
This is an Accepted Manuscript of an article published by Taylor & Francis 
Group in International Journal of Systems Science on 24 May 2011, 
available online:  
https://www.tandfonline.com/doi/abs/10.1080/00207721.2011.569585  
 

https://www.tandfonline.com/doi/abs/10.1080/00207721.2011.569585


March 3, 2011 11:5 International Journal of Systems Science 1*OnEmergenceIJSS*Vf

International Journal of Systems Science
Vol. 00, No. 00, Month 200x, 1–12

Article

On the Emergence Of Chaos In Dynamical Networks

J. G. Barajas-Ramı́reza∗ and R. Femata
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We investigate how changes of specific topological features result on transitions among different bounded behav-
iors in dynamical networks. In particular, we focus on networks with identical dynamical systems, synchronized
to a common equilibrium point, then a transition into chaotic behavior is observed as the number of nodes
and the strength of their coupling changes. We analyze the network’s transverse Lyapunov exponents (tLes)
to derive conditions for the emergence of bounded complex behavior on different basic network models. We
find that, for networks with a given number of nodes, chaotic behavior emerges when the coupling strength
is within a specific bounded interval; this interval is reduced as the number of nodes increases. Furthermore,
the endpoints the emergence interval depend on the coupling structure of network. We also find that networks
with homogeneous connectivity, such as regular lattices and small-world networks are more conducive to the
emergence of chaos than networks with heterogeneous connectivity like scale-free and star-connected graphs.
Our results are illustrated with numerical simulations of the chaotic benchmark Lorenz systems, and to un-
derline their potential applicability to real-world systems our results are used to establish conditions for the
chaotic activation of a network of electrically coupled pancreatic β-cell models.
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1. Introduction

In recent year, complex networks has emerge as an attracted field of research, capturing the at-
tention of different groups within the scientific community (Boccaletti et al. 2006, Newman et al.
2006, Wu 2007, Newman 2010). The main focus of concern has been network synchronization;
that is, to determine conditions under which the trajectories of each node in the network evolve
at unison (Strogatz 2001, Wang and Chen 2003, Belykh et al. 2005, Arenas et al. 2008, Lu and
Chen 2009). Although, synchronization is a very important aspect of network dynamics, in many
situations is necessary to solve the converse problem; that is, to determine under what conditions
stable systems coupled with a give topology transits to regimes of, not necessarily synchronized,
bounded oscillatory behavior. This issue has motivations in the oscillatory behavior of systems
in nature, where for example, the interaction between biological units, like cells or individuals,
result on transitions from a “switch-off” stable equilibrium to an “activated” oscillatory behav-
ior (Smolen et al. 1993, Pinto et al. 1993, Widmaier et al. 2007). The emergence of dynamically
complex behavior from simple stable systems is an observed phenomenon in the real-world, where
association, collaboration, and interdependence allows for well-organized groups to achieve to-
gether much more that with individual efforts. Pioneering research in this direction include the
works by Turing on Morphogenesis (Turing 1952) and by Smale (Smale 1976) on the emergence
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of oscillations on coupled cell models. More recently, the work by Pogromsky et al. focus on
the emergence of stable oscillations as the result of a Poincaré-Andronov-Hopf bifurcation on
diffusively coupled dynamical systems (Pogromsky and Nijmeijer 1999, 2001). The emergence of
chaotic behavior in coupled maps was investigated in (Li et al. 2004), later Li et al. formalize
these results showing that a network of of Logistic maps can satisfy the conditions for chaos
in the sense of Li and Yorke (Ott 2002). The results in (Li et al. 2004) were extended to the
case of dynamical networks where each node is a continuous-time multidimensional system by
Zhang et al. (Zhang et al. 2006) and Yuan et al. (Yuan et al. 2008). In (Barajas-Ramı́rez and
Femat 2008a,b) the transition to complex behavior was considered for small-world and scale-free
topologies.

