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In this paper we present a dynamical system based on the Langevin equation without
stochastic term and using fractional derivatives that exhibits properties of Brownian

motion, i. e. , a deterministic model to generate Brownian motion is proposed. The

stochastic process is replaced by considering an additional degree of freedom in the
second order Langevin equation. Thus it is transformed into a system of three first order

linear differential equations, additionally α-fractional derivative are considered which

allow us obtain better statistical properties. Switching surfaces are established as a part
of fluctuating acceleration. The final system of three α-order linear differential equations

does not contain a stochastic term, so the system generates motion in a deterministic
way. Nevertheless, from the time series analysis, we found that the behavior of the system

exhibits statistics properties of Brownian motion, such as, a linear growth in time of the

mean square displacement, a Gaussian distribution. Furthermore, we use the detrended
fluctuation analysis to prove the Brownian character of this motion.

Keywords: Fractional Brownian motion; deterministic Brownian motion; unstable dissi-

pative systems; DFA analysis.

PACS Nos.: 11.25.Hf, 123.1K

1. Introduction

Brownian motion has been studied since Robert Brown’s work on the fertilization

process of flowers 1. One of the first to describe Brownian motion as uncorrelated

stochastic process was Thorvald N. Thiele2, in 1880, in a paper on the method

of least squares. At that time the nature of the Brownian motion was uncertain

therefore there were many open questions about the particle interactions with their

environment. Until 1900, Louis Bachelier, in his PhD thesis applied Brownian mo-

tion to the stock and option market fluctuations 3. The study of Brownian motion

∗Corresponding author
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was continued by Albert Einstein, who discussed Brownian motion in his work from

the point of view of the molecular kinetic theory of heat4. It is worth mentioning

that Eistein was unaware of the previous work on the subject and he gave the first

mathematical description of a free particle Brownian motion. Later, Smoluchowski
5 brought the solution to the problem and attracted the attention of physicists on

the problem.

In 1908, Langevin 6 obtained the same result as Einstein, using a macroscop-

ically description based on the Newtons second law,i.e., the dynamical model is

based on second-order differential equation with a stochastic term. He said that his

approach is “infinitely simplest” because it was much simpler than the proposed by

Einstein. Since the pioneering work of Langevin to model Brownian motion using

a stochastic term in the mathematical model, many papers have been devoted to

the description of this phenomenon 5, where features of this behavior have been

defined. According with Van Hove 7 method Prigogine and Grigolini8,9 “believed”

that Brownian motion can be derived from deterministic Hamiltonian models of

classical mechanics. But this theory, Hamiltonian models of classical mechanics and

the Liouville equation, involves grave difficulties as the enormous degrees of freedom

and the long times with respect to the duration process. However the first deter-

ministic model of Brownian motion was not proposed until Trefán et. al. 10. It is

important to mention that two approaches can be distinguished: The former, dy-

namical models are based on a stochastic term and the second, without a stochastic

term, i.e. a deterministic Brownian motion.

The idea of deterministic Brownian motion has been discussed in hydrodynamic

and chemical reactors with oscillatory behavior, where the dynamic is completely

deterministic and it is always refereed as “microscopic chaos”. In this sense Trefán

et. al. 10 and Huerta-Cuellar et. al. 11 have proposed a Brownian motion models

based on Langevin equation. The idea of Trefán et. al. consist of replacing the

stochastic term by a discrete dynamical system, which generates pseudo-random

numbers; the process drives a Brownian particle and has “statistical” properties

that differ markedly from the standard assumption of Gaussian statistics, this is

because of the discrete dynamical system used by Trefán has a “U-shaped proba-

bility” distribution as many chaotic discrete dynamical systems. The approach of

Huerta-Cuellar et. al. is in the same spirit that Trefán et. al. but now the stochastic

term is controled by the jerky equation, i.e., by adding an additional degree of free-

dom to the Langevin equation it is possible to transform it into a system of three

linear differential equations without a stochastic term; this process displays “like-

Gaussian probability” distributions of system variables, which differ from the stan-

dard assumption. Based on this approach we use fractional derivatives in this work

and get a deterministic Brownian motion model with a greatly improved Gaussian

probability distributions of all the variables of the system.

