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In this work, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic
systems in R3 based on unstable dissipative systems via third-order differential equation.
This class of systems is constructed by a switching control law changing the equilibrium
point of an unstable dissipative system. The switching control law that governs the
position of the equilibrium point varies according to the number of scrolls displayed in
the attractor.

1. Introduction

Chaos has been an extremely studied area in the last decades, and designing systems

with chaotic behavior is of great interest for the scientific community. One of the

most remarkable properties is that simpler nonlinear deterministic equations can

have unpredictable (chaotic) long-term solution.

The characterization 1, electronic implementation 2, and design of new switched

systems with chaotic behavior 3, especially possessing multiple scrolls 4 or wings 5,6,

has been of great interest for the scientific community. The methods implemented

to generate multi-scroll systems in the literature may be catalogued in two 3-33: i)

systems presenting more equilibrium points than wings or scrolls, ii) systems pre-

senting the same number of equilibrium points and wings or scrolls. This paper is

devoted to the second kind of systems. In this work, we present a generalized theory

which is capable of explaining different approaches as saturation, threshold and step

functions in R3. This class of systems is constructed with unstable dissipative sys-

tems (UDS) 7,8 and a control law to display various multi-scroll strange attractors.

The multi-scroll strange attractors result from the combination of several unstable

“one-spiral” trajectories by means of a switching given by the control law. Without

loss of generality we focus our study to the simple jerk equation and a switching

control law to generate PWL systems that produce multiscroll attractors.

This paper is organized as follow: In Section 2, we introduce a theory to explain
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the generation of 1D-grid multi-scroll via UDS system, along with some examples

using the jerky equation. In Section 3 we exemplify the theory based on UDS to gen-

erate 2D and 3D-grid multi-scroll attractors, and present numerical results. Finally

in Section 4 we draw conclusions.

2. Generation of Multi-scroll Attractors by UDS

We consider the class of affine linear system given by

χ̇ = Aχ+B, (1)

where χ = [x1, . . . , xn]
T ∈ Rn is the state variable, B = [b1, . . . , bn]

T ∈ Rn stands

for a real vector, A = [αij ] ∈ Rn×n denotes a linear operator and the equilibrium

point is located at χ∗ = −A−1B. The dynamics of the system is given by matrix A

which has a stable manifold Es and another unstable Eu. According to the above

discussion it is possible to define an unstable dissipative system UDS, a similar

definition is given in 9, as follows:

Definition 1. A system given by (1) in Rn and eigenvalues λi, with i = 1, . . . , n.

We said that system (1) is a UDS if
∑n

i=1
λi < 0, and at least two λi are complex

conjugate eigenvalues with positive real part Re{λi} > 0.

Different kinds of behaviors are possible to find in a system given by (1) which

satisfies the definition 1 with ordered eigenvalues set Λ = {λ1 . . . λn} and λ1 ≤

λ2 ≤ . . . ≤ λn. Due to the system is hyperbolic so it has a stable manifold Es =

span{λ1, . . . λj} ⊂ Rn and another unstable Eu = span{λj+1, . . . , λn} ⊂ Rn with

1 ≤ j ≤ n and the following statements are true: (a) All initial condition χ0 ∈

Rn/Es leads to an unstable orbit that goes to infinity. (b) All initial condition

χ0 ∈ Es leads to a stable orbit that settles down at χ∗ and the system does not

generate oscillations. (c) The basin of attraction B is Es ⊂ Rn.

Now, we consider a switching system based on the affine linear system (1) given by

χ̇ = Aχ+B(χ),

B(χ) =











B1, if χ ∈ D1;
...

...

Bk, if χ ∈ Dk.