In this contribution, we are interested on determining conditions for the emergence of bounded
complex behaviors on networks of stable dynamical systems, and relate these conditions to spe-
cific aspects of network topology. Thus, our problem can be stated as follows: Under what condi-
tions a network of systems with a common stable equilibrium point, by virtue of their coupling,
produces trajectories that evolve away from its synchronized solution but remain bounded? The
answer to this question is not trivial. On the one side, if the network synchronizes its solution
will be that of an stable equilibrium point. On the other hand, if the trajectories to move away
from the common equilibrium point solution instability of the solutions is implied, which can
easily result on unbounded trajectories. Therefore, the emergence of oscillatory bounded solu-
tions, requires two complementary conditions: (1) the instability of the synchronization manifold,
and at the same time, (2) its overall attractiveness. To determine what topological conditions
satisfy these two requirements, we analyze the stability of the synchronized solution in terms of
transverse Lyapunov exponents (tLes) (Ding and Yang 1997, Chen et al. 2003, Rangarajan and
Ding 2002, Li and Chen 2003, Li 2005) and establish conditions, in terms of coupling strength
and number of nodes, such that the solutions of the network remain ultimately bounded. More
specifically, we determine intervals of coupling strength and number of nodes such that pos-
itive tLes are generated, resulting on local instability, while the trajectories are attracted to
a ball containing the synchronized solution, within this ball the trajectories evolve away from
synchrony following oscillatory, possibly chaotic, solutions.

The remainder of the paper is organized as follows: In Section 2, we derive the conditions
for the emergence of complex behavior in terms of the network’s tLes. In Section 3, the effect
of changing the coupling strength and number of nodes on the emergence of bounded complex
solutions for different network models is evaluated. We find that as the number of nodes or the
coupling strength increases the emergence of bounded complex solutions is less likely. Addition-
ally in Section 4, we show numerical evidence that for dynamical network with homogeneous
connectivity the emergence of chaos is more likely that for networks with heterogeneous connec-
tivity. We also illustrate the potential applicability of these results to real world systems with
numerical simulations of the chaotic activation of a network of electrically coupled pancreatic β
cell models. Finally, the paper is concluded with some comments and closing remarks.

2. Emergence of bounded solutions from an equilibrium point

Consider a set of dynamical systems, each one with parameters such that all its trajectories
move towards a common asymptotically stable equilibrium point; if these dynamical systems are
coupled in such a way that the resulting network synchronizes, all the trajectories of the network
evolve towards the common equilibrium. For such a network, we investigate how changing the
coupling strength and number of nodes forces its trajectories to evolve away from synchrony,
but at the same time remaining bounded; oscillating in a possibly chaotic manner within a ball
around its synchronized solution. In the following subsection, this problem is stated with more
detail.
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2.1 Problem Statement

The dynamical behavior of a network with N linearly and diffusively coupled identical nodes is
described by the following state equations:

ẋi = f(xi) + c

N
∑

j=1

aij (h(xj) − h(xi)) , for i = 1, ..., N (1)

where each node is an m-dimensional system xi = [xi1, xi2, ..., xim]⊤ ∈ Rm; with f : Rm → Rm

a C1 function which describes the dynamics of an isolated node (ẋ = f(x)); and h : Rm → Rm

the output function for every node, which describes the inner connectivity between nodes. Every
connection is assumed bidirectional and with a uniform coupling strength c ∈ R. The topology
of the network is captured by the connectivity matrix A = {aij} ∈ RN×N which is symmetric

(aij = aji ≥ 0, ∀i,∀j, j 6= i) and its diagonal entries are given by: aii = −
∑N

j=1,j 6=i aij =

−
∑N

j=1,j 6=i aji, for i = 1, ..., N , such that the sum by rows and by columns is null (
∑N

j=1 aij =
∑N

j=1 aji = 0, ∀i). Then, if the network has no isolated nodes, it follows immediately from

Gerschgorin’s theorem that (Wu 2007): Zero is an eigenvalue of multiplicity one; and all its
non-zero eigenvalues are strictly negative. Thus, the eigenvalue spectrum of A can be ordered
as follows:

0 = λ1 > λ2 ≥ λ3 ≥ ... ≥ λN (2)

