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Activation of Neuronal Ensembles Via Controlled
Synchronization

Gualberto Solís-Perales, and Juan Gonzalo Barajas-Ramírez

Abstract: In this contribution we present the activation of neuronal ensembles of Hindmarsh-
Rose neurons by controlled synchronization. The main problem consists in to impose a particular
spiking-bursting behavior in all the neurons of the network. We consider a network where the
neurons are in its resting state, it is desired that the neurons change their resting state to a particular
behavior of activation, dictated by a neuron called the reference neuron. The goal is reached
by controlling some neurons in the network controlling onlythe membrane potential (electrical
synapse). The key feature of the present contribution is that by controlling a small number of
neurons in the network a desired behavior is induced in all the neurons in the network despite
its network topology. The important parameters are the control gain and the coupling strength,
thus the activation of the network lays down on a compromise between the control gain and the
coupling strength.

Keywords: Neuron Activation, Synchronization, Complex Networks, Control of Complex Net-
works.

1. INTRODUCTION

In recent years, the study of dynamical networks has at-
tracted a lot of attention, due in part to the many interest-
ing problems and applications in electronics, neural sys-
tems, social communities, diseases spreading, and biolog-
ical systems to mention just a few. Dynamical networks
pose many challenges extending from the interplay among
their dynamical and structural components until problems
on establishing models that capture their key topological
features, to determine the stability of their collective be-
havior [1, 2]. The reader is directed to [3–5] and refer-
ences therein, for a detailed review of applications and im-
portant characteristics and classifications of complex net-
works problems. For instance, a problem in this context
is the synchronization of networks with strictly different
nodes, it was reported that through proper coupling mod-
ifications a network with nonidentical nodes can achieve
synchronous behavior on a common chaotic attractor [6].
An interesting point is that the resulting synchronized col-
lective behavior is determined by the dynamical character-
istics of each node, the structure of their interconnections
and their coupling strength. These observations indicate
that a desired behavior can be induced into a synchronized
dynamical network by properly choosing these network
features. Then, a controller can be designed to force the
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entire network to track an arbitrarily chosen reference in a
synchronous manner [7].

In this proposal we focus on the design of synchro-
nizing controllers for an ensemble of neurons, which are
applied to a small number of neurons, in [8], the syn-
chronization of small-world neuron networks is presented,
however, the synchronization is carried out by means of
the synapses between the neurons. Some results present
the synchronization between neurons in a network [9],
[10], where the synchronization is studied as a collective
activity obtained by varying certain parameters in the neu-
ron model, the incoming current and the coupling strength.
In this contribution the objective is to impose the spiking-
bursting activity on the ensemble of neurons which are in
their resting state by means of a controller which provides
the advantage of imposing any other neuron behavior. The
active state of neurons is characterized by multiple spikes,
which is caused by the interactions of slow and a fast
processes. These features of the active state in neurons
are well documented in biology, for example the neurons
in the thalamus in spike-burst activity produce periods of
drowsiness, inattentiveness or sleep [11]; another example
of oscillations produced by spike-burst synchrony in the
neurons is the slow oscillatory behavior of neurons that
naturally occurs in sleeping mammals [11–16].

In this contribution, we focused on the imposition of
a particular pattern to an ensemble of a class of neurons
described by the Hindmarsh-Rose (HR) model [17] in a
given topology. The activation procedure consists in to
control only a reduced number of neurons in the network,
thus the synchronization is accomplished taking the ad-
vantage of the collectivity of the network and it is not re-
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quired a controller for each neuron. Some published re-
sults deal with the synchronization of neuronal networks
considering as many controllers than the number of neu-
rons in the network, moreover, they synchronize two equal
networks with the same topology by means of controlling
each neuron in the response network [18], [19], [20]. In
our proposal we assume that the neurons in the network
are in a silent state, with the end of illustrate the activa-
tion, but can be considered other behavior of the neurons.
Then, applying the synchronizing controller to some neu-
rons, a desired pattern of activation can be imposed in the
entire network. We show that a simple classical controller
can practically impose a pattern of activation on a ensem-
ble of HR neurons.

