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In this paper we present a mechanism of generation of a class of switched dynamical
system without equilibrium points that generates a chaotic attractor. The switched dy-
namical systems are based on piecewise linear (PWL) systems. The theoretical results
are formally given through a theorem and corollary which give necessary and sufficient
conditions to guaranty that a linear affine dynamical system has no equilibria. Numerical
results are according with the theory.
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1. Introduction

Recently the construction of non linear systems with chaos has been studied, try-

ing to find the simplest systems with complex behavior, this is by looking for the

combination of quantity and type of nonlinear terms in the differential equations

that describe the system. This has lead to systematic methods for finding chaotic

systems, as found in Ref. 1 where is shown a system without equilibria, and a

methodology to construct a system with any number of equilibria was found by

adding symmetry to the system with only one stable point, but curiously a one-

scroll chaotic attractor is generated. It also has lead to the design of chaotic and

hyperchaotic electronic circuits as the presented in Ref. 2.

Something interesting about the chaotic systems is the behavior near the equilib-

ria. Several 3-dimensional systems that exhibit chaos have a saddle-foci equilibrium

point and those based on PWL systems have been taken to generate multiscroll

attractors.3,4 However a system with different kind of equilibria has been reported

by Yang and Chen in Ref. 5 which presents a saddle equilibrium point and two

stable node-foci equilibria, this system connects the originals Lorenz and Chen sys-

tems. An interesting chaotic system with an unique stable node-focus equilibrium

point was presented in Ref. 6.
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The trend was to generate chaotic systems without equilibrium point, as the sys-

tem reported by Sprott.7 In the same spirit in Ref. 8 three methods have been used

to produce seventeen three-dimensional chaotic systems based on quadratic terms

to yield nonlinearities which present no equilibria. The methods can be classified as

follows:

• Adding a constant term to a nonhyperbolic system, adjusting and simpli-

fying the parameter and coefficients of other terms.

• Looking at cases where equilibria of a parametric system are imaginary and

adjusting and simplifying the parameter and coefficients of the terms.

• Adding a constant to each of the derivatives in known chaotic systems and

looking for solutions where the numerically calculated equilibria do not

exist.

In Ref. 9 a simple three-dimensional autonomous system based on Sprott D

system is reported. This system presents the coexistence of chaotic attractors with

two saddle-foci, non-hyperbolic equilibrium or no equilibria through a constant con-

troller, which can adjust the type of chaotic attractors.

Nowadays, there is a trend to bring the chaotic integer-order systems to chaotic

fractional-order systems. This is the case of the fractional-order systems without

equilibria presented in Ref. 10 which has been developed starting from the corre-

sponding integer-order system.8

These systems without equilibrium points could be helpful in the deterministic

modeling of dynamics which seems to have no equilibria in reality as the Brow-

nian motion, also could contribute in the construction of pseudorandom number

generators and new communication schemes as those reported in Ref. 11,12.

The previous results about chaotic dynamical systems without equilibrium point

have been constructed by means of nonlinear functions based on cuadratic terms

or the multiplication of their states, and also using the absolute value and sing

functions.

As it is well known, it is not possible to obtain complex behavior with an affine

linear system of the form ẋ̇ẋx = Axxx + B. So it is necessary to use piece wise-linear

(PWL) systems, for example the well known Chua system which has three linear

parts. So the aim is to generate a PWL system with chaotic behavior without

equilibrium point using the method for generating an strange attractor proposed in

Ref. 13 using 3-D unstable dissipative system which are stable in two components

but unstable in the other one (UDS Type II) and a switching law. This PWL system

without equilibria can help to revealing some new mysterious features of chaos due

to simplicity.

In this paper we give conditions to construct a system without equilibria based

on PWL systems. Section 2 contains the results about the generation of dynamical

systems without equilibrium point based on affine transformations. In Section 3, we

present a methodology to generate a dynamical system in order to yield a strange

attractor without equilibria using a switching law and two affine transformations.



February 2, 2016 20:6 WSPC/INSTRUCTION FILE manuscript

Generation of Chaotic Attractors Without Equilibria Via Piecewise Linear Systems 3

Section 4 contains some examples of dynamical systems without equilibria based on

the mechanism presented in previous sections. Finally in Section 5 are the conclu-

sions of the work.

