rn ×Rp, (q̄,ϑ)(t)→ (0n,0n) as t → ∞, and
s̄a(φ̄(t))→ ker(G(qd)) as t → ∞, with |τi(t)| = |ui(t)| <
Ti, i = 1, . . . ,n, ∀t ≥ 0.

Proof: By (10), one sees that, along the system trajec-
tories, |τi(t)|= |ui(t)|< Ti, ∀t ≥ 0. This proves that under
the proposed output-feedback adaptive scheme, the input
saturation values, Ti, are never reached. Now, in order
to develop the stability/convergence analysis, let us define
the scalar function

V (q̄, q̇,ϑ , φ̄) =
1
2

q̇T H(q)q̇+ εsT
P(KPq̄)H(q)q̇

+
∫ q̄

0n

sT
P(KPr)dr +

∫
φ̄

0p

s̄T
a (r)Γ−1dr

+
∫

ϑ

0n

sT
D(KDr)B−1dr

(12)

where
∫ q̄

0n
sT

P(KPr)dr = ∑
n
i=1
∫ q̄i

0 σPi(kPiri)dri,∫
ϑ

0n
sT

D(KDr)B−1dr = ∑
n
i=1
∫ ϑi

0 σDi(kDiri)b−1
i dri, and∫ φ̄

0p
s̄T

a (r)Γ−1dr = ∑
p
j=1
∫ φ̄ j

0 σ̄a j(r j)γ−1
j dr j. Observe that,

under the consideration of Property 1a, we have that

V (q̄, q̇,ϑ , φ̄)≥ µm

2
‖q̇‖2− εµM‖sP(KPq̄)‖‖q̇‖

+α0

∫ q̄

0n

sT
P(KPr)dr +W01(q̄,ϑ , φ̄)

with

W01(q̄,ϑ , φ̄) =
∫

ϑ

0n

sT
D(KDr)B−1dr +

∫
φ̄

0p

s̄T
a (r)Γ−1dr

+(1−α0)
∫ q̄

0n

sT
P(KPr)dr

for any constant α0 ∈ (0,1). Moreover, from point 3 of

Lemma 1, we have:
∫ q̄i

0 σPi(kPiri)dri ≥
σ2

Pi(kPiq̄i)
2kPiσ

′
PiM

, ∀q̄i ∈ R,

whence we get: α0
∫ q̄

0n
sT

P(KPr)dr = α0 ∑
n
i=1
∫ q̄i

0 σPi(kPiri)dri

≥ α0 ∑
n
i=1

σ2
Pi(kPiq̄i)

2kPiσ
′
PiM

≥ α0
2maxi{kPiσ

′
PiM}

∑
n
i=1 σ2

Pi(kPiq̄i)

= α0
2βP
‖sP(KPq̄)‖2, and consequently

V (q̄, q̇,ϑ , φ̄)≥ µm

2
‖q̇‖2− εµM‖sP(KPq̄)‖‖q̇‖

+
α0

2βP
‖sP(KPq̄)‖2 +W01(q̄,ϑ , φ̄)

which may be rewritten as

V (q̄, q̇,ϑ , φ̄)≥W00(q̄, q̇)+W01(q̄,ϑ , φ̄),W0(q̄, q̇,ϑ , φ̄)

with

W00(q̄, q̇) =
1
2

(
‖sP(KPq̄)‖
‖q̇‖

)T

Q0

(
‖sP(KPq̄)‖
‖q̇‖

)

where Q0 =

(
α0
βP

−εµM

−εµM µm

)
and α0 is chosen such that

ε2

ε2
0

< α0 < 1 (13)

Note that (8) guarantees the existence of positive values α0

satisfying (13) (since ε < εM ≤ ε0 =⇒ ε2

ε2
0

< 1). More-

over, by (13), W00 is a positive definite function of (q̄, q̇),5

while from point 4 of Lemma 1, one sees that W01(q̄,ϑ , φ̄)≥
0, ∀(q̄,ϑ , φ̄) ∈Rn×Rn×Rp, with W01(q̄,ϑ , φ̄) = 0 ⇐⇒
(q̄,ϑ , φ̄)= (0n,0n,0p). Hence, W0(q̄, q̇,ϑ , φ̄) is concluded
to be positive definite. Taking this into account, by not-
ing that W00(0n, q̇)→ ∞ as ‖q̇‖ → ∞, and from point 5 of
Lemma 1 that W01(q̄,0n,0p)→∞ as |q̄i|→∞ for every i∈
{1, . . . ,n}, W01(0n,ϑ ,0p)→ ∞ as |ϑi| → ∞ for every i ∈
{1, . . . ,n}, and W01(0n,0n, φ̄)→ ∞ as |φ̄ j| → ∞ for every
j ∈ {1, . . . , p}, W0(q̄, q̇,ϑ , φ̄) additionally proves to be ra-
dially unbounded [22, p. 115]. Therefore, V (q̄, q̇,ϑ , φ̄) is
concluded to be positive definite and radially unbounded.
Its upper-right derivative along the system trajectories, V̇ =
D+V [23, App. I] [28, §6.1A], is given by