The rest of the manuscript is organized as follows: Sec-
tion 2 describes the problem of the activation of a net-
work of neurons; Section 3 presents the procedure to im-
pose the activation pattern on the neural ensemble via the
controlled synchronization; in Section 4 numerical simu-
lations are presented to illustrate the activation of the net-
work and finally, Section 5 closes the contribution with
some concluding comments.

2. PROBLEM DESCRIPTION

2.1. Model of a Single Neuron
Each node in the network is a neuron and is described

by the 4D HR model [21], which is an extension of the 3D
model reported by Hindmarsh and Rose [17]

ẋ = y− ax3− bx2+ I− z
ẏ = c− dx2− y
ż = r(s(x− xr)− z)

(1)

The 4D model is considered due to its facility to be im-
plemented electronically and all its potential applications
in syntectic biology and the model is given by the set of
equations

ẋi1 = αxi2+β x2
i1− γx3

i1− δxi3+ Ii

ẋi2 = ε −σx2
i1− xi2− ζxi4

ẋi3 = η(−xi3+ S(xi1+ h))
ẋi4 = θ (−ϑxi4+ ι (xi2+κ))
yi = Γxi

(2)

wherexi = (xi1,xi2,xi3,xi4)
⊤ ∈D⊂R

4 is the vector states
of the i-th neuron andD is the subspace for all admis-
sible xi, parametersα,β , γ, δ , ε, σ , ζ , η , θ , ϑ , ι and
κ , are constant parameters which embody the underlying
current and conductance dynamics in this polynomial rep-
resentation of the neural dynamics,Γ = diag[1,0,0,0] is
the output matrix and indicates which state in the system
is the output, for neuron systems the output is the current
produced by the membrane potential (electrical synapse)
represented byxi1; xi2 represents the “fast” current, while
xi3 represents the “slow” current of the ion dynamics (with

η ≪ 1); andxi4 represents an even slower current dynam-
ics (withθ < η ≪ 1) which models the calcium exchange
between the intracellular stores and the cytoplasm. As it
was mentioned, the main idea is to impose a particular pat-
tern in the network using a classical controller, therefore,
we are interested in reactivating the neurons in the net-
work or induce the spiking-bursting activity in the mem-
brane potential as illustrated in Fig. 1.
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Fig 1: Spiking-bursting activity of the HR neuron (refer-
ence), this is the desired activation pattern.

On the other hand, in order to obtain a resting state in
the behavior of the HR neuron, the parameterα is varied,
thus the influence of the fast current in the neuron is dimin-
ished and the spike-burst regime is reduced or suppressed
and then the operation of the neurons become a fixed point
as presented in Fig. 2. In this way some of the neurons in
the network reproduce a silent behavior and then the col-
lective behavior is an equilibrium point. Therefore, the
main problem is to activate the neurons in the network by
means of a controller which imposes a particular behavior
in the controlled neurons.

2.2. Ensemble Description

We consider a group of neurons described by (2) cou-
pled via their electrical activity represented by the mem-
brane potentialxi1. In the reminder of this contribution
we will consider that this is the unique form of communi-
cation between neurons in the ensemble. Therefore, the
i-th neuron transmits the currentxi1 to the j-th neuron
through the connections of the network, this current is al-
gebraically added to the currents coming from all other
neurons to form the incoming external electrical activity.
Then, the state space description of a network with N lin-
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Fig 2: HR model in its resting state, it is stabilized at an
equilibrium.

early and diffusively coupled HR neurons is given by:

ẋi = F(xi)+ c
N

∑
j=1

Li jΓx j (3)

wherexi are the state vector of thei-th neuron on the net-
work; F : D→ R is a smooth vector field representing the
dynamics of thei-th neuron. The inner coupling matrix
is of the formΓ = diag[1,0,0,0] and the connections de-
scribing the topology are given by the Laplacian matrix
L = {Li j} ∈ R

N×N , if there is connection (coupling) be-
tween thei-th and j-th neurons thenLi j = L ji = 1 for
i 6= j otherwiseLi j = L ji = 0 and the diagonal elements
satisfiesLii =−∑N

j=1, j 6=i Li j

As stated in the introduction, the imposition of an ac-
tivation pattern in the inhibited ensemble is desired. The
proposed ensemble is illustrated in Fig. 3, note that there
are some nodes highly connected whereas many nodes
only have one connection [22]. For the imposition of the
activation pattern we propose to control nodes 1, 3 and
14. To this end, in the following section a controller is
proposed to force the entire network to follow a reference
membrane potential behavior (xRe f ,1).