(2)

Where Rn = ∪k
i=1Di. Thus, the equilibria of the system (2) are χ∗

i = −A−1Bi,

with i = 1, . . . , k. So the goal is to define vectors Bi which can generate a class

of dynamical systems in Rn with oscillations into an attractor, that is, the flow

Φ(χ(0)) of the system (2) is trapped into an attractor A by means of defining at

least two vectors B1 and B2. This class of systems can display various multi-scroll

strange attractors as a result of the combination of several unstable “one-spiral”

trajectories by using B(χ) , i.e., we are interested in a vector field which can yield

multi-scroll attractors constitute by a commuted vector, Bi with i = 1, . . . , k and
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k ≥ 2. Each domain Di ⊂ Rn, contains an equilibrium point χ∗

i = −A−1Bi. As a

summary, a multi-scroll chaotic system based on UDS can be generated by (2) in Rn

and equilibrium points χ∗

i , with i = 1, . . . , k and k > 2. The special characteristic

of this multi-scroll chaotic system is that each χ∗

i may contain oscillations around

if its domain Di is large enough to support the scroll, so the flow φ(χ0) generates

an attractor A ⊂ Rn.

The general case of the linear ordinary differential equation(ODE) with constant

coefficients is given by the following form:

dnx

dtn
+ α1

dn−1x

dtn−1
+ . . .+ αn−1

dx

dt
+ αnx = 0, (3)

This equation determines a linear system (1) with equilibrium point at the origin.

So by means of controlling the equilibria in different domains χ∗

i ∈ Di it is necessary

to commute to different values of the vector B = Bi, with i = 1, . . . , k.

In order to illustrate our approach we consider the particular case of the linear

ordinary differential equation written in the jerky form as
...
x+α33ẍ+α32ẋ+α31x = 0,

representing the state space equations of (1), where the matrix A is described as

follows:

A =





0 1 0

0 0 1

−α31 −α32 −α33



 , (4)

where the coefficients α31, α32, α33 ∈ R may be any arbitrary scalar satisfying the

Definition 1. The characteristic polynomial of matrix A given by (4) takes the

following form:

λ3 + α33λ
2 + α32λ+ α31. (5)

For simplicity, we are defining the coefficients as α31 = 0.6, α32 = 0.6, α33 = 0.6,

with these values the eigenvalues result in λ1 = −0.7948, λ2,3 = 0.0974± 0.8634i,

which satisfy Definition 1. The stable and unstable manifolds are determined by the

eigenvector of the matrix A, as follows:

Es = Span{(−0.7017, 0.5577,−0.4433)T}; (6)

Eu = Span{(0.6559, 0.0639,−0.4826)T , (0, 5662, 0.1103)T}. (7)

The location of the equilibria χ∗

i of the system (4) are determined by the vectors

Bi, with i = 1, . . . , k, which can be defined as follows:

Bi =





b1i
b2i
b3i



 , (8)

Bi = −Aχ∗

i . (9)
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Fig. 1. Unstable and stable manifolds for 1D-grid multi-scroll attractor by UDS.

Considering the matrix A given by (4), then the vectors Bi are expressed as follows




b1i
b2i
b3i



 =





−β1

−β2

α31β3 + α32β1 + α33β2



 , (10)

where β1 = x∗

2i, β2 = x∗

3i and β3 = x∗

1i. Note that β1, β2 and β3 are step functions.

2.1. 1D-grid multi-scroll attractors by UDS

In this subsection, 1D-grid multi-scroll attractor is considered, thus the equilibria

will be considered on the x1-axis, so they have the following form (x∗

1i, 0, 0). This

determines that b1i = b2i = 0 and b3i = α31x
∗

1i, then the vectors Bi are given as

follows:

B =





0

0

α31β3



 . (11)

Now the aim is to generate a triple-scroll attractor, therein the phase space needs

to be partitioned in three domains Di, with i = 1, . . . , 3, such that R3 = ∪3
i=1Di

and ∩3
i=1Di = ∅. Considering the following equilibria χ∗

1 = (8, 0, 0)T ∈ D1, χ
∗

2 at the

origin (0, 0, 0)T ∈ D2, and χ∗

3 = (−8, 0, 0)T ∈ D3. The vectors Bi are determined

by the parameter α31 and the first component x∗

1i of each equilibria χ∗

i , so the β3

is given as follows

β3 =







x∗

11, if χ ∈ D1;

x∗

12 if χ ∈ D2;

x∗

13, if χ ∈ D3.

(12)

The phase space can be partitioned by defining orthogonal planes at the x1-axis.