V̇ (q̄, q̇,ϑ , φ̄)

= q̇T H(q)q̈+
1
2

q̇T Ḣ(q, q̇)q̇+ εsT
P(KPq̄)H(q)q̈

+ εsT
P(KPq̄)Ḣ(q, q̇)q̇+ ε q̇T H(q)s′P(KPq̄)KPq̇

+ sT
P(KPq̄)q̇+ sT

D(KDϑ)B−1
ϑ̇ + s̄T

a (φ̄)Γ−1 ˙̄
φ

= − q̇T Fq̇− εsT
P(KPq̄)Fq̇− εsT

P(KPq̄)sP(KPq̄)

− εsT
P(KPq̄)sD(KDϑ)+ ε q̇TC(q, q̇)sP(KPq̄)

+ ε q̇T H(q)s′P(KPq̄)KPq̇

− sT
D(KDϑ)B−1AK−1

D sD(KDϑ)

where H(q)q̈, ϑ̇ , and ˙̄
φ have been replaced by their equiv-

alent expression from the closed-loop manipulator dynam-
ics in Eqs. (11), Property 1c has been used, and s′P(KPq̄),
diag[D+σP1(kP1q̄1), . . . ,D+σPn(kPnq̄n)]. Observe that from
Properties 1a, 1b, 1d, and points (b) of Definition 1 and 2

5By (13), it follows that ε2
(

µ2
MβP
µm

)
= ε2

ε2
0

< α0 =⇒ ε2µ2
M <

α0µm
βP

=⇒ 0 < α0µm
βP
− ε2µ2

M = det(Q0) whence (taking into ac-
count that α0

βP
> 0, by the leading principal minor criterion) Q0

is concluded to be a positive definite symmetric matrix.
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of Lemma 1, we have that

V̇ (q̄, q̇,ϑ , φ̄)≤− fm‖q̇‖2 + ε fM‖sP(KPq̄)‖‖q̇‖
− ε‖sP(KPq̄)‖2 + ε‖sP(KPq̄)‖‖sD(KDϑ)‖
+ ε
(
kcBP + µMβP

)
‖q̇‖2−βm‖sD(KDϑ)‖2

which may be rewritten as

V̇ (q̄, q̇,ϑ , φ̄)≤−W1(q̄, q̇)−W2(q̄,ϑ)

where

W1(q̄, q̇) =
(
‖sP(KPq̄)‖
‖q̇‖

)T

Q1

(
‖sP(KPq̄)‖
‖q̇‖

)

W2(q̄,ϑ) =
(
‖sP(KPq̄)‖
‖sD(KDϑ)‖

)T

Q2

(
‖sP(KPq̄)‖
‖sD(KDϑ)‖

)

with Q1 =

(
ε

2 − ε fM
2

− ε fM
2 fm− εβM

)
and Q2 =

(
ε

2 − ε

2

− ε

2 βm

)
.

Let us note that the fulfillment of (8) renders W1 and W2
positive definite functions of (q̄, q̇) and (q̄,ϑ) respectively.6