3. IMPOSING AN ACTIVATION PATTERN VIA
CONTROLLED SYNCHRONIZATION

The trivial case for imposing a pattern in a network is
when every system is controlled or forced to track a pre-
scribed reference [18], [19], [20], therefore, the main idea
is to controlρ < N nodes in the network. This means that
controlling a small number of nodes, the synchronous be-
havior is induced or imposed to the whole network. The
network description including the control input is given as

Fig 3: Network topology considered for the ensemble of
HR, whereu1, u3 andu14 are controllers applied in
the nodes 1, 3 and 14. neurons.

follows

ẋRe f (t) = AxRe f (t)+ f (xRe f (t))
ẋi(t) = Axi(t)+ f (xi(t))+ c∑N

j=1Li, jΓx j(t)+ µi
(4)

whereA is the matrix for the linear part of the neuron sys-
tem, xRe f (t) is the state vector of the reference system,
which is not influenced by the rest of the systems,µi is the
input vector control to thei-th system,f (xi(t)) is the non-
linear vector field lumping the nonlinearities of the sys-
tems and satisfies‖ f (xi)− f (x j)‖ ≤ φi‖xi − x j‖, for some
positiveφi, Li, j are the entries of the Laplacian matrixL
which describe the network topology. This control feed-
back law is given asµi = τiKiei(t) whereei ∈ D ei(t) =
xre f (t)−xi(t) describes the synchronization error between
the reference and thei-th system,τi = 1 corresponds to
the case of a controlled system andτi = 0 if the system
is not controlled andK ∈ R

n×n is the gain matrix,Ki =
diag[ki,0,0,0]. The controlled systems can be determined
by setting zero or one the elements of the diagonal matrix
T = diag[τ1,τ2, · · · ,τN ]. With this information and using
the Kronecker product one can construct anN dimensional
system consideringχ(t) = [x1(t)T ,x2(t)T , · · · ,xN(t)T ]T

χ̇(t) = IN×N ⊗Aχ(t)+F (χ(t))+ cL⊗Γχ(t)+
T ⊗K(XRe f (t)− χ(t)) (5)

whereF (χ(t))= [ f (x1(t))T
, f (x2(t))T

, · · · , f (xN(t))T ]T

is anN vector lumping the vector fields of the neurons and
XRe f (t) = [xRe f (t)T ,xRe f (t)T , · · · , xRe f (t)T ]T . The design-
ing parameters are the coupling strengthc and the feed-
back gainK such that the network synchronizes to the
referencexRe f (t). The synchronization problem can be
viewed as a stabilization of a dynamical error system be-
tween the reference and the controlled systems in the net-
work, thus, from (5) the dynamical error system is as fol-
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lows

ė(t) = IN×N ⊗Ae(t)+F (XRe f )−F (χ(t))+
cL⊗Γe(t)−T ⊗Ke(t)

(6)

now it can be defined a matrix functionΨx,x̄ for anyx, x̄ ∈
D by

Ψx,x̄(x− x̄) = f (x)− f (x̄) (7)

where the matrixΨx,x̄ ∈ D is bounded and there exists a
positive constantα such that‖ Ψx,x̄ ‖≤ α for any x, x̄ ∈
D. Condition (7) comes from the Lipschitz condition and
the mean value theorem [23], [24]. Therefore from (6)
and (7) the synchronization error system for the controlled
network is written as follows

ė(t) = IN×N ⊗Ae(t)+Φ(e(t))e(t)+
(cL⊗Γ−T ⊗K)e(t)

(8)

whereΦ(e(t))=Diag[ΨxRe f ,xRe f −e1(t), · · · ,ΨxRe f ,xRe f −eN (t)],
thus the synchronization between systems is achieved if
system (8) is asymptotically stable at the origin. Note that
the stability of system (8) depends on the value of the con-
trol gains of the feedback control law and the coupling
strength of the network. In the following Lemma a condi-
tion to achieve synchronization is provided, however, the
choice of the controlled nodes and the determination ofρ
is not studied.