The Langevin equation has been used in many areas, such as modeling the

evacuation processes 12, photoelectron counting 13, analyzing the stock market 14,

studying the fluid suspensions 15, deuteron-cluster dynamics 16, protein dynamics 17,
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self organization in complex systems 18, etc. For other applications of the Langevin

equation in physical chemistry and electrical engineering, one can refer to Ref. 19.

The classical study of the Brownian motion via the Langevin equation is under the

hypothesis that the process is a Markov process, i.e., the random forces modeled by

the stochastic term are independent so the process does not have memory. Although

the Langevin equation plays an important role in many fields, there are still some

behaviors such as anomalous diffusion (superdiffusion and subdiffusion), power law,

long-range interactions that the Langevin equation can not well describe them.

Therefore, various fractional Langevin equations were proposed in Ref. 19, 20, 21. In

this way the fractional Langevin equation can capture the aforementioned features

that the Langevin equation can not achieve.

Brownian motion behavior is characterized by specific properties, such as a linear

growth in time of the mean square displacement, Gaussian probability distributions

of system variables, an exponential in time decay of the positional autocorrela-

tion function. This last property can be characterized by the detrended fluctuation

analysis (DFA) which was developed by Peng et al. 22. So the DFA thecnique charac-

terizes the correlation properties of a signal. In this paper a deterministic fractional

model to generate Brownian motion based on Langevin equation and jerky equation

is proposed in the same way that Ref. 11, its behavior is characterized by time series

analysis via DFA.

Remark 1. Nowadays the term Brownian motion is used to refer a time series

that exhibit the statistical properties of Brownian motion phenomenon. Thus, it is

said that a model generates Brownian motion if the time series obtained exhibit the

statistical properties of Brownian motion.

This paper is organized as follows: In section 2, some basic concepts of fractional

differential equations theory are introduced as differential operators, stability theory

in fractional systems and a numerical method to solve fractional systems. In section

3, the proposed model via jerk equation and fractional derivatives is presented with

its stability analysis. Section 4 contains the numerical results obtained with the

proposed model, and the statistical properties of the time series by means of DFA

analysis to confirm the Brownian behavior. Also the maximum Lyapunov exponent

is computed. Finally conclusions are drawn in Section 5.

2. Basic concepts in fractional calculus

Fractional derivatives and integrals are generalizations of integer ones. Nevertheless,

in literature we can find many different definitions for fractional derivatives Ref. 23,

24, 25, 26 being the Riemann-Liouville and the Caputo definitions the most reported
23. The fractional derivative of Riemann-Liouville is defined as:

Dα
a f(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(t)

(x− t)α−n+1
dt, (1)

and the Caputo definition is described by:
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Dα
0 f(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt, (2)

with n = dαe, and Γ is the Gamma function which is defined as:

Γ(z) =

∫ ∞
0

tz−1e−tdt. (3)

For instance, in fractional order systems the stability region depends on the

derivative order α as it is depicted in Fig. 1 of Ref. 27. It is important to note that

the stability of an equilibrium point can be controled by means of the derivative

order α, for example, a saddle hyperbolic equilibrium point of an integer system

can be transformed to a stable equilibrium point by changing the system derivative

order α. This is an important consideration for designing a mathematical model of

Brownian motion because we are interested in unstable dynamics.

A general commensurate fractional order time invariant system is described as

follows:

Dnk
0 x(t) = f(t, x(t), Dn1

0 x(t), Dn2
0 x(t), · · · , Dnk−1

0 x(t)), (4)

subject to initial conditions

x(j)(0) = x
(j)
0 , with j = 0, 1, . . . , dnke − 1,

where n1, n2, . . . , nk ∈ Q, such that nk > nk−1 > · · · > n1 > 0, nj − nj−1 ≤ 1

for all j = 2, 3, . . . , k and 0 < n1 ≤ 1. Let M be the least common multiple of the

denominator of n1, n2, . . . , nk and set α = 1/M and N = Mnk. Then accordingly

with theorem 8.1 given in Ref. 23 the equation (4) is equivalent to the following

system of equations.