Hence, V̇ (q̄, q̇,ϑ , φ̄) ≤ 0, ∀(q̄, q̇,ϑ , φ̄) ∈ Rn×Rn×Rn×
Rp, with V̇ (q̄, q̇,ϑ , φ̄) = 0 ⇐⇒ (q̄, q̇,ϑ) = (0n,0n,0n).
Thus, by Lyapunov’s 2nd method,7 the trivial solution
(q̄,ϑ , φ̄)(t) ≡ (0n,0n,0p) is concluded to be stable. Now,
in view of the radially unbounded character of V (q̄, q̇,ϑ , φ̄),
the set Ω, {(q̄, q̇,ϑ , φ̄)∈Rn×Rn×Rn×Rp :V (q̄, q̇,ϑ , φ̄)
≤ c} is compact for any positive constant c [22, p. 115].
Moreover, in view of the negative semidefinite character
of V̇ (q̄, q̇,ϑ , φ̄), Ω is positively invariant with respect to
the closed-loop dynamics [22, p. 101]. Furthermore, from
previous arguments, we have that E , {(q̄, q̇,ϑ , φ̄) ∈ Ω :
V̇ (q̄, q̇,ϑ , φ̄) = 0}= {(q̄, q̇,ϑ , φ̄) ∈ Ω : q̄ = q̇ = ϑ = 0n}.
Further, from Remark 3, the largest invariant set in E is
given as M = {(q̄, q̇,ϑ , φ̄) ∈ E : s̄a(φ̄) ∈ ker(G(qd))}.
Thus, by the invariance theory [28, §7.2] —more specifi-
cally, by [28, Theorem 7.2.1]—, we have that (q̄, q̇,ϑ , φ̄)(0)
∈Ω =⇒ (q̄, q̇,ϑ , φ̄)(t)→M as t→ ∞. Since this holds
for any c > 0 and V (q̄, q̇,ϑ , φ̄) is radially unbounded (in
view of which Ω may be rendered arbitrarily large), we
conclude that, for any (q̄, q̇,ϑ , φ̄)(0)∈Rn×Rn×Rn×Rp,
(q̄,ϑ)(t)→ (0n,0n) as t→ ∞ and s̄a(φ̄(t))→ ker(G(qd))
as t→ ∞, which completes the proof. �

Corollary 1: If GT (qd)G(qd) is nonsingular, then the
trivial solution (q̄,ϑ , φ̄)(t)≡ (0n,0n,0p) is globally asymp-
totically stable.

6By (8), it follows that ε < εM ≤ ε1 = fm
βM+ f 2

M/2 =⇒

ε2

2

(
βM + f 2

M
2

)
< ε fm

2 =⇒ 0 < ε

2 ( fm− εβM) −
(

ε fM
2

)2
=

det(Q1), and ε < εM ≤ ε2 = 2βm =⇒ 0 < εβm
2 −

ε2

4 = det(Q2)
whence (taking into account that ε

2 > 0, by the leading principal
minor criterion) Q1 and Q2 are concluded to be positive definite
symmetric matrices.

7See for instance [23, Ch. II, §6], where (generalized) state-
ments of Lyapunov’s 2nd method are presented under the consid-
eration of locally Lipschitz-continuous Lyapunov functions and
their upper-right derivative along the system trajectories.

Fig 1: Experimental setup

Proof: Note on the one hand that non-singularity of
GT (qd)G(qd) implies that ker(G(qd)) = {0p}, and on the
other hand that s̄a(φ̄) = 0p ⇐⇒ φ̄ = 0p. Then, from
Proposition 1, we have that, for any (q̄, q̇,ϑ , φ̄)(0) ∈Rn×
Rn×Rn×Rp, (q̄,ϑ , φ̄)(t)→ (0n,0n,0p) as t→∞, whence
the stability of the trivial solution (q̄,ϑ , φ̄)(t)≡ (0n,0n,0p)
is concluded to be globally asymptotical [22, §3.1], [23,
Chap. I, §2.10–2.11]. �

5. EXPERIMENTAL RESULTS

In order to experimentally corroborate the efficiency of
the proposed output-feedback adaptive scheme —referred
to as the SP-SDc-ga controller—, real-time control im-
plementations were carried out on a 2-DOF direct-drive
manipulator. The experimental setup, shown in Fig. 1,
is a prototype of the 2-revolute-joint robot arm used in
[29], located at the Instituto Tecnológico de la Laguna.
The actuators are direct-drive brushless motors operated
in torque mode, so they act as torque source and accept an
analog voltage as a reference of torque signal. The con-
trol algorithm is executed at a 2.5 ms sampling period in
a control board (based on a DSP 32-bit floating point mi-
croprocessor) mounted on a PC-host computer.