Lemma 1. If there exist control gainsK, a cou-
pling strengthc and given an appropriate matrix
Γ, for everyei ∈ D, λ j(e) < −σ with j = 1,2,
· · · ,nN, σ > 0, whereλ j(e) is the j-th eigenvalue
of the matrix

(IN ⊗P)(IN×N ⊗A+Φ(e(t))+(cL⊗Γ−T ⊗K))+

(IN×N ⊗A+Φ(e(t))+(cL⊗Γ−T ⊗K))T (IN ⊗P)

with P ∈ R
n×n some positive definite matrix,

then the synchronization error system (8) is asymp-
totically stable at the origin, which implies that
the systems in the network (4) are asymptotically
synchronized.

Poof. Choose the candidate Lyapunov function

V (e) = eT (IN ⊗P)e

Thus its time derivative is

V̇ (e) = eT (IN ⊗P)ė+ ėT (IN ⊗P)e
= eT (IN ⊗P)(IN×N ⊗A+Φ(e(t))+

(cL⊗Γ−T ⊗K))e+ eT (IN×N ⊗A+
Φ(e(t))+(cL⊗Γ−T ⊗K))T (IN ⊗P)e

now considering the boundedness ofΦ(e(t)) we
have

V̇ (e) ≤ eT (IN ⊗P)(IN×N ⊗A+ Ψ̄+
(cL⊗Γ−T ⊗K))e+ eT (IN×N ⊗A+
Ψ̄+(cL⊗Γ−T ⊗K))T (IN ⊗P)e

whereΨ̄ = Diag[α1,α2, · · · ,αN ], now let us de-
fine Q = IN×N ⊗A+ Ψ̄+(cL⊗Γ−T ⊗K) thus
the derivative can be writing as

V̇ (e) ≤ eT (IN ⊗P)Qe+ eT QT (IN ⊗P)e
≤ eT{(IN ⊗P)Q+QT(IN ⊗P)}e

let R = (IN ⊗P)Q+QT (IN ⊗P) and sinceR =
RT thusR =U∗ΛU , whereU is a square unitary
matrix andΛ = Diag(λ1,λ2, · · · ,λnN). Then

V̇ (e)≤ eT Re ≤ eTU∗ΛUe ≤ ẽT Λẽ ≤ σ‖ẽ‖< 0

where ˜e = Ue, therefore, according to the Lya-
punov stability theory system (8) is asymptoti-
cally stable about the origin, hence the network
is synchronous and this complete the proof.

The previous Lemma provides conditions for the controlled
synchronization of networks, and for the case of networks
of neurons provides conditions for the imposition of a par-
ticular behavior in the whole network. Moreover, the syn-
chronization between neurons is achieved even if the neu-
rons behavior is not in the resting state, since the input in
each neuron has the information required to stimulate the
neuron such that it follows its neighbors.

4. SIMULATION RESULTS

With the previous results we consider the network ar-
rangement illustrated in Fig. 3 withN = 30 and with three
controlled nodes. The parameters for the neurons in the
nodes areβ = 3; γ = 1; δ = 0.99; I = 0; ε = 1.01; σ =
5.0128;ζ = 0.0278;η = 0.0021;S = 3.966; h = 1.605;
θ = 0.0009;ϑ = 0.9573;ι = 3.0; κ = 1.619. The parame-
ter α = (1+∆)α0 with 0< ∆ < 0.1 andα0 = 1, produces
the resting behavior in some neurons. The synchroniza-
tion error system is given by

ėi1 = αei2− δe3+(β x2
Re f ,1− γx3

Re f ,1)−

(β x2
i1− γx3

i1)− τiu
ėi2 = −ei2− ζei4+(−σx2

Re f ,1+σx2
i1)