2. Dynamical systems without equilibrium based on affine

transformation

We start by considering a dynamical system given by the following form:

ẋxx = Axxx +B, (1)

where xxx ∈ R
n is the state vector, A ∈ R

n×n is a linear operator and B ∈ R
n

is a constant vector. The equilibria of the system is determined by ẋxx = 0. So,

when the vector B = 0, the equilibria of the system is given by the solution of

the homogeneous systems of equations of the form Axxx = 0 and the systems always

present at least one equilibrium point, i. e., if Rank(A) = n then the equilibrium

point is at the origin xxx = 0; but if Rank(A) < n then there are an infinite number

of equilibria.

When vector B �= 0 we get non homogeneous systems of equations of the form

Axxx = −B. There are two cases, the former is when the matrix A is full rank then the

system is definite and has only an equilibrium point at xxx∗ = −A−1B. The second

case is when the matrix A is not full rank then there are two possibilities: the system

is inconsistent and has no equilibrium or it is indefinite and has an infinity number

of equilibria. Notice that for the second case the matrix A does not have inverse

matrix, this is a necessary condition but is not enough for guaranty systems without

equilibrium point.

The following Theorem establishes necessary and sufficient conditions for the

construction of a linear affine dynamical system without equilibrium points:

Theorem 1. Given a dynamical system based on affine transformation of the form

ẋ̇ẋx = Axxx+B where xxx ∈ R
n is the state vector, B ∈ R

n is a nonzero constant vector

and A ∈ R
n×n is a linear operator, the system posses no equilibrium point if and

only if:

• A is not invertible.

• B �= 0 is linearly independent of the set of vectors comprised by columns of

the operator A.

Proof. (⇐) Let us begin by considering the case where the matrix A is not invert-

ible and the nonzero vector B is linearly independent of the column vectors of the

operator A.

If A is not invertible then det(A) = 0, thus this implies that A has at least a lin-

early dependent column vector, which means the set of column vectors of A cannot
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span Rn. So the vector B is linearly independent of the column vectors of A and

B �∈ rangeA. Then there is not an xxx that satisfies Axxx = B, so this is a contradiction.

We can conclude that the dynamical system given by ẋ̇ẋx = Axxx + B does not have

equilibrium point.

(⇒) Now let us consider that the system posses no equilibrium point then ẋ̇ẋx �= 0

for all xxx ∈ R
n. So there is a contradiction in Axxx = B which means B �∈ rangeA,

also as B ∈ R
n this means dim(rangeA) < n. As rangeA is the span of the column

vectors of the matrix A implies that the number of linearly independent columns of

A is less then n thus det(A) = 0 which implies that A is not invertible, also as vector

B cannot be represented as a linear combination of the columns of A it should be

linearly independent of them.

Corollary 1. Given a dynamical system based on affine transformation of the form

ẋ̇ẋx = Axxx+B where xxx ∈ R
n is the state vector, B ∈ R

n is a nonzero constant vector

and A ∈ R
n×n is a linear operator, the system posses no equilibrium point if and

only if:

• rank([A,B]) > rank(A).

Proof. (⇐) Let A be not invertible and rank([A,B]) > rank(A). Due to [A,B]

is a rectangular matrix of n × n + 1 and the maximum rank possible is n then

rank(A) < n thus det(A) = 0 and A is not invertible. The rank of [A,B] is equal

to the number of linearly independent column vectors of [A,B] and the rank of A

is equal the number of linearly independent column vectors of A, then B must be

linearly independent of the column vectors of A in order to fulfill rank([A,B]) >

rank(A). Then conditions in Theorem 1 are fulfilled and the system posses no

equilibria.

(⇒) Now consider the system posses no equilibria, due to Theorem 1 A is not

invertible and B linearly independent of the column vectors of A. As A is not

invertible rank(A) < n, as B is linearly independent of the column vectors of A

then rank([A,B]) = rank(A) + 1 thus rank([A,B]) > rank(A).

3. Chaotic Attractor without equilibria based on PWL systems

There are two methods to obtain a PWL system without equilibrium points: The

former is by getting a system in which the equilibrium points are always in a different

domain of the current state so the system can be said to have no equilibrium; the

second is by ensuring there exist no such point due to a contradiction in the finding

of the equilibrium point for all the linear parts. This paper is focused in the last

method.
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Consider a dynamical system given by Eq. (1), whose A matrix is not full rank

and vector B = 0, which means the system has a continuous of equilibrium points.