Dα
0 x0(t) = x1(t),

Dα
0 x1(t) = x2(t),

... (5)

Dα
0 xN−2(t) = xN−1(t),

Dα
0 xN−1(t) = f(t, x0(t), xn1/α(t), · · · , xnk−1/α(t)),

with initial conditions

xj(0) =

{
x
(j/M)
0 , if j/M ∈ N ∪ {0},

0, other case.

Furthermore, this linear time invariant system can be expressed in a matrix form

as follows:
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dαx(t)

dtα
= Ax, (6)

where x ∈ Rn is the state vector, A ∈ Rn×n is a linear operator, and α is the

fractional commensurate derivative order 0 < α < 1. The stability of this kind of

systems is stated as follows:

- Asymptotically stable: The system (6) is asymptotically stable if and only

if |arg(λ)| > απ
2 for all eigenvalues (λ) of matrix A. In this case, the solution

x(t)→ 0 as t→∞.

- Stable: The system (6) is stable if and only if |arg(λ)| ≥ απ
2 for all eigenvalues

(λ) of matrix A obeying that the critical eigenvalues must satisfy |arg(λ)| = απ
2

and have geometric multiplicity of one.

The interest is to have unstable dynamics in order to generate Brownian motion,

thus the system is restricted to have at least one eigenvalue in the unstable region,

i.e., the system (6) is unstable if and only if |arg(λ)| < απ
2 for at least one of its

eigenvalues (λ) of matrix A.

Additionally, the system given by (6) with equilibrium point at the origin can

be generalized by affine linear system as follows:

dαx(t)

dtα
= Ax +B, (7)

where B ∈ Rn is a constant vector and A ∈ Rn×n is a nonsingular linear operator.

Now the equilibrium point p ≡ (x∗1, x
∗
2, · · · , x∗N )T = −A−1B of a general commen-

surate fractional order affine linear system (7) with fractional order 0 < α < 1, is

saddle equilibrium point if its eigenvalues λ1, λ2, . . . , λκ, λκ+1, . . . , λn of its Jacobian

matrix evaluated at the equilibrium point fulfill the following condition.

|arg(λi)| > απ
2 with i = 1, 2, . . . , κ,

|arg(λi)| < απ
2 with i = κ+ 1, κ+ 2, . . . , n.

(8)

Note that we are interested in working with unstable systems, i.e., systems that

do not fulfill the locally asymptotic stable condition.

min|arg(λi)| >
απ

2
, for i = 1, 2, . . . , n. (9)

2.1. Numerical method to solve fractional differential equations

There are not methods that can provide analytically the exact solution of some

fractional differential equation as it also happens in integer-order systems, therefore

it is necessary to use numerical methods. The Adams-Bashforth-Moulton (ABM)
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method, a predictorcorrector scheme, was reported in Ref. 28 and it is used to obtain

the time evolution of fractional systems. The algorithm is a generalization of the

classical Adams-Bashforth-Moulton integrator that is well known for the numerical

solution of first-order problems as switching systems 27. We now present the method

that is well understood and that has been proven to be efficient in many practical

applications 29,30.

Consider the fractional differential equation that is described by (4) as follows:

Dαx(t) = f(t, x(t)), 0 ≤ t ≤ T ;

x(k)(0) = x
(k)
0 , k = 0, 1, . . . , n− 1.

(10)

We assume the function f is such that a unique solution exists on some interval

[0, T ], and assume that we are working on a uniform grid {tj = jh : j = 0, 1, . . . , N}
with some integer N and h = T/N .