ėi3 = −ηei3+ηSei1

ėi4 = −θϑei4+θιei2

(9)

From this system we proceed to determine the largest eigen-
value of the matrixR=(IN⊗P)Q+QT (IN ⊗P), for values
of c ∈ [1000,5000] and for the gain matrixK = diag[k1,0,
0,0] with k1 ∈ [1000,3500] is applied to the nodes 1, 3
and 14, as illustrated in Fig. 3. Then with this set up, the
control gains and the coupling strength are determined nu-
merically following Lemma 1, thus the largest eigenvalues
for several values of the control gains and the couplings
are illustrated in Fig. 4. From this graph the largest eigen-
value isλmax = −0.0012 for the control gainsK1 = K2 =
K3 = 3500 andc = 5000 and then there exists a constant
−σ > λmax, such that the synchronization error is asymp-
totically stabilized at the origin. Once we have the control
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rons,x1,1, x1,3 andx1,14 are the membrane po-
tentials of the neurons which synchronize with the
reference potential.

Fig 6: Synchronization error behavior of each neuron in
the network, since the error remains close to zero,
the synchronization in all neurons is achieved, the
color bar represents the error value.

gains and the coupling strength, we consider that the en-
semble is synchronous in an inhibited behavior, in other
words, the ensemble is uncontrolled. The idea is to in-
duce the desired behavior in the ensemble by controlling
three neurons. Therefore, the controllers are connected at
time t ≥ 2000. Clearly, the ensemble is reactivated, and
the spike-burst behavior is present in the whole ensemble
with control gainsK1 =K3 =K14= 3500 and the coupling
strengthc = 5000 as illustrated in Fig. 5, where after the
connection of the controllers the behavior of the neurons
in the whole network follows the signal referencexRe f ,1.
In Fig. 6 the synchronization errors for each neuron is il-
lustrated, this indicates that the potential in each neuronin
the network follows the reference signalxRe f ,1. It is ob-
served that the controllers activate the behavior in the net-
work, and for the effect of the coupling between nodes the
network synchronizes to the reference neuron. There are
two aspects that should be mentioned, the first concerns
with the control gains such that the controlled neuron is
forced to track the reference signal in such a way that the
controlled neuron behavior is propagated to uncontrolled
neurons in the network. The second aspect is related to
the coupling and the topology of the network, in this case
the coupling strength between neurons is difficult to ma-
nipulate therefor, the synchronization can be obtained via
the control gains, in the same way the structure of the net-
work is uncertain but it is considered a certain static struc-
ture to illustrate the activation scheme. Compared with
existing results, the synchronization is achieved using a
reduce number of classical controllers, whereas some of
the results use many controllers as the number of nodes in
the network [18], [19], [20]. On the other hand, a similar
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result uses less controllers than the number of nodes, how-
ever use an adaptive control scheme is proposed [25], the
adaptive controllers increase the order of the system and
the computational cost, since it is required to dynamically
adapt the parameters of the control system.

5. CONCLUSION

In this contribution we present the induction of a desired
behavior into a network of inhibited neurons. The main
idea was to control some nodes in the network through
which the synchronous behavior is propagated to all the
neurons in the network. The propagation effect is pro-
duced by the interconnection of the nodes in the network
and due to the coupling strength. The controller used in
this contribution was a classical proportional gain, how-
ever, some other control technique can be applied to ob-
tain a better performance. The main contribution consists
in general terms in the activation or re-synchronized of a
network of neurons in a different synchronization man-
ifold which can be established a priori, this means that a
neuronal ensemble can be synchronized with any behavior
dictated by any other artificial or biological neuron [21];
this can be done via controlling some nodes in the network
and such a controller and the reference neuron in practical
terms could be implemented in an electronic circuit. The
result is somewhat conservative since the controller per-
formance for tracking is very limited, a future contribution
is to design another class of controllers. On the other hand,
some challenging tasks remain, for instance, the number
of controlled nodes, which nodes in the network are to be
controlled, how to control an evolutive network, etc.
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