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Abstract

In this work, the analytical properties of the heat exchanger infinite-dimensional
dynamic model are discussed. More importantly, those of a 2nd-order lumped-
parameter model using the logarithmic mean temperature difference (LMTD) as
driving force are derived and shown to agree with those of the former. Three essen-
tial aspects are focused: existence and uniqueness of solutions, equilibrium states,
and stability properties. The results developed in this work are intended to supply
a solid support for the reliability on the use of the kind of simple compartmental
model that is treated. This is specially addressed to works where it is not the quan-
titative solutions but the qualitative behavior that is important, like modelling and
simulation of heat exchanger networks and complex industrial processes where heat
exchangers are involved.

Key words: heat exchangers, distributed/lumped-parameter model,
dynamic/analitical properties, stability, logarithmic mean temperature difference

1 Introduction

Heat exchangers are widely used in industrial processes such as power plants
[1], gas turbines [2], air conditioning [3], refrigeration [4], (domestic, urban,
or central) heating [5], and cryogenic systems [6], among many others. Their
universal application has conducted to the research for a better comprehension
of their dynamic behavior, modelling, simulation, identification, and control
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since the 1940’s (with a boom in the 50’s and 60’s) [7,8]. Nevertheless, given
their extremely complex dynamics 1 and the increasing demands imposed to
the operation requirements of current industrial processes, they are still the
subject of many studies under the above mentioned frames. However, since
they are generally part of a complex system or (heat exchanger) network,
dynamic analysis based on simplifying but acceptable assumptions and/or
simple but suitable models are desirable [10–14].

The dynamics of heat exchangers is represented in two main ways: through
distributed- and lumped-parameter models [8,15–17]. Since variations of the
states that are concerned take place not only in time but also in space,
distributed-parameter models are those that best fit to the nature of heat
exchangers [7]. Such models are represented by a set of partial differential
equations. Since these are in general difficult to analyze, complicated for sim-
ulation, and complex for control synthesis, approximations through lumped-
parameter models are generally preferable (at least for such purposes) [14].

Lumped-parameter models have been extensively used for dynamic simulation
[16,18–21], control design [22–25], network modelling [12,15,26,27], or param-
eter identification [28–30], for instance. They are constructed considering the
division of the whole exchanger in a finite number of elements (lumps) or
cells, permitting its dynamic representation through a set of ordinary dif-
ferential equations. Such a lumping procedure generally assumes that every
element behaves like a perfectly stirred tank (or well-mixed compartment)
[8,10,11,16,18,26]. Consequently, the fluid temperature is considered to hold
throughout each of the cells. Its spatial distribution at every lump is there-
fore neglected. Only jumps in its values are considered at points delimiting
the elements (when more than one are considered). As a consequence, a large
number of cells is in general required for an acceptable modelling (approaching
the distributed characteristic) [14]. This gives rise to high order models that
complicate the dynamic analysis and control design [21,25]. However, there is
a special low-order model that has been concluded to be —and actually used
as— a reliable representation of the dynamics of double-pipe heat exchangers
[10,11,22]. But an analytical study supporting such an assertion is still missing
in the literature. This is what constitutes the main motivation of the present
work. Our goal is to develop a formal study that contributes concrete analyt-
ical results that justify the above mentioned reliability on the use of such a
special low-order model.

1 See for instance [9, §1], where a large list of phenomena involved in their dynamic
behavior (rendering it complex) is given.
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1.1 Review of previous works

Reduction of the lumped-parameter model order with diminutive accuracy
loss may be contemplated by taking into account the temperature distribu-
tion at each lump instead of assuming a perfect mix of the fluid. This idea was
explored for instance in [10,11], where a comparative numerical study among
three different one-cell bi-compartmental models (one element per fluid cover-
ing the whole tube length) is proposed. Steady-state characteristics as well as
outlet-temperature step and frequency responses (of one of the fluids) to inlet-
temperature and flow disturbances (at the other fluid) were compared to those
of the distributed dynamics of counterflow exchangers. Each of the considered
compartmental models included two first-order (coupled) ordinary differential
equations, one per compartment (fluid), which is the simplest modelling case.
The difference among them consisted on the respective consideration of a uni-
form (perfect mix), linear, and exponential temperature distribution for the
selection of the heat exchange driving force expression. For each of those cases,
such a term was respectively expressed in terms of the outlet temperatures
difference, the arithmetic mean temperature difference (AMTD), and the log-
arithmic mean temperature difference (LMTD). The results showed that the
model using the LMTD as driving force is the one that best approaches the
distributed dynamics, while that assuming perfect mix (uniform distribution)
is the worst. Moreover, it is concluded that a one-cell bi-compartmental (2nd-
order) model with LMTD-driving-force keeps the dynamic properties of the
distributed one. The consideration of more than one bi-compartmental cells
was though suggested for stringent quantitative modelling requirements.