For the considered experimental manipulator, Proper-
ties 1–3 are satisfied with (details on the dynamic model
and parameter values are given in [29]):

G(q) =
(

sinq1 sin(q1 +q2)
0 sin(q1 +q2)

)
, θ =

(
38.465
1.825

)
[Nm]

(14)
µm = 0.088 kgm2, µM = 2.533 kgm2, kc = 0.1455 kgm2,
Bg1 = 40.29 Nm, Bg2 = 1.825 Nm, fm = 0.175 kgm2/s,
fM = 2.288 kgm2/s, and

ϒ(q) =
(

cosq∗1− cosq1 , cos(q∗1 +q∗2)− cos(q1 +q2)
)

with q∗ = (q∗1,q
∗
2)

T being the reference configuration re-
ferred to in Property 3; in particular, for the experimental
implementations reported in this section, q∗1 = π/2 and
q∗2 = 0 were taken. The maximum allowed torques (input
saturation bounds) are T1 = 150 Nm and T2 = 15 Nm for
the first and second links respectively. From these data,
one easily corroborates that Assumption 1 is fulfilled.
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The saturation functions involved at the implementa-
tions were defined as

σPi(ς) = MPi sat(ς/MPi) (15a)

σDi(ς) = MDi sat(ς/MDi) (15b)

i = 1,2, and

σa j(ς) =

{
ς ∀|ς | ≤ La j

ρa j(ς) ∀|ς |> La j

j = 1,2, where

ρa j(ς)= sign(ς)La j +(Ma j−La j) tanh
(

ς − sign(ς)La j

Ma j−La j

)
with 0 < La j < Ma j. Let us note that with these saturations
we have σ ′PiM = σ ′DiM = 1, ∀i ∈ {1,2}. The saturation
parameter values fixed at every implementation of the SP-
SDc-ga were corroborated to satisfy inequalities (3) and
(5), taking BMa

gi = ∑
2
j=1 BGi j Ma j, i = 1,2.

For comparison purposes, additional experiments were
run implementing the output-feedback adaptive algorithm
proposed in [16] —referred to as the L00 controller—
(choice made in terms of the analog nature of the com-
pared algorithms: output-feedback adaptive developed in
a bounded input context; comparison of controllers of dif-
ferent nature looses coherence):

u =−KPTh(λ q̄)−KDTh(δϑ)+Gd θ̂ (16a)

where Gd = G(qd), Th(x)=
(

tanh(x1), . . . , tanh(xn)
)T , KP ∈

Rn×n and KD ∈ Rn×n are positive definite diagonal ma-
trices, λ and δ are positive constants, and ϑ ∈ Rn and
θ̂ ∈ Rp are the output variables of (interconnected) auxil-
iary dynamic subsystems that take the form:

q̇c =−αK(qc +Kq̄) (16b)

ϑ = qc +Kq̄ (16c)

and

φ̇c = βGT
d
[
ηTh(δϑ)−µTh(λ q̄)

]
(16d)

θ̂ = φc−βGT
d q̄ (16e)

where K ∈Rn×n is a positive definite diagonal matrix, and
α , β , η , and µ are positive constants. Arguing simplicity
of development, the gain matrices involved in this control
algorithm are taken in [16] as KP = kPIn, KD = kDIn, and
K = kIn, with kP, kD, and k being positive constants. At
every implementation of the L00 algorithm, the P and D
control gains, i.e. kP and kD, were fixed small enough to
avoid input saturation (note that they fix the bounds of the
SP and SD actions).

Furthermore, in order to perceive the advantages of the
proposed approach over a conventional (non-adaptive) out-
put-feedback saturating PD-type algorithm with standard

dirty derivative, numerical results were obtained with the
free-of-velocity scheme presented in [8] —referred to as
the SK97 controller— i.e.

u = SP(KPq̄)+SD(KDϑ)+G(q)θe (17a)

where SP(x)=
(
σP1(x1), . . . ,σPn(xn)

)T , SD(x)=
(
σD1(x1),

. . . ,σPn(xn)
)T , with σPi(·) and σDi(·), i = 1, . . . ,n, as de-

fined in Eqs. (15), and θe is the theoretically-exact-but-
practically-estimated gravity-term parameter vector, with

q̇c =−A(qc +Bq̄) (17b)

ϑ = qc +Bq̄ (17c)

The considered experimental setup (described above) was
simulated (taking the model as presented for instance in
[29]) including its input constraints but no additional un-
modelled phenomenon on the system dynamics. Estimated
parameter values were taken as θe = 1.2θ in (17a).