The solution of (10) is given by an integral equation of Volterra type as

x(t) =

dαe−1∑
k=0

xk0
tk

k!
+

1

Γ(α)

∫ t

0

(t− z)α−1f(z, x(z))dz, (11)

xk+1 =

dαe−1∑
k=0

xk0
tk

k!
+

1

Γ(α)
(

k∑
j=0

aj,k+1f(tj , xj) + ak+1,k+1f(tk+1, x
P
k+1)), (12)

where

aj,k+1 =



hα

α(α+ 1)
(kα+1 − (k − α)(k + 1)α), if j = 0;

hα

α(α+ 1)
((k − j + 2)α+1 + (k − j)α+1

−2(k − j + 1)α+1), if 1 ≤ j ≤ k;
hα

α(α+ 1)
, if j = k + 1.

(13)

With the predictor structure given as follows.

xPk+1 = x(0) +
1

Γ(n)

k∑
j=0

bj,k+1f(tj , xj), (14)

and

bj,k+1 =
hα

α
((k + 1− j)α − (k − j)α). (15)
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The error of this approximation is given by

maxj=0,1,...,N |x(tj)− xh(tj)| = O(hp). (16)

3. Deterministic model to generate Brownian motion

The onset of Brownian motion is a suspending particle in fluids. The motion of this

particle occurs due to collisions between molecules of the fluid, and considering that

in each collision a molecule changes its velocity in small amount. This fact is because

of the suspended particle under normal conditions suffers about 1021 collisions per

second, so the accumulated effect results to be considerable. Each of these collisions

is always determined by the last event which is produced by physical interactions

in the system. Since it can be thought that each collision produces a kink in the

path of the particle, one can not hope to follow the path in any detail, i. e. , the

details of the path are infinitely fine. Thus the Brownian particle make a fluctuating

movement. So stochastic models of Brownian motion follow the average motion of

a particle, not a particular path of a particule.

The stochastic theory of Brownian motion of a free particle (in the absence of

an external field of force) is generally governed by the Langevin equation as follows.

dx

dt
= v,

dv

dt
= −γ dx

dt
+Af (t),

(17)

where x denotes the particle position and v its velocity. According to this equation,

the influence of the surrounding medium on the particle motion can be splitted into

two parts. The first term −γ dxdt stands for the friction applied to the particle, it is

assumed that the friction term is according with the Stokes law which states that

the friction force 6πaσv/m decelerates a spherical particle of radius a and mass m.

Hence, the friction coefficient is given as follows:

γ = 6πaσ/m, (18)

where σ denotes the viscosity of the surrounding fluid.

The second term Af (t) is the fluctuation acceleration which provides a stochastic

character of the motion and depends on the fluctuation force Ff (t) as Af (t) =

Ff (t)/m, where m is the particle mass.

Two principal assumptions were made about this stochastic term Af (t) in order

to produce Brownian motion:

- Af (t) is independent of x and v.

- Af (t) varies extremely fast as compared with the variation of v.

The latter assumption implies that there exists a time interval ∆t during which

the variations in v are very small. Alternatively, we may say that though v(t) and
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v(t+∆t) are expected to differ by a negligible amount, no correlation between Af (t)

and Af (t+ ∆t) exists due to it is a stochastic term.

The idea of use fractional calculus is based in that trajectories with self-similar

(fractal) structure in systems that lifetime of any state of regular motion is also ran-

dom, as is the case of Brownian motion, it becomes possible to describe it by intro-

ducing fractional integrals and derivatives. In this sence various fractional Langevin

equations have beeen proposed to generate Brownian motion, see Ref. 19, 20, 21.

These models differ from the usual Langevin equation by replacing the derivatives

with respect to time by the fractional derivative of α order.

dαv

dtα
= −γ d

αx

dtα
+Af (t), (19)

where x denotes the particle position and v its velocity. We can rewrite the frac-

tional Langevin equation (19) in two fractional differential equations by a change

of variables,

Dα
0 x = v,

Dα
0 v = −γv +Af (t),

(20)

where Dα
0 is the Caputo derivative operator.