Lumped-parameter models with LMTD-driving-force have been shown to be
appropriate in several other works. In [19], for instance, such dynamic represen-
tations were tested through simulation considering two to ten compartments.
It was concluded that a two-compartment model indeed keeps the qualitative
behavior of the distributed dynamics. The consideration of more than two
compartments was though reported to be convenient to improve accuracy in
steady-state characteristics and achieve sufficient transport time lag. Similar
tests were done and conclusions drawn in [20], where quantitative adjustments
from two to five bi-compartmental cells were even found to be slight. Supe-
riority of low-order compartmental models using the LMTD as driving force
(compared to those using the AMTD or the outlet temperature difference) was
also corroborated (through similar tests) in [27], where they were concluded
to be advantageous for simulation of heat exchanger networks.

Lumped-parameter models with LMTD-driving-force have also been consid-
ered by Alsop and Edgar in [22] where a 2nd-order model was used for con-
trol synthesis on a counterflow exchanger. The closed-loop scheme was tested
through simulation using a 20 bi-compartmental cell (40th-order) model. Tem-
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perature responses to flow step changes were shown using both (the 2nd- and
the 40th-order) models; small differences were observed among them. It is
worth noting that Alsop and Edgar went further in the low-order modelling
by taking the bulk temperature to be the average among the inlet and outlet
temperatures at each fluid (for the accumulation term), instead of just the out-
let temperature. Since constant inlet temperatures were considered, the time
derivative of the bulk (average) temperature ended up in half the time deriva-
tive of the outlet one. Consequently, the model used in [22] keeps the same
traditional structure of the previous works but doubles the convective and
conduction heat transfer rates (i.e. a 2 appears multiplying every right-hand-
side term of the dynamic equations). This, on the one hand, has no effect in
the steady-state values and, on the other, speeds up the system dynamics im-
proving the response time (getting closer to that of the distributed-parameter
model trajectories).

Based on the above mentioned studies, low-order lumped-parameter models
with LMTD-driving-force have been used by several authors as reliable dy-
namic representations of heat exchangers. For instance, they were used in [23]
and [24] for control design, [31] and [32] for stability limit closed-loop analy-
sis, [19] and [20] for the development of dynamic simulators, and [12] for heat
exchanger network modelling and simulation. However, the fact that such rep-
resentations keep the dynamic properties of the distributed-parameter models
was concluded in the previous works, [10,11,19,20,22,27], from numerical re-
sults through simulation. An exhaustive study showing such a fact under an
analytical framework is still missing in the literature.

1.2 The contribution of this work

In this work, we aim at filling in the gap that was just mentioned above: under
specific assumptions generally made for the derivation of the heat exchanger
infinite-dimensional dynamic equations, analytical proofs are developed show-
ing that a 2nd-order compartmental model with the LMTD as driving force
keeps the main dynamic properties of the distributed-parameter model it is
approached from. Three essential aspects are focused. First, existence and
uniqueness of solutions are shown to be a common characteristic of both dy-
namic models. Then, equilibrium solutions of the finite-dimensional dynamics
are obtained and shown to accurately agree with the outlet values of the
temperature equilibrium profiles of the distributed model. Furthermore, such
equilibrium states are concluded to be exponentially stable and globally at-
tractive on the system state-space domain in both dynamic representations.
These results formally state the qualitative behavior of heat exchangers under
the stated assumptions. From such a point of view, they further bring to the
fore the exact analogy of the simple compartmental model (considered in this
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work) with the original distributed dynamics it is approached from.

Other studies on the dynamic behavior of double-pipe heat exchangers that
are found in the literature propose a different perspective. For instance, fre-
quency analysis through transfer functions were developed in [33–35]. But such
approaches implicitly assume a linear behavior which is suitable only locally.
On the contrary, the analysis developed in this work is based on a non-linear
model that captures the whole global essential phenomena. Other works de-
rived exact (space-time) solutions for special cases [36] or characterized them
via transient response analysis [37]. But these approaches focus on quantita-
tive system responses. Fundamental properties (like existence and uniqueness
of solutions) are bypassed and qualitative aspects (like equilibrium stability
and convergence of solutions) are omitted. This work, on the contrary, focuses
on fundamental and qualitative aspects rather than quantitative ones. In [38],
on the other hand, the effect of data uncertainty on the performance of a
concentric tube heat exchanger was studied. But this study was carried out
through stochastic analysis and only considered the steady-state response of
the distributed-parameter model. This work, on the contrary, focuses on the
system dynamics studied within a deterministic model analysis framework.
Furthermore, qualitative analyses of heat exchangers may be found in [39–
41]. But they are developed within an infinite-dimensional dynamic systems
context, since it is the distributed-parameter model that is analyzed in those
works. In this work, on the contrary, it is a simple 2nd-order compartmental
model that is proved to accurately capture the qualitative behavior of the
former. This was intended to be done in [10,11], but such studies were car-
ried out through numerical simulations. On the contrary, this work develops
the formal proofs within a framework suitable for the qualitative analysis of
dynamic systems.