The initial conditions and desired link positions at all
the implementations, for every tested controller, were: qi(0)=
q̇i(0) = qci(0) = φci(0) = 0,8 i = 1,2, and qd1 = qd2 = π/4
[rad]. Let us note that, through these desired configura-
tions, the condition stated by Corollary 1 is satisfied.9

With the aim at getting fast position responses, high
control gains were taken for the SP-SDc-ga scheme. The
fast position response goal proved to be achieved for suffi-
ciently small as well as for high values of ε (recall Remark
1). The difference among these two cases was observed to
be on the parameter estimation convergence, with consid-
erably smaller steady-state errors (due to unmodelled phe-
nomena such as the static friction) in the latter case. Be-
cause of space limitations, only the results obtained for the
latter case will be shown below. As for the L00 algorithm,
reasonable values of the tuning parameters were fixed dis-
regarding the tuning procedure stated in [16, Expressions
(19)] in order to prevent extremely slow responses. For
each of the three implemented controllers, the selected pa-
rameter combination was found through simulation tests,
so as to have as good closed-loop responses as possible
—in terms mainly of stabilization time (as short as possi-
ble) and transient response (avoiding or lowering down
overshoot and oscillations as much as possible)—, and
further refining the tuning experimentally in the SP-SDc-
ga and L00 cases. For the SP-SDc-ga scheme, the re-
sulting values were: KP = diag[2100,225] Nm/rad, KD =

8All the experiments, for every tested controller, were initi-
ated with the robot links oriented vertically downwards and at
rest. Notice, by comparing (7b) with (16e) and (6b) with (16c),
that the through the initial values assigned to the auxiliary states,
ϑ(0) and θ̂(0) do not necessarily take the same vector values for
all the tested control algorithms. Nevertheless, the initial-value
fairness criterion adopted in regard to the involved auxiliary sub-
systems was to initiate all the auxiliary states at zero for every
implemented controller.

9One can verify from G(q) in (14) that, for the considered
manipulator, the desired configurations that satisfy the condition
stated by Corollary 1 are those such that qd1 6= m1π and qd1 +
qd2 6= m2π , for any m1,m2 = 0,±1,±2, . . .
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Fig 2: Position errors
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Fig 3: Control signals

diag[50,8] Nms/rad, A = diag[80,60] s−1, B = diag[20,20]
s−1, Γ = diag[1,0.1] Nm, ε = 3 [Nms]−1; and the satura-
tion function bounds (all of them in Nm) were: MP1 = 30,
MP2 = 3, MD1 = 50, MD1 = 6, Ma1 = 50, and Ma2 = 3,
with La j = 0.9Ma j, j = 1,2. For the L00 controller: kP =
9.2 Nm, kD = 2.7 Nm, λ = 20 [rad]−1, δ = 10 s/rad,
k = 20 s−1, α = 5, β = 5 Nm/rad, η = 1 rad/s, and µ = 2
rad/s. For the SK97 algorithm: KP = diag[80,30] Nm/rad,
KD = diag[3,1] Nms/rad, A = diag[1,3] s−1, B = diag[6,4]
s−1; and the same saturation function bound values (MPi,
MDi, i = 1,2) used for the SP-SDc-ga scheme were kept
for this controller.

Figures 2–4 show the results for both experimentally
implemented controllers and the simulated algorithm: in
Figs. 2 and 3, where the position errors and control signals
are shown respectively, the left-large graphs correspond to
the whole test while the right-small ones show a zoom on
the transient of the same signals; in Fig. 4 the left-large
graphs correspond the variation of the parameter estima-
tions, (θ̂1, θ̂2), while the right-small ones show the evo-
lution of the adaptation subsystem states, (φc1,φc2). Ob-
serve that the proposed SP-SDc-ga scheme achieved the
position regulation objective —avoiding input saturation—
in around 1 second. On the contrary, in the case of the L00
controller, longer position stabilization and parameter es-
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Fig 4: Parameter estimates

timator convergence times are observed. Notice further
that the SK97 controller could not avoid steady-state po-
sition errors due to the use of estimated parameters θe.

6. CONCLUSIONS

In this work, an output-feedback adaptive control sche-
me for the global regulation of robot manipulators with
bounded inputs was proposed. With respect to the previ-
ous output-feedback adaptive approaches developed in a
bounded-input context, the proposed free-of-velocity feed-
back controller guarantees the adaptive regulation objec-
tive: globally, avoiding discontinuities throughout the sche-
me, preventing the inputs to reach their natural saturation
limits, and imposing no saturation-avoidance restriction
on the control gains. Moreover, the developed scheme
is not restricted to the use of a specific saturation func-
tion to achieve the required boundedness, but may rather
involve any one within a set of smooth and non-smooth
(Lipschitz-continuous) bounded passive functions that in-
clude the hyperbolic tangent and the conventional satu-
ration as particular cases. The efficiency of the proposed
scheme was corroborated through experimental tests. Good
results were obtained, which were observed to improve
those gotten through an algorithm that was previously de-
veloped in an analog analytical context.
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