In order to generate a deterministic model of Brownian motion an additional

freedom degree is added to the system (20). And the stochastic term is avoid by

means of replacing the fluctuating acceleration Af (t) with the jerk equation. The

aforementioned statement is reached by considering dynamical systems which are

defined by a class of affine linear systems given by:

Ẋ = AX + B(X),

B(X) =


B1, if X ∈ D1;

B2, if X ∈ D2;
...

...

Bk, if X ∈ Dk.

(21)

The class of affine linear systems considered here, is that that presents oscilla-

tions (“one-spiral” trajectories called scroll) around equilibria due to stable and un-

stable manifolds Es and Eu, respectively. These manifolds are defined in a way that

ϑ = {ϑ1,2,3} is a set of column eigenvectors such that Aϑi = λiϑi with i = 1, 2, 3;

Es = Span{ϑ1} and Eu = Span{ϑ2,3}.
If the linear part of the system given by eq. (21) has a saddle equilibrium point,

it is possible to generate multi-scrolls by means of a piecewise linear (PWL) system

under the following considerations for the vector B.

The affine vector B must be driven by a switching function that changes de-

pending on which domain Di ⊂ R3 with R3 = ∪ki=1Di the trajectory is located. The
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equilibria of system (21) are given by X∗i = −A−1Bi, with i = 1, . . . , k, and each

vector Bi of the system is considered in order to generate a multi-scroll.

The idea of the method lies on defining vectors Bi in order to assure scrolls

of a class of dynamical systems in R3 with oscillations within the equilibria. In a

way that for any initial condition X0 ∈ R3, the system given by eq. (21) induces

in the phase space R3 the flow (φt)t∈R. Thus, each initial condition X0 generates

a trajectory given by φt(X0) : t ≥ 0 which is oscillating in scrolls after defining at

least two vectors B1 and B2, as it is described in Ref 32.

This class of systems can display various multi-scroll as a result of a combination

of several unstable “one-spiral” trajectories. The number of scrolls depends on the

number of vectors Bi, i = 1, . . . , k introduced in the system, thus the equilibrium

points are given by X∗i = −A−1Bi and which trajectories oscillate around them.

The characteristic of Brownian motion is that it needs an infinite number of vectors

Bi because it is a free movement without limit. This is a consequence of an important

feature of this kind of systems. A convenient approach to build the matrix A and

vector B is based on the linear ordinary differential equation (ODE) given by the

jerk form:
...
x +a33ẍ+ ẋa32 + a31x+ β = 0.

We change the stochastic term Af for a new variable z which is defined by a

third order differential equation as it was reported in Ref. 11. The proposed variable

z acts as fluctuating acceleration, and produces a deterministic dynamical motion

without stochastic term but the behavior present the statistics features of Brownian

motion as it was showed in previous work 10. However, in our model the fluctuation

acceleration has a direct dependence on the position, velocity and acceleration due

to the jerky equation involved 31. When a particle is moving in a fluid, friction and

collisions with other particles, existing in the environment, necessarily produces

changes in the motion velocity and acceleration; all these changes are considered in

the jerky equation. Without loss of generality, we define our approach based on a

unstable dissipative systems (UDS)32,33 as follows:

Dαx = v,

Dαv = −γv + z,

Dαz = −a1x− a2v − a3z − a4(x),

(22)

where ai ∈ R are constant parameters, with i = 1, 2, 3, and a4(x) ∈ R acts as a

constant piecewise function, i.e., a step function.

The first two equations of the fractional Langevin equation (20) are derived from

thel Langevin equation (17) with a little change: the stochastic term is replaced

by a deterministic term in the same spirit that 32,33. Now we construct switching

surfaces (SW), see Figure 1. Without loss of generality, the SW are defined by

perpendicular planes to the x axis, so domains are defined between these SW’s

which are considered as edges of each domain. In case of real systems, SW can be

seen as multi-well potential with short fluctuation escape time where each domain
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Figure 1. Projection of SW perpendicular on to the plane (x, v) (Blue lines), the red dot depict
a Brownian particle that moves along one dimension x. The SW delimit each potential region and

when the particle cross it represent a potential change on the particle

defined by SW’s preserves its unstable behavior according to lineal part of system.

The parameter a4 is defined as follows:

a4(x) = c1round(x/c2), (23)

with c1, c2 ∈ R are constants. Here, the round(x) function will be implemented to

generate an infinitely number of SW’s in order to get unbounded time series. The

function will be defined as follows:

round(x) =

{
dx− 1/2e, for x < 0;

bx+ 1/2c, for x ≥ 0.
(24)

4. Numerical results

In this section, we numerically investigate the long term behavior of the solutions of

equation (22) by considering different derivative orders and the following parameter

values: γ = 7 × 10−5; a1 = 1.5; a2 = 1.2; a3 = 0.1; C1 = 0.9 and C2 = 0.6.

It is worth to mention that these parameter values are the same to those used

to generate Brownian behavior in Ref. 11 by considering an integer order system.

To study Brownian motion generated by Eq. (22), we fix the parameters values

and explore different derivative orders (α values). The stability of fractional order

systems is givern by Eq.(9), so the local behavior near the equilibrium point is

determined by the Jacobian of the system (22) which has the following spectrum

Λ = {λ1 = −0.8304, λ2 = 0.3651 + 1.2935i, λ3 = 0.3651 − 1.2935i}. This spectrum

determines the critical value of derivative order αc ≈ 0.8249 to get the system (22)

to be stable,

α <
2

π
min|arg(λi)| ≈ 0.8249. (25)



February 12, 2018 18:9 WSPC/INSTRUCTION FILE
ws-ijmpcBrownianRevised

Non-classical point of view of the Brownian motion generation via Fractional deterministic model 11

(a)

(b)

Figure 2. Solutions of the system (22) on phase space for different α values: (a) α = 0.8248, (b)

α = 0.9500.

Accordingly with the aforementioned comments, in order to preserve the system

(22) to be unstable to generate oscillatory behavior, we consider α > αc. Figure

2 (a) shows a solution of the system (22) for α = 0.8248 and initial condition

(x0, v0, z0)T = (1.0, 1.0, 1.0)T , this derivative order value results in a stable behavior

due to α < αc. On the othe hand, Figure 2 (b) shows a solution of the system (22)

for α = 0.95 and the same inictial condition, but now this derivative order value

results in an unstable behavior due to α > αc. Numerical simulations are performed

using the Adams-Bashforth-Moulton algorithm by exploring different α values.

Figure 3 shows a time series of a particle position for α = 0.95 where character-

istic behavior of Brownian motion can be clearly seen. The trajectory of Brownian

motion is determined by initial conditions and the values of the aforementioned

parameters. Since there are many steps with short time duration and few steps

with long time duration, the predicted mean square displacement in short times is

observed.

Figure 4 shows the statistical properties obtained for the time series of the
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Figure 3. Time series x of deterministic Brownian motion by the proposed model given by (22)

with α = 0.95.

system (22). Figure 4 (a) displays the linear growth in time of the mean square

displacement predicted, regarding with the traditional Brownian motion zero-mean

Gaussian probability distributions Figures 4 (b), (c), (d) show the particle proba-

bility distributions of displacement, velocity and acceleration, respectively, in which

one can see that the obtained distributions of the motion generated by our system

have a better Gaussian approximation than that obtained with integer order in

Ref. 11,

As it is known, strong sensitivity to initial conditions is an essential characteristic

inherent of chaos. In the Brownian motion case also is essential the strong sensibility

to initial conditions, and both can be characterized by positive leading Lyapunov

exponent. Even though both behaviors can be characterized by Lyapunov exponent

the dynamic is completely different; Brownian motion as noise do not form an

attractor in the phase space, i.e., they are unbounded trayectories. Brownian and

noise trajectories tend to infinity, while the chaotic dynamic generate an attractor

localized within a certain area of phase space, so chaotic trayectories are bounded.

In figure 5 the maximum Lyapunov exponent obtained, according with Ref. 34, of

the proposed system is shown to confirm the noise behavior of Brownian motion.

Finally, the correlation property of the signals generated by (22) is characterized

by the detrended fluctuation analysis (DFA) which was developed by Peng et al.
22. So the DFA technique help us to ensure that the proposed system generates

Brownian motion, we apply the DFA evaluation method to the time series obtained

with the values of the aforementioned parameters. The DFA is an important tool for

the detection of long-range auto-correlations in time series with non-stationarities.

The DFA is based on the random walk theory which consists on a scaling analy-

sis. The main advantages of the DFA over many other methods are that it allows

the detection of long-range correlations of a signal embedded in seemingly nonsta-

tionary time series, and also avoids the spurious detection of apparent long-range

correlations that are an artifact of non-stationarity.

The DFA procedure consists on the next four steps
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Figure 4. Statistical properties obtained of the system (22). (a) shows a linear growth of the

mean square displacement. Probability density obtained from the motion showed by normalized
histogram approximation ( dotted blue curve), for displacement (b), velocity (c), and acceleration
(d), compared with the approximation obtained by evaluate the time series into the Gaussian

function ( dotted red curve).
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Figure 5. Maximum Lyapunov exponent obtained of the proposed system (22) with α = 0.95.

* Compute the time series mean x̄.

* The interbeat interval time series (of total length N) is first integrated

y(k) =

k∑
i=1

[x(i)− x̄]. (26)

* The integrated time series is divided into boxes of equal length n, the local

trend is obteined by mean-squares and is removed to each box.

* The rootmean-square fluctuation of this integrated and detrended time series

is calculated by

f(n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2. (27)

* The fluctuations can be characterized by a scaling exponent η, the slope of the

line relating logF (n) to log n

fm(n) ∼ nη. (28)

When the scaling exponent η > 0.5 three distinct regimes can be defined as

follows.

1 If η ≈ 1, DFA defines 1/f noise.

2 If η > 1, DFA defines a non stationary or unbounded behavior.

3 If η ≈ 1.5, DFA defines Brownian motion or Brownian noise.

The scaling law with η = 1.5528 revealed by the DFA and showed in Figure 6

confirms the Brownian behavior.

5. Concluding remarks

A deterministic dynamical system that exhibits time series with properties of Brow-

nian motion has been presented. This model considers a fractional derivative order



February 12, 2018 18:9 WSPC/INSTRUCTION FILE
ws-ijmpcBrownianRevised

Non-classical point of view of the Brownian motion generation via Fractional deterministic model 15

4.5 5 5.5 6 6.5 7
1

2

3

4

5

log(n)

Lo
g(

F
(n

))

 

 

η=1.5528

Figure 6. η ≈ 1.5 obtained by DFA indicates the Brownian behavior of the observed motion.

and the jerk equation instead of the stochastic process and integer derivative order

in the Langevin equation. These changes modify the Langevin equation by adding

an additional degree of freedom, so a three-dimensional model was obtained. By

means of considering the fractional derivative order, the statistical properties were

improved compared to their integer derivative order. The new variable introduced

in the system defined by a third differential equation has a Gaussian probability

density distribution which was confirmed with numerical simulations. The statistic

analysis of time series obtained with the proposed model displayed typical character-

istics of Brownian motion, namely, a linear growth of the mean square displacement,

a Gaussian probability density distribution for displacement, velocity and accelera-

tion. Furthermore, the Brownian behavior was confirmed by an approximately 1.5

power law scaling of the fluctuation. These results show that time series obtained

of the proposal model fulfill the main characteristics of the Brownian motion via

stochastic process.

Based on these results which were obtained by using unstable dissipative system,

it can be thought that the methodology presented in this work could be used to

construct models under external force fields or behaviors of anomalous diffusion.

Additionally the development of adequate realistic models with real experimental

time series in order to obtain the Brownian motion in real systems.
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