Therein, an embodiment can be given asD3 = {χ|x1 < σ2},D2 = {χ|σ2 ≤ x1 ≤ σ1}
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and D1 = {χ|σ1 < x1}. There are different ways to select the parameters σ1 and

σ2. For example, if the parameters σ1 = 3.8 and σ2 = −3.8, then the parameter β3

is governed by the following switching control law (SCL):

β3 =







8, if x1 ≥ 3.8;

0 if −3.8 < x1 < 3.8;

−8, if x1 ≤ −3.8.

(13)

Figure 1 shows the stable Es and unstable Eu subspace of each affine linear sys-

tem given by (2) with (4) and (13). The equilibria are located at the intersection

of these two manifolds χ∗

i = Es
i ∩ Eu

i , with i = 1, 2, 3. The stretching and folding

behavior required for chaotic dynamics is given by means of the stable and unstable

manifolds in each domain Di, i.e., a trajectory escapes from each domain Di due to

the Eu
i unstable manifold and can be attracted again due to the Es stable manifold,

as it can be seen in Fig. 1.

A 1D-grid triple-scroll attractor is generated by the β3 SCL (13) under equations

(2)-(4). Figure 2 shows the projections of the 1D triple-scroll chaotic attractor

onto the planes: a)(x1, x2), b)(x1, x3), and c)(x2, x3). The initial condition used

is (0, 0.1, 0.1)T , and is the same for the following cases. Figure 3 shows with blue

dots the basin of attraction B onto the (x1, x2)-plane. B was obtained by first se-

lecting a grid onto the (x1, x2)-plane given by −60 ≤ x1 ≤ 60 and −60 ≤ x2 ≤ 60.

We then varied the values of x1 and x2 with increments of 1, observing the conver-

gence of each trajectory, under the condition |χ(t)| < 100.

The maximal Lyapunov exponent was computed and is equal to 0.1261, thus this

demonstrates the chaotic behavior of the dynamical system. Figure 4 shows the

points capture in the intersection of the chaotic attractor with the Poincaré section

defined by conditions x1 = 0 and ẋ1 > 0. In this figure is possible to see the shape

of a horseshoe in the points capture in the middle, so the map given by the Poincaré

section may be studied as a discrete dynamical system. Introducing more equilib-

rium points to the system, along with the corresponding switching control law and

the nonlinearity30, one can create any number of scrolls inside the 1D-grid.

So, n-scroll chaotic attractors can be yielded by controlling the β3 parameter. A

quadtuple and quintuple scroll attractors can be generating as follows:

β3 =















16, if x1 ≥ 11.4;

8, if 3.8 < x1 < 11.4;

0 if −3.8 < x1 < 3.8;

−8, if x1 ≤ −3.8.

(14)

β3 =























16, if x1 ≥ 11.4;

8, if 3.8 < x1 < 11.4;

0 if −3.8 < x1 < 3.8;

−8 if −11.4 < x1 < −3.8;

−16, if x1 ≤ −11.4.

(15)
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Fig. 2. The projections of the 1D-triple-scroll chaotic attractor onto the plane: A)(x1, x2),
B)(x1, x3), and C)(x2, x3).

The β3, given by the SCL’s (14) and (15), introduce other equilibrium points located

at χ∗

4 = (16, 0, 0)T and χ∗

5 = (−16, 0, 0)T , respectively.

The shape of the attractor depends on the commutation surfaces determine by the

parameters σ1 and σ2. For example, like double-scroll attractor can be generated if

the parameters σ1 = 2.6 and σ2 = −2.6, see the projection of the attractor onto the

(x1, x2) plane in Fig 5 a). Fig 5 b)shows the projection of the attractor onto the



May 11, 2015 13:13 WSPC/INSTRUCTION FILE 3D*multiscrolls

Chaotic Attractors Based on Unstable Dissipative Systems via Third-Order Differential Equation 7

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

x
1

x 2

Fig. 3. The Basin of attraction onto the (x1, x2)-plane is marked with blue dots.
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Fig. 4. The intersection of the chaotic attractor with the Poincaré section defined by x1 = 0.

(x1, x2) plane for σ1 = 4 and σ2 = −4.6. These attractors are generated by different

β3 and equations (2)-(4).

3. 2D and 3D-grid multi-scroll attractors by UDS

In this section we expand the concept of 1D-grid to 2D and 3D-grid multi-scroll

attractors based on UDS. We start with 2D-grid multi-scroll chaotic attractor gen-

erated by introducing new equilibria to the system. Now the equilibria are onto the

(x1, x2) plane, thus they have the following form (x∗

1i, x
∗

2i, 0). Therefore, accordingly

to eq. (10) the vectors Bi are given by b1i = −β1, b2i = 0 and b3i = α31β3 +α32β1.

In the case 1D-grid of triple-scroll attractor, the equilibria were given as (8, x∗

21, 0),

(0, x∗

22, 0) and (−8, x∗

23, 0) with x∗

21 = x∗

22 = x∗

23 = 0, as shown in Fig. 6 a). Now, if

x∗

21, x
∗

22, x
∗

23 ∈ {−8, 0, 8} then there are nine equilibria, as shown in Fig. 6 b). Thus,
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Fig. 5. Projection of the attractor onto the (x1, x2) plane generated by considering the parame-
ters: a) σ1 = 2.6 and σ2 = −2.6; b) σ1 = 4 and σ2 = −4.6.

the vector B is defined as follows:

B =





−β1

0

0.6β1 + 0.6β3



 , (16)

The parameter β3 is considered the same as in the previous case given by (13) and

the parameter β1 is governed by the following switching control law (SCL):

β1 =







8, if x2 ≥ 4;

0 if −4 < x2 < 4;

−8, if x2 ≤ −4.

(17)

Thus, a 2D-grid 3×3-scroll chaotic attractor is generated by introducing new equi-

libria to the system. Fig. 7 shows the projections of the 2D 3×3-scroll chaotic

attractor onto the planes: a)(x1, x2), b)(x1, x3), and c)(x2, x3), with initial condi-

tion (0, 0.1, 0.1)T . For the case of 3D-grid multiscroll chaotic attractor, now the

equilibria are in R3, thus they have the following form (x∗

1i, x
∗

2i, x
∗

3i). Therefore,

accordingly to eq. (10) the vectors Bi are given by b1i = −β1, b2i = −β2 and

b3i = α31β3 +α32β1 +α33β2. The equilibria are shown in Fig. 6 c) and there are 27

equilibria. In this similar way a 3D-grid 3×3×3-scroll attractor is generated, so the

location of the equilibria of the system are determined by the vector B which can

be defined as follows:

B =





−β1

−β2

0.6β1 + 0.6β2 + 0.6β3



 , (18)
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Fig. 6. Location of the equilibria of multi-scrolls attractors for: (a) 1D-grid, (b) 2D-grid and (c)
3D-grid.

The parameters β1 and β3 are given by (17) and (13), respectively, and the param-

eter β2 is governed by the following switching control law (SCL):

β2 =







24, if x3 ≥ 18;

12 if 6 < x3 < 18;

0, if x3 ≤ 6.

(19)
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Fig. 7. The projections of the 2D-grid 3 × 3-scroll chaotic attractor onto the planes: a)(x1, x2),
b)(x1, x3), and c)(x2, x3).

Figure 8 shows the projections of the 3D-grid 3×3×3-scroll chaotic attractor onto

the planes: a)(x1, x2), b)(x1, x3), and c)(x2, x3), with initial condition (0, 0.1, 0.1)T .

4. Conclusion

By means of the UDS definition, one can assure the generation of multiscroll chaotic

attractors in 1D, 2D and 3D-grids. So the UDS approach is an easy method to yield
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Fig. 8. The projections of the 3D-triple-scroll chaotic attractor onto the plane: A)(x1, x2),
B)(x1, x3), and C)(x2, x3).

multiscroll attractors. Controlling the vector B with a switching control law it is

possible to generate any number of scrolls in whatever direction. Also, the UDS

approach can been extended to generate hyperchaotic multiscroll attractors. The

future work is to extend the method to yield multiscroll attractors based on UDS

to only hyperbolic system without being dissipative, another interest is to extend

this work to the generation of families in 1D, 2D and 3D-grid multiscroll chaotic

attractors.
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