The work is organized as follows: Section 2 states the notation used throughout
the paper. In Section 3, the distributed-parameter model is presented and
its analytical properties are discussed. Section 4 presents the compartmental
model, proves its dynamic properties, and brings to the fore their accurate
agreement with those of the distributed dynamics. Conclusions are given in
Section 5.

2 Nomenclature and notation

The following nomenclature is defined for its use throughout this work:

F mass flow rate R set of real numbers
Cp specific heat Rn set of n-tuples (xj)j=1,...,n

M total mass inside the tube with xj ∈ R
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Fig. 1. Counterflow heat exchanger. Fig. 2. Parallel flow heat exchanger.

υ fluid velocity R+ set of positive real numbers
l total exchanger length Rn

+ set of n-tuples (xj)j=1,...,n

U overall heat transfer coefficient with xj ∈ R+

A heat transfer surface area Subscripts:
T temperature c cold
t time h hot
x position on the exchanger i inlet
∆T temperature difference o outlet

Let Th = Th(t, x) and Tc = Tc(t, x) respectively denote the temperature of the
hot and cold fluids at time t and position x ∈ [0, l]. Furthermore, let ∆T1 and
∆T2 stand for the temperature difference at each terminal side of the heat
exchanger, i.e. (see Figures 1 and 2)

∆T1 =





Thi − Tco if counterflow

Thi − Tci if parallel flow
(1)

and

∆T2 =





Tho − Tci if counterflow

Tho − Tco if parallel flow
(2)

Consider the sets B, C, and D with B ⊂ C, and a mapping f : C → D.
We denote f |B the restriction of f to B, i.e. f |B : B → D : y 7→ f |B (y) =
f(y),∀y ∈ B. The boundary of a subset, say B, is represented as ∂B. Within
the distributed dynamics framework, the system state space will be considered
to be the Hilbert space H = L2(0, l)×L2(0, l) (with the standard inner product
< f, g >=

∫ l
0 [f1(x)g1(x) + f2(x)g2(x)] dx), where L2(0, l) denotes the space of

continuous functions that are square-integrable on [0, l].

3 The distributed-parameter model

Let us consider the following assumptions:
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A1. The fluid temperatures and velocities are radially uniform.
A2. The thermophysical properties of the fluids are constant (in time and

space).
A3. There is no heat transfer with the surroundings (perfectly insulated ex-

ternal tube).
A4. The heat transfer coefficient is axially uniform and is flow, temperature,

and time invariant.
A5. The fluids are incompressible and single phase.
A6. Heat conduction along the flow axis is negligible.
A7. There is no energy storage in the walls.
A8. Inlet temperatures, i.e. Tci and Thi, are constant.

Under Assumptions A1–A6, a distributed-parameter dynamic representation
of heat exchangers may be derived (see for instance [7]). With them in mind
and the consideration of Assumption A7, such a model is given by (see for
instance [25,41])

∂Tc

∂t
= αυc

∂Tc

∂x
+

UA

McCpc

(Th − Tc)

∂Th

∂t
= −υh

∂Th

∂x
− UA

MhCph

(Th − Tc)

(3)

where

α =





1 for countercurrent flow

−1 for parallel flow
(4)

Furthermore, Assumption A8 guarantees the existence of an equilibrium so-
lution of system (3) (as will be corroborated later in the present section). In
vector notation, such a model may be expressed as

∂T

∂t
= A1

∂T

∂x
+ A2T (5)

where

T =




Tc

Th


 , A1 =




αυc 0

0 −υh


 , and A2 =



− UA

McCpc

UA
McCpc

UA
MhCph

− UA
MhCph




or more compactly through the abstract differential equation

Ṫ = A0T (6)

where A0 is the unbounded linear operator A0 : D(A0) ⊂ H → H : f 7→ A0f =

A1
df
dx

+ A2f with D(A0) =
{
f ∈ H | df

dx
∈ H , f2(0) = Thi , f1

(
1+α

2
l
)

= Tci

}
.

Let us note that, letting T ∗ stand for the equilibrium solution of the sys-
tem, such that A1

∂T ∗
∂x

+ A2T
∗ = 0, (due to linearity of A0) the model may
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be taken to represent the dynamic behavior of the temperatures of the flu-
ids, or that of their deviation with respect to T ∗. The former case is gen-
erally considered to get the temperature equilibrium profile of the system
(as will be seen later in the present section). In the latter case, the bound-
ary conditions (inlet temperatures) shall be taken zero in the definition of

D(A0), i.e. D(A0) =
{
f ∈ H | df

dx
∈ H , f2(0) = f1

(
1+α

2
l
)

= 0
}
. Such a way

of considering T (i.e. as the temperature deviation with respect to T ∗) in the
distributed-parameter model is standard in stability analysis of the system
equilibrium profile (see for instance [39–41]). Subsequently, the distributed-
parameter model will be indistinctly referred as (3), (5), or (6).