A dynamical network is said to (asymptotically) achieve complete synchronization if the tra-
jectories of every node satisfy:

lim
t→∞

‖xi(t) − x̄(t)‖ = 0, for i = 1, ..., N (3)

where x̄ ∈ Rm is the synchronized solution of the network, which describes a diagonal m-
dimensional manifold in the mN -dimensional state space of the network, usually called the
synchronization manifold, corresponding to:

xj = xi = x̄, for ∀i,∀j (4)

For the network in (1), by construction, the synchronization manifold corresponds to the
dynamics of an isolated node ( ˙̄x = f(x̄)) and it is associated with the eigenvalue λ1 = 0 of the
connectivity matrix A. The stability of the synchronized solution (4) can be establish analyzing
the transverse directions to the synchronization manifold; if all the transverse directions are
contracting, the trajectories of the network will ultimately synchronize (Wang 2002, Li 2005, Wu
2007, Arenas et al. 2008). We are interested in an alternative situation, where the trajectories
of the network move away from the stable equilibrium (x̄) and evolve along bounded, possibly
chaotic, solutions that emerge for specific values of coupling strength and number of nodes. In
the following subsection a tLes analysis will be used to establish conditions for the instability of
the synchronization manifold in combination with a convergent systems framework to guarantee
that the emergent trajectories remain bounded within a ball around the synchronized solution.
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2.2 Synchronization analysis via tLes

The dynamical behavior of a m-dimensional system (ẋ = f(x) ∈ Rm) can be characterized in
terms of its Lyapunov exponents (Ott 2002):

ηi = lim
t→+∞

1

t
|Df(t, x0)̟i|, for i = 1, ...,m (5)

where ηi is the i-th Lyapunov exponent along the direction ̟i;Df(t, x0) ∈ Rm×m is the Jacobian
matrix of f : Rm → Rm evaluated at a randomly selected initial condition x0, and {̟1,̟2,

...,̟m} is a set of orthonormal vectors in the tangent space of the system. If a system has an
unique asymptotically stable equilibrium point, all its Lyapunov exponents are strictly negative
and its Lyapunov spectrum can be ordered as follows:

0 > η1 ≥ η2 ≥ ... ≥ ηm (6)

In a similar manner, the dynamical behavior of a network can also be characterized in terms
of Lyapunov exponents. Different bases (̟i) can be used to visualize the Lyapunov spectrum
of a dynamical network, a particularly useful description is found in terms of the deviation of
the network trajectories from the synchronization manifold. Along these directions the tLes are
calculated linearizing the synchronization errors (ξi(t) = xi(t) − x̄(t)) around the synchronized

solution x̄(t), that is: ξ̇i(t) = Df(x(t))ξi(t) + c
∑N

j=1,j 6=i aijξj(t), for i = 1, 2, ..., N ; which in
vector form becomes:

Ẋ (t) = Df(x(t))X (t) + cX (t)A⊤ (7)

where X (t) = [ξ1, ξ2, ..., ξN ] ∈ Rm×N and Df(x(t)) ∈ Rm×m is the Jacobian of f . Noting
that, by construction, the connectivity matrix A can be expressed as: A = ΓΛΓ−1, where Γ =
[γ1, γ2, ..., γN ] ∈ RN×N ; and Λ = diag(λ1, λ2, ..., λN ) ∈ RN×N ; with γi the i-th eigenvector of A
and λi its corresponding eigenvalue. The variational equation (7) can be written as:

ν̇i(t) = Df(x(t))νi(t) + cλiνi(t), for i = 1, ..., N (8)

where νi(t) = X (t)γi ∈ Rm.
In the variational equations (8), the synchronization manifold corresponds to the eigenvector

γ1 = [1, 1, ..., 1] ∈ RN , while the remaining N − 1 equations correspond to the directions trans-
verse to the synchronization manifold. Then, applying the Lyapunov exponent definition in (5)
to (8), the tLes (µi(λk)) for the entire network are given by:

µi(λk) = ηi + cλk, for i = 1, ...,m; and k = 2, ..., N. (9)

Synchronization is achieved in the sense of (3) if all the tLes are negative. From (2) and (6)
this condition is equivalent to require that the largest tLe be negative. Notice that for attractive
coupling (c > 0), the largest tLe is µ1(λ2) = η1 + cλ2. Then, for a network with attractively
coupled nodes, the synchronization condition becomes the so-called λ2 criterion (Wang 2002, Li
2005):

|c| >
η1

|λ2|
(10)

While, for repelling coupling (c < 0), the largest tLe is µ1(λN ) = η1 − |c|λN . In this case, the
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synchronization criterion has the form:

|c| <
|η1|

|λN |
(11)

Then, as the coupling strength increases (|c| → ∞) for attractive coupling the synchronization
manifold becomes more and more stable, while for repelling coupling the stability margin of the
synchronized solution is reduced. Considering that our objective is to have bounded trajectories
that move away from the synchronization manifold, in what follows we consider only repelling
coupling.

The instability of the synchronization manifold by itself is not sufficient to guarantee the
existence of bounded solutions. In fact quite the opposite, since the trajectories will tend to
become unbounded along the directions of the positive tLes. Then, an initial requirement for
bounded complex solutions is that the sum of tLes be negative for every node in the network,
while at the same time at least the largest tLe be positive, this can be express as follows (Barajas-
Ramı́rez and Femat 2008a,b):

µ1(λN ) > 0; and
m

∑

i=1

µi(λk) < 0, for any k (12)

Observing that (9) inherits an order from (2) and (6), a limit on the number of positive tLes
on the network can be establish requiring that µp1

(λp2
) be negative for two numbers: 1 ≤ p1 ≤ m

and 2 ≤ p2 ≤ N . This condition can be expressed as follows:

|η1|

|λN |
< |c| <

|ηp1
|

|λp2
|
, with c < 0 (13)

At this point we will like to remark the following:

(i) Notice that for a given repelling coupling strength value c < 0, such that (11) is not
satisfied, the synchronization manifold is unstable. If for that same value of c the condition
(12) is satisfied, the trajectories of the network are attracted, at least locally to a ball around
the synchronization manifold. Then, for at most p1p2 nodes we have a combination of positive
and negative tLes, the solutions of these nodes will experience stretching and folding of their
trajectories, a characteristic mechanism of chaotic dynamics. As such, when this combination
occurs the behavior of the bounded solutions of the network around the synchronized solution
will be assumed chaotic. This combination of factors are illustrated with numerical examples in
the following Sections.
(ii) Notice that the conditions (12) and (13) are expressed in terms of the Lyapunov exponents
of a node in isolation (ηi) and the eigenvalues of the connectivity matrix of the network (λi).
Thus, changes in the topology of the network will directly determine the endpoints of the interval
of values for emergence of bounded solutions. In the following section, we investigate how the
topological features of different basic network models affect the emergence of bounded complex
behaviors.

3. Effects of topology on emergence of bounded solutions

Intuitively, a diffusively coupled network with identical nodes, where every node has the same
stable equilibrium, will generate oscillations only if its trajectories evolve away from its synchro-
nized solution. According to the conditions (12) and (13), there are two possible ways achieve
this: (I) Increasing the coupling strength, (c < 0), beyond a threshold value that marks the initial
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point of the interval in (13); or (II) changing the topology of the network such that the smallest
eigenvalue of the connectivity matrix, (λN ), be large enough to make the initial point of the
interval for emergence smaller than a given coupling strength. In what follows, the emergence
of bounded complex solutions as the result of these changes is investigated for different basic
network models.