For vector B �= 0 if this vector makes the system fulfills conditions in Theorem 1

then the dynamical system (1) doesn’t have equilibria.

This allows us to compare the dynamical system (1) with and without equilibria

for B = 0 and B �= 0, respectively, and considering the same matrix A. As the

system losses its equilibria due to vector B �= 0 the vector field in those points

are not longer zero and the magnitude and direction of the vector field depends on

the linear operator A and the vector B. To illustrate this, consider the dynamical

system given by (1) with vector B = 0 and matrix A as follows:

A =

[
0 0

0 a22

]
, (2)

with a22 �= 0 and x = (x1, x2)
T , note that the matrix A is singular and rank(A) = 1.

The x1 and x2 axes correspond to the eigenspaces associated to the eigenvalues 0

and a22, respectively. The x1 axis is the continuous of equilibrium points and could

be seen as a set of α limit points, and the x2 axis is a stable eigenspace for a22 < 0

and unstable eigenspace for a22 > 0.

Now for the case B �= 0, without loss of generality when B = (b1, 0)
T , there

are two cases b1 > 0 and b1 < 0, note that both cases make the system fulfills the

second condition of Theorem 1 since rank(−[A,B]) = 2. The new vector field and

the trajectory behavior are toward right side or toward left side for b1 > 0 and

b1 < 0, respectively. Thus the dynamical system (1) does not have equilibria.

As it can be seen after changing the vector B = 0 to B �= 0, the dynamical

system (1) fulfilling conditions of Theorem 1 the points in the state space which

were equilibrium points for B = 0 are no longer equilibrium points in the cases

B �= 0 and furthermore the vector field change is easy to follow.

It is important to observe that the equilibria could be located in a different

way and the idea still apply, the vector field change depends on the matrix A and

the vector B. For example, another possible location of the equilibria consider the

system given by (1) with matrix A as follows:

A =

[
a11 0

a21 0

]
. (3)

The eigenvalues of the matrix A are a11 and 0, in this case the continuous of

equilibria is located along x2 axis. Keeping this matrix A and using the same vectors

B proposed before both conditions in Theorem 1 are fulfilled.

Hitherto we have studied the dynamics of the system (1) fulfilling conditions of

Theorem 1. However the goal is to generate chaotic attractors, so it is important to

consider switched system based on the previous theory.

For our proposed method with PWL systems we are going to restrict the con-

struction to systems of the form given by (1) in R
3 which fulfill conditions in The-

orem 1 and whose matrix A has eigenvalues λi, i = 1, 2, 3, where two of them are
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complex conjugate with negative real part and one of them zero i.e. the systems

have a continuous of equilibria for B = 0. We could see these systems as a set of

parallel systems in R
2 which present a stable focus, as is shown in Fig. 1.

Fig. 1. Linear affine system with an eigenvalue λ = 0.

However if we consider the vecto B �= 0 such that the dynamical system (1)

fulfills conditions in Theorem 1 we obtain something similar to Fig. 2.

Fig. 2. Linear affine system without equilibria.

In Ref. 13 two kind of unstable dissipative systems (UDS’s) were defined as

follows:

Definition 1. A system given by ẋ̇ẋx = Axxx in R
3 with eigenvalues λi, i = 1, 2, 3, is

said to be an UDS Type I, if Σ3
i=1λi < 0 and one eigenvalue λi is negative real and

the other two are complex conjugate with a positive real part.13

Definition 2. A system given by ẋ̇ẋx = Axxx in R
3 with eigenvalues λi, i = 1, 2, 3, is

said to be an UDS Type II, if Σ3
i=1λi < 0 and one eigenvalue is positive real and

the other two are complex conjugate with a negative real part.13

Also in Ref. 13 a way to generate an attractor is proposed by using switched

system based on two UDS Type II and a switching surface located between the two

equilibrium points. Although the linear system without equilibria is not a UDS Type

II we can appreciate some similarities in the sense that its behavior is the same as a

UDS Type II in half the state space. Exploiting these observations we propose the

construction of a PWL system without equilibria that generates a chaotic attractor.

Definition 3. Consider two system of the form given by Eq. (1) in R
3 with domains

Dj ⊂ R
3, j=1,2, which fulfill conditions given in Theorem 1 and whose matrix Ai has
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eigenvalues λi, i = 1, 2, 3, where two of them are complex conjugate with negative

real part and one of them is zero. A PWL system without equilibria is given as

follows:

ẋ̇ẋx =

{
A1xxx+B1, if xxx ∈ D1;

A2xxx+B2, if xxx ∈ D2.
(4)

Where D1 ∪D2 = R
3 and D1 ∩D2 = ∅.

With a correct set of subsystems and an appropriate switching law we can obtain

a chaotic attractor. Fig. 3 illustrates the construction.

Fig. 3. Mechanism to generate a chaotic attractor.

4. Numerical results

As an example of the construction given in Definition 3, consider the following

system whose matrices A1 and A2 are equal:

ẋ̇ẋx =

{
Axxx+B1, if x1 < σ;

Axxx+B2, if x1 ≥ σ.
(5)

Where σ = 0,

A =

⎡
⎣0 1 1

0 −0.5 3

0 −3 −0.5

⎤
⎦ , B1 =

⎡
⎣0.50

0

⎤
⎦ , B2 =

⎡
⎣−1

10

0

⎤
⎦ . (6)

The result is a chaotic attractor in R
3 which is shown in Fig. 4. Fig. 5 shows

the projections of the strange attractor onto the plane: a) (x1, x2), b) (x1, x3) and

c) (x2, x3). Note that in this system the switching surface is located at x1 = σ

for σ = 0 but another value could be chosen for σ ∈ R and the attractor just get

displaced along axis x1.

Methods to proof a system exhibits chaotic behavior that make use of homoclinic

and heteroclinic orbits cannot be applied to this kind of systems since they have not

equilibrium points. Nevertheless the maximum Lyapunov exponent for our example

was calculated with a modified method based on the methods of Wolf(in Ref. 14)
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Fig. 4. Chaotic attractor without equilibria in the space.
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Fig. 5. Projections of the chaotic attractor onto the plane: (a) (x1, x2), (b) (x1, x3) and (c)
(x2, x3).

and Rosenstein(in Ref. 15), for this, a fourth order Runge-Kutta method was used

with a step size of h = 0.0001 and the average of 50 trajectories with an orthogonal

initial separation of d0 = 1e−6 from a main previously calculated trajectory. The

Maximum Lyapunov Exponent (MLE) found is λ = 0.243 and it is shown in Fig. 6.

It is worth mentioning the fact that the exponents calculated from the Jacobian

method are the same eigenvalues of the matrix A (λ1,2 = −0.5 ± 3, λ3 = 0), this

method totally lost the effect of the vectors B in the switched system.

0 100 200 300
−15

−10

−5

0

5

t

L
n
(d
)

 

 

Average
MLE = 0.243063

Fig. 6. Calculation of the Maximum Lyapunov Exponent.

As another example of the construction given in Definition 3, consider the fol-

lowing system whose matrices A1 and A2 are equal with eigenvalues λ1 = 0, and

λ2,3 = −0.5± 3.4278i:
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ẋ =

{
Ax +B1, ifx1 < 0;

Ax +B2, ifx1 ≥ 0.
(7)

A =

⎡
⎣0 −1 −2

0 0 4

0 −3 −1

⎤
⎦ , B1 =

⎡
⎣0.515

0

⎤
⎦ , B2 =

⎡
⎣−0.5

0

1

⎤
⎦ . (8)

The result is a chaotic attractor in R
3 which is shown in Fig. 7. Fig. 8 shows

the projections of the strange attractor onto the plane: a) (x1, x2), b) (x1, x3) and

c) (x2, x3).The MLE found is λ = 0.2125 (Fig. 9).
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Fig. 7. Chaotic attractor without equilibria in the space.
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Fig. 8. Projections of the chaotic attractor onto the plane: (a) (x1, x2), (b) (x1, x3) and (c)
(x2, x3).

5. Conclusion

In this paper necessary and sufficient conditions are given to construct a dynamical

system without equilibria based on linear affine transformations. Also a construc-

tion method inspired on the UDS type II systems is proposed to obtain a piecewise

linear system without equilibria which generates a chaotic attractor. The switching

surface could be placed at any point in the state space which suggests a possible

construction of multiple scroll attractors or multiple attractors in the state space,
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Fig. 9. Calculation of the Maximum Lyapunov Exponent.

but this is under research.
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linear Sci Numer Simulat 19, pp. 2740–2746 (2014).
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