Existence and uniqueness of solutions. Existence of solutions of the distributed-
parameter model is guaranteed. This is corroborated through Theorem 91 in
[42, Chap. V]. Furthermore, the unbounded linear operator A0 in (6) is the
infinitesimal generator of a C0-semigroup, Φ(t), on H (this was proved in [40]).
Then, solutions of (6), T : H → H : T0 7→ T (t), are uniquely defined for each
T0 ∈ H as T (t) = Φ(t)T0 ∈ H (see for instance Theorem 2.1.10 in [43]).

Equilibrium profiles. In equilibrium
∂T ∗h
∂t

= ∂T ∗c
∂t

= 0. Then, from (5), the
temperature equilibrium profile is determined by

dT ∗

dx
= −A−1

1 A2T
∗ (7)

whose unique solution is given in Appendix A.

Stability. Stability of the equilibrium profile is treated in [39], [40], and [41].
In [39], asymptotic stability is proved through a Lyapunov functional. Strong
stability in the counterflow case is proved in [40] within an infinite-dimensional
linear systems context, while later on, such stability property is proved to be
exponential in [41].

4 The lumped-parameter model

Application of the lumping procedure to the distributed dynamics, considering
the whole exchanger as a unique bi-compartmental cell, results in a 2nd order
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lumped-parameter model given by (see for instance [10,11,22])

Ṫco =
a

Mc

[
Fc (Tci − Tco) +

UA

Cpc

∆T (Tco, Tho)

]

Ṫho =
a

Mh

[
Fh (Thi − Tho)− UA

Cph

∆T (Tco, Tho)

] (8)

where a = 1 if the bulk temperature is taken to be that at the outlet of the
tube, as in [10,11], or a = 2 if it is approached as the average of those at
the inlet and outlet, as in [22]. ∆T (·, ·) is the mean temperature difference
throughout the exchanger, modelled in this work through the LMTD. It is ac-
tually this term that shall be adjusted for (8) to express the lumped dynamics
of the countercurrent or the parallel flow exchanger. The typical expression is
given as (see for instance [44–47])

∆T = ∆T` , ∆T2 −∆T1

ln ∆T2

∆T1

with ∆T1 and ∆T2 as defined in (1) and (2), which may be rewritten as

∆T` =
Tho − Thi + α(Tco − Tci)

ln ∆T2

∆T1

(9)

(see (4)). It is worth noting that this expression reduces to an indeterminate
form when ∆T1 = ∆T2, which is specially problematic in the counterflow case.
However, taking

∆T = ∆TL ,





∆T` if ∆T2 6= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

(10)

results in a well-defined continuously differentiable LMTD for every positive
∆T1 and ∆T2 (see [48]). This and other useful analytical properties of ∆TL in
(10) are proved in Appendix B.

Subsequently, system (8) will be generically represented as Ṫo = f(To), with
To = (To1, To2)

T , (Tco, Tho)
T and

f(To) =




f1(To)

f2(To)


 ,




a
Mc

[
Fc (Tci − Tco) + UA

Cpc
∆T (Tco, Tho)

]

a
Mh

[
Fh (Thi − Tho)− UA

Cph
∆T (Tco, Tho)

]


 (11)

Let us note that by using (10), the right-hand-side expressions in (8) are
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Fig. 3. Direction of f on ∂D: α = 1. Fig. 4. Direction of f on ∂D: α = −1.

continuously differentiable on the system state-space domain

D =




{To ∈ R2 | Tci < Toj < Thi , j = 1, 2} if α = 1

{To ∈ R2 | Tci < To1 < To2 < Thi} if α = −1

A reasoning underlying such a definition of D is furnished in [49, §3.2]. Its sense
will appear clear from the analysis developed in the following subsection.

4.1 Existence and uniqueness of solutions

We now prove that for every To(0) = T 0
o ∈ D, system (8) has a unique solution

To(t; T
0
o ) ∈ D, ∀t ≥ 0. Since the right-hand-side expressions of (8) are continu-

ously differentiable on the system state-space domain, and ID is a bounded set
(implying compactness of its closure) contained in IR2

+, a sufficient condition to
guarantee global existence and uniqueness of solutions on D is that D be posi-
tively invariant with respect to (8) (see for instance [50, Thrm. 2.4]). To prove
that such is the case, let us define L1 , {To ∈ R2 | Tco = Thi ≥ Tho ≥ Tci},
L2 , {To ∈ R2 | Tho = Tci ≤ Tco ≤ Thi}, L3 , {To ∈ R2 | Tco = Tci < Tho ≤
Thi}, L4 , {To ∈ R2 | Tho = Thi > Tco ≥ Tci}, and L5 , {To ∈ R2 | Tci ≤
Tco = Tho ≤ Thi}. Notice that ∂D =

⋃ 9−α
2

j=2−α Lj. Furthermore, considering the
analytical properties of ∆T = ∆TL stated in Appendix B (see specifically
Lemma 2 and Remark 3), let us note that f1(Tci, Tho) = aUA

McCpc
∆T (Tci, Tho) >

0, ∀To ∈ L3, and f2(Tco, Thi) = − aUA
MhCph

∆T (Tco, Thi) < 0, ∀To ∈ L4, for

both configuration cases; f1(Thi, Tho) = aFc

Mc
(Tci − Thi) < 0, ∀To ∈ L1, and

f2(Tco, Tci) = aFh

Mh
(Thi − Tci) > 0, ∀To ∈ L2, for the counterflow case; and

f1(Tho, Tho) = −aFc

Mc
(Tci − Tho) < 0 and f2(Tho, Tho) = aFh

Mh
(Thi − Tho) > 0,

∀To ∈ L5, for the parallel flow case. This shows that at any To ∈ ∂D, the
vector field f(To) points inwards D; see Figures 3 and 4. Consequently, ∂D is
unreachable by any orbit of (8) with initial conditions in D, concluding that
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T 0
o ∈ D ⇒ To(t; T

0
o ) ∈ D, ∀t ≥ 0.

4.2 Equilibrium solutions

Let Q represent the set of equilibrium points of (8), i.e. Q , {To ∈ D |
f1(To) = f2(To) = 0}. Notice that McCpc

a
f1(To) +

MhCph

a
f2(To) = FcCpc(Tci −

Tco) + FhCph(Thi−Tho) (see (11)). Therefore, Q ⊂ {x ∈ D | FcCpc(Tci−Tco) +
FhCph(Thi − Tho) = 0}, that is, every equilibrium point of (8), T ∗

o , satisfies

(T ∗
ho − Thi) = −R(T ∗

co − Tci) (12)

with R = FcCpc

FhCph
(as defined in Appendix A). Then, ∀T ∗

o ∈ Q

McCpc

a
f1(T

∗
o ) =


FcCpc − UA

α−R

ln ∆T2

∆T1


 (Tci − T ∗

co) = 0 (13)

(where (9) has been used) if α − R 6= 0 (i.e. for parallel flow with any R > 0
or counterflow with R 6= 1), and

McCpc

a
f1(T

∗
o ) = FcCpc(Tci − T ∗

co) + UA(Thi − T ∗
co) = 0 (14)

if α = R = 1 (i.e. for counterflow with R = 1; notice that in this case, from
(12), we have T ∗

ho − Tci = Thi − T ∗
co, i.e. ∆T ∗

2 = ∆T ∗
1 , implying, according to

(10), that ∆T (T ∗
co, T

∗
ho) = Thi − T ∗

co = T ∗
ho − Tci). Equation (13) is satisfied

on D if and only if the term within the brackets is zero. Consequently, for
α−R 6= 0, we have

FcCpc − UA
α−R

ln
∆T ∗2
∆T ∗1

= 0 ⇐⇒ ln
∆T ∗

2

∆T ∗
1

= α
UA

FcCpc

− UA

FhCph

wherefrom we get

∆T ∗
2 = e

UA

(
α

FcCpc
− 1

FhCph

)
∆T ∗

1 (15)

The unique solution of the system of equations (12), (14), and (15) is given
by (A.2) (see Appendix A). Following a similar procedure, the consideration

of
MhCph

a
f2(T

∗
o ) = 0 leads to the same result. Consequently, Q = {T ∗

o }, with

T ∗
o = (T ∗

co, T
∗
ho)

T as in (A.2). Finally, it is not hard to verify that whatever
(positive) value R takes, P and RP in (A.2) satisfy 0 < P < 1 and 0 <
RP < 1, ∀α ∈ {−1, 1}, and (additionally) P + RP < 1 if α = −1. Therefore,
Tci < T ∗

co < Tpi and Tci < T ∗
ho < Tpi (see (A.2)) for both flow configurations,

and (additionally) T ∗
co < T ∗

co + (1 − P − RP )(Thi − Tci) = T ∗
ho in the parallel

flow case, showing that T ∗
o ∈ D.
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Remark 1 From the equilibrium profile equation, (A.1), one sees that Th(l) =

T ∗
ho and Tc

(
1−α

2
l
)

= T ∗
co. Therefore, system (8) with ∆T as in (10) gives output

temperature equilibrium values that accurately correspond to those gotten
through the distributed-parameter model in steady state. This is essential
since other simple models —like those using the AMTD (see equation (B.2)
in Appendix B) as driving force, or the output temperature difference, i.e.
∆T = Tho−Tco, for instance— may have analytical/dynamical properties that
are similar, analog, or equivalent to those of the infinite-dimensional model,
(3), but could hardly be able to accurately reproduce the static solutions of
the outlet temperatures as (8),(10) does. .

4.3 Stability

We now prove that the unique equilibrium point of system (8), T ∗
o in (A.2),

is asymptotically stable and globally attractive on D. To prove its asymptotic

stability, let us consider the Jacobian matrix of f , i.e. ∂f
∂To

=




∂f1

∂Tco

∂f1

∂Tho

∂f2

∂Tco

∂f2

∂Tho


,

with ∂f1

∂Tco
= −aFc

Mc
+ aUA

McCpc

∂∆T
∂Tco

, ∂f1

∂Tho
= aUA

McCpc

∂∆T
∂Tho

, ∂f2

∂Tco
= − aUA

MhCph

∂∆T
∂Tco

, and
∂f2

∂Tho
= −aFh

Mh
− aUA

MhCph

∂∆T
∂Tho

. Its characteristic polynomial is given by P (λ) =

λ2 + b(To)λ + c(To), where

b(To) = − ∂f1

∂Tco

− ∂f2

∂Tho

=
aFc

Mc

− aUA

McCpc

∂∆T

∂Tco

+
aFh

Mh

+
aUA

MhCph

∂∆T

∂Tho

(16)

and

c(To) =
∂f1

∂Tco

∂f2

∂Tho

− ∂f1

∂Tho

∂f2

∂Tco

=
4FcFh

McMh

− 4FhUA

McMhCpc

∂∆T

∂Tco

+
4FcUA

McMhCph

∂∆T

∂Tho

(17)
Notice that from the analytical properties of ∆T in (10) (see specifically
Lemma 3 in Appendix B), we have that ∂∆T

∂Tho
> 0 and ∂∆T

∂Tco
< 0, ∀(Tco, Tho) ∈ D.

Consequently, b(To) > 0 and c(To) > 0, ∀To ∈ D (see (16) and (17)). Therefore,
at any point on D, both roots of P (λ) have negative real part implying that
∂f
∂To

is Hurwitz at all To ∈ D. This proves that the unique equilibrium point,
T ∗

o , is asymptotically stable. To prove its global attractivity on ID, let us first
note that since ∂f1

∂Tco
+ ∂f2

∂Tho
= −b(To) < 0, ∀(Tco, Tho), limit cycles are excluded

from D (according to Bendixson’s criterion; see for instance [50, Thrm. 7.2]).
Furthermore, from the asymptotical stability of T ∗

o , homoclinic orbits are ex-
cluded from D too (see for instance [51, §1.8]). Now, from boundedness of D
and its positive invariance with respect to the system dynamics (according to
the analysis developed in Subsection 4.1 above), every solution of (8) has a
nonempty, compact, and invariant positive limit set, Γ+, and To(t; T

0
o ) → Γ+

12



as t →∞, ∀T 0
o ∈ D (see for instance [50, Lem. 3.1]). Then, since limit cycles

and homoclinic orbits are excluded in D, we conclude that the unique equi-
librium point, T ∗

o , is the only point contained in Γ+ for every solution of (8).
Consequently, lim

t→∞To(t; T
0
o ) = T ∗

o , ∀T 0
o ∈ D, showing the global attractivity of

T ∗
o on D.

Remark 2 From (B.4),(B.3) in Lemma 1 (see Appendix B), it is not hard to
see that ∆T in (10) is infinitely differentiable on D. Then, ∂f

∂To
is bounded and

Lipschitz on the closure of Br = {To ∈ R2 | ‖To − T ∗
o ‖2 < r}, and hence on

Br, for any r > 0 such that Br ⊂ D. Then, the asymptotic stability of To

is actually exponential (see for instance [50, Thrm. 3.13]), which agrees with
the stability results exposed in Section 3 for the equilibrium profile of the
distributed-parameter model. .

5 Conclusions

In this work, the analytical properties of a heat exchanger 2nd-order lumped-
parameter dynamic model using the LMTD as driving force, were derived
and shown to coincide with those of the distributed-parameter model it is
approached from. Three essential aspects were focused. First, existence and
uniqueness of solutions were shown to be a common characteristic of both
dynamic models. Then, equilibrium solutions of the finite-dimensional dy-
namics were obtained and shown to accurately agree with the outlet values
of the temperature equilibrium profiles of the distributed model; this actually
proves to be an essential aspect since other simple models may have analyti-
cal/dynamical properties that are similar, analog, or equivalent to those of the
infinite-dimensional model, but could hardly be able to accurately reproduce
the static solutions of the outlet temperatures. Furthermore, such equilibrium
states were concluded to be exponentially stable and globally attractive on
the system state-space domain in both dynamic representations.

The results developed in the present work permit one to conclude that, un-
der the considered assumptions (commonly taken for the derivation of the
heat exchanger infinite-dimensional dynamic equations), 2nd-order lumped-
parameter models with LMTD-driving-force are reliable dynamic representa-
tions for heat exchangers. This is specially important in cases where it is not
the quantitative solutions but the qualitative behavior that is important, like
modelling and simulation of heat exchanger networks and complex industrial
processes where heat exchangers are involved.

13
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A Equilibrium profiles

The solution of (7) is given by

T ∗(x) =




T ∗
c (x)

T ∗
h (x)


 =




T ∗
co

T ∗
ho


 + (Thi − Tci)




gc(x)

gh(x)


 (A.1)

where

gc(x) =





S − Sx/l

1 + R
if α = −1

S − S(1−x/l)

1−RS
if α = 1, R 6= 1

−Px

l
if α = 1, R = 1

gh(x) =





−
R

(
S − Sx/l

)

1 + R
if α = −1

R
(
1− S(1−x/l)

)

1−RS
if α = 1, R 6= 1

P
(
1− x

l

)
if α = 1, R = 1

and



T ∗
co

T ∗
ho


 =




1− P P

RP 1−RP







Tci

Thi


 (A.2)
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with R = FcCpc

FhCph
,

P =





1− S

1 + R
if α = −1

1− S

1−RS
if α = 1, R 6= 1

UA

UA + FcCpc

if α = 1, R = 1

and S = e
UA

(
α

FhCph
− 1

FcCpc

)
. In the counterflow case, algebraic manipulations

were done to express the solution T ∗(x; Tco, Thi) as T ∗(x; Tci, Thi).

B Analytical properties of the LMTD

Throughout the following developments, the mean temperature difference is
considered a bivariable function, whether the logarithmic model in (10),

∆TL(∆T1, ∆T2) =





∆T2 −∆T1

ln ∆T2

∆T1

if ∆T2 6= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

(B.1)

[48] or the arithmetic one, (see for instance [44])

∆Ta(∆T1, ∆T2) =
∆T1 + ∆T2

2
(B.2)

is referred. In order for this work to be self-contained, some useful analyti-
cal properties of ∆TL in (B.1), that were derived in [48], are proved in this
Appendix. We begin by stating a useful equivalent expression.

Lemma 1 [48, Lemma 1] Let

L(∆T1, ∆T2) , 1 +
∞∑

i=1

1

2i + 1

(
∆T2 −∆T1

∆T2 + ∆T1

)2i

(B.3)

for all (∆T1, ∆T2) such that ∆T1 + ∆T2 6= 0. Then

∆TL(∆T1, ∆T2) ≡ ∆Ta(∆T1, ∆T2)

L(∆T1, ∆T2)
(B.4)

∀(∆T1, ∆T2) ∈ R2
+. /

Proof. We divide the proof in two parts:

15



1) ∆T1 6= ∆T2. From Formula 4.1.27 in 2 [52], we have

ln
∆T2

∆T1

= 2
∞∑

i=0

1

2i + 1

(
∆T2 −∆T1

∆T2 + ∆T1

)2i+1

∀(∆T1, ∆T2) ∈ R2
+. Then, for all (∆T1, ∆T2) ∈ R2

+ such that ∆T1 6= ∆T2, we
get

∆T2 −∆T1

ln ∆T2

∆T1

=
∆T2 −∆T1

2
∑∞

i=0
1

2i+1

(
∆T2−∆T1

∆T2+∆T1

)2i+1

=
∆T2 −∆T1

2
(

∆T2−∆T1

∆T2+∆T1

) [
1 +

∑∞
i=1

1
2i+1

(
∆T2−∆T1

∆T2+∆T1

)2i
]

=
∆T1+∆T2

2

1 +
∑∞

i=1
1

2i+1

(
∆T2−∆T1

∆T2+∆T1

)2i

=
∆Ta(∆T1, ∆T2)

L(∆T1, ∆T2)
(from (B.2) and (B.3))

2) ∆T1 = ∆T2. Notice from (B.3) and (B.2) that L(∆T0, ∆T0) = 1 and
∆Ta(∆T0, ∆T0) = ∆T0, ∀∆T0 6= 0. Then, for ∆T1 = ∆T2 = ∆T0 > 0, we have
∆Ta(∆T0,∆T0)

L(∆T0,∆T0)
= ∆T0 = ∆TL(∆T0, ∆T0). 2

Remark 3 Let us note that the quotient function ∆Ta

L
(∆T1, ∆T2) = ∆Ta(∆T1,∆T2)

L(∆T1,∆T2)

is defined on a subset wider than the domain of ∆TL. Actually, ∆Ta

L
: {(∆T1, ∆T2) ∈

R2 | ∆T1 +∆T2 6= 0} → R. Then ∆Ta

L
is an extension of ∆TL (actually Lemma

1 can be synthesized as: ∆TL ≡ ∆Ta

L

∣∣∣
R2

+

). Therefore, ∆Ta

L
may be used to ex-

trapolate ∆TL to points on R2 where the latter is not defined. This is helpful for
analysis purposes. For example, one sees from (B.3) that L|∂R2

+
=

∑∞
i=0

1
2i+1

,

and since 1
2i+1

> 1
2(i+1)

, ∀i ≥ 0, then
∑∞

i=0
1

2i+1
is divergent according to Theo-

rems 3.28 and 3.25 in 3 [53]. Therefore ∆Ta(∆T1,∆T2)
L(∆T1,∆T2)

→ 0 as (∆T1, ∆T2) → ∂R2
+

which, from Lemma 1, implies that ∆TL(∆T1, ∆T2) → 0 as (∆T1, ∆T2) ap-
proaches ∂R2

+ (from the interior of R2
+). Then, zero can be considered the

2 Formula 4.1.27 in [52] states the following well-known (infinite) series expansion

of the logarithmic function: ln z = 2
∑∞

i=0
1

2i+1

(
z−1
z+1

)2i+1
, ∀z : <(z) ≥ 0, z 6= 0.

3 In [53], Theorem 3.28 states that
∑∞

n=1
1
np converges if p > 1 and diverges if

p ≤ 1, while point (b) of Theorem 3.25 states that if an ≥ dn ≥ 0 for n ≥ N0 (for
some N0), and if

∑∞
n=1 dn diverges, then

∑∞
n=1 an diverges.
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value that the LMTD (as a bivariable function) takes at any point on ∂R2
+.

This is useful in the analysis developed in Section 4.1 of the present work. .

Lemma 2 [48, Lemma 2] The LMTD model in (B.1) is continuously differen-
tiable and positive on R2

+. /

Proof. Since L(∆T1, ∆T2) ≥ 1, ∀(∆T1, ∆T2) ∈ R2
+ (see (B.3)), one sees from

(B.4) that ∆TL exists and is continuous on R2
+. Moreover, from (B.4), we have

∂∆TL

∂∆Ti

=
L
2
−∆Ta

∂L
∂∆Ti

L2
(B.5)

i = 1, 2, where the arguments have been dropped for the sake of simplicity, and
from (B.3), one sees that ∂L

∂∆Ti
=

∑∞
i=1

2i
2i+1

S2i−1 ∂S
∂∆Ti

, with S = ∆T2−∆T1

∆T2+∆T1
and

∂S
∂∆Ti

= (−1)i2∆T3−i

(∆T1+∆T2)2
. From these expressions, one observes that ∂∆TL

∂∆Ti
, i = 1, 2,

exist and are continuous on R2
+, proving continuous differentiability. On the

other hand, notice (from (B.2)) that ∆Ta(∆T1, ∆T2) > 0, ∀(∆T1, ∆T2) ∈ R2
+

(the average of two positive numbers is positive). From this and the fact

that L(∆T1, ∆T2) ≥ 1 on R2
+, we have 0 < ∆Ta(∆T1,∆T2)

L(∆T1,∆T2)
≤ ∆Ta(∆T1, ∆T2),

∀(∆T1, ∆T2) ∈ R2
+. Then, from Lemma 1, positivity of ∆TL follows too. 2

Lemma 3 [48, Lemma 3] The LMTD model in (B.1) is strictly increasing in
its arguments, i.e. ∂∆TL

∂∆Ti
> 0, i = 1, 2, ∀(∆T1, ∆T2) ∈ R2

+. /

Proof. From (B.1) (for ∆T2 6= ∆T1) and (B.5) (for ∆T2 = ∆T1), we have

∂∆TL

∂∆Ti

=





(−1)i
[
ln ∆T2

∆T1
− ∆T2−∆T1

∆Ti

]

[
ln ∆T2

∆T1

]2 if ∆T2 6= ∆T1

1

2
if ∆T2 = ∆T1

(B.6)

i = 1, 2, existing and being continuous on R2
+ according to Lemma 2. Notice

from (B.6) that the proof of the lemma amounts to demonstrate positivity of

(−1)i
[
ln ∆T2

∆T1
− ∆T2−∆T1

∆Ti

]
, i = 1, 2, for all (∆T1, ∆T2) ∈ R2

+ such that ∆T1 6=
∆T2. Then, from Formula 4.1.33 in 4 [52], we have, for all such (∆T1, ∆T2):
∆T2−∆T1

∆T2
< ln ∆T2

∆T1
< ∆T2−∆T1

∆T1
⇐⇒ (−1)i

[
ln ∆T2

∆T1
− ∆T2−∆T1

∆Ti

]
> 0, i = 1, 2,

proving the lemma. 2

4 Formula 4.1.33 in [52] states the following well-known inequality: x
1+x < ln(1 +

x) < x, ∀x > −1, x 6= 0, or equivalently 1− 1
y < ln y < y − 1, ∀y > 0, y 6= 1.
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[18] M.N. Roppo, E.N. Ganić, Time-dependent heat exchanger modeling, Heat
Transfer Engineering 4 (2) (1983) 42–46.

[19] S. Papastratos, A. Isambert, D. Depeyre, Computerized optimum design and
dynamic simulation of heat exchanger networks, Computers and Chemical
Engineering 17 (1993) S329–S334.

[20] S. Zeghal, A. Isambert, P. Laouilleau, A. Boudehen, D. Depeyre, Dynamic
simulation: a tool for process analysis, in: Proceedings of Computer-Oriented
Process Engineering, EFChE Working Party, Barcelona, Spain, 1991, pp. 165–
170.

[21] L. Xia, J.A. de Abreu-Garcia, T.T. Hartley, Modelling and simulation of a heat
exchanger, in: Proceedings of the IEEE International Conference on Systems
Engineering, 1991, pp. 453–456.

[22] A.W. Alsop, T.F. Edgar, Nonlinear heat exchanger control through the use of
partially linearized control variables, Chemical Engineering Communications 75
(1989) 155–170.

[23] Y.S.N. Malleswararao, M. Chidambaram, Nonlinear controllers for a heat
exchanger, Journal of Process Control 2 (1) (1992) 17–21.
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