Firstly, we analyze the case of globally connected networks, which are constructed linearly
and diffusively coupling each node to all others in the network. The eigenvalue spectrum of the
resulting connectivity matrix Agc is found to be

λgc,1 = 0, and λgc,k = −N, for k = 2, ..., N. (14)

For this network model; the conditions (12) and (13) become:

η1 + |c|N > 0; with

m
∑

i=1

µi(λgc,k) < 0, for any k; and (15)

|η1|

N
< |c| <

|ηp1
|

N
, with c < 0 (16)

Note that for globally coupled networks with a fixed coupling strength, as the number of nodes
in the network increases the interval in (16) becomes smaller, while at the same time, the number
of positive tLes increases. In fact, from (15) we have that all the tLes of the network become

positive when N >
|ηm|
|c| . Further, the sum of tLes becomes positive when N >

∑

m

i=1
|hi|

m|c| . A similar

situation is found for a network with a fixed number of nodes as the coupling strength increases.
Then, there are intervals of values for the number of nodes ([N∗,N

∗
]) and coupling strength

([c∗, c∗]) outside of which the network no longer satisfies the conditions for the emergence of
bounded solutions. These are given by

N∗ = |η1|
|c| ; N

∗
= min

{

|ηm|
|c| ,

∑

m

i=1
|hi|

m|c|

}

, and

c∗ = |η1|
N

; c∗ = min
{

|ηm|
N
,

∑

m

i=1
|hi|

mN

} (17)

Next, we consider star coupled networks, which are constructed connecting linearly and dif-
fusively every node only to a single hub node in the network. For this network model the
connectivity matrix Asc has the following eigenvalue spectrum:

λsc,1 = 0, λsc,k = −1, for k = 2, ..., N − 1; and λsc,N = −N (18)

The conditions for emergence of bounded solutions, (12) and (13), for this network model become:

η1 + |c|N > 0, with

m
∑

i=1

µi(λsf,k) < 0, for any k; and (19)

|η1|

|N |
< |c| < |ηp1

|, with c < 0 (20)

In this case, for a fixed coupling strength the increment on the number of nodes in the network
does not affect the endpoint of the interval (20), and the number of positive tLes does not
increase with the number of nodes. In fact, according to (18), only the m tLes associated with
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the hub node (ηi + |c|N , for i = 1, ...,m) become positive for when N >
|ηm|
|c| . Furthermore,

the sum of Lyapunov exponents for the hub node violates condition (19) when N >
∑

m

i=1
|hi|

m|c| ,

and produces unbounded trajectories, even though the trajectories for the rest of the nodes
remain bounded. For the complementary situation, where the number of nodes remains fixed
and the coupling strength increases, the same transitions occur. Again, for this network model
the intervals [c∗, c∗] and [N∗,N

∗
] are given by (17), with the significant difference that on star

coupled networks bounded solutions are not chaotic, since the hub node becomes unbounded
long before positive tLes are generated for the rest of the nodes in the network.

Finally, we consider the effects of small-world and scale-free topologies on the emergence of
bounded solutions. In a similar way as for globally and star coupled networks, the form of condi-
tions (12) and (13) for small-world and scale-free networks is determine by the eigenvalue spec-
trum of their respective connectivity matrices. In (Barajas-Ramı́rez and Femat 2008b), it was
shown that: All the nonzero eigenvalues of a linearly and diffusively coupled small-world network,
constructed with the Newman-Watts-Strogatz algorithm (Wang and Chen 2002a), growth pro-
portionally with the number of nodes in the network. While for scale-free networks, constructed
with the Barabási-Albert algorithm (Wang and Chen 2002b), the largest nonzero eigenvalue
approaches −1 independently from the number of nodes, and the smallest eigenvalue growths
proportionally to the number of nodes in the network. Then, the conditions (12) and (13) for
small-world networks have similar transitions as for globally coupled networks, while for scale-
free networks the emergence of bounded solutions is similar to that of star coupled networks.

From the observations above, two scenarios for the emergence of bounded solutions can be
identified: In the first, the number of nodes increase for a network with fixed coupling strength.
On the second, the coupling strength increases for a fixed number of nodes. In both scenarios,
the emergence of bounded solutions is restricted to the intervals [c∗, c∗] and [N∗,N

∗
]; with

the type of bounded behavior depending on the connectivity of the network. Thus, while for
heterogeneous connectivity, like in star coupled or scale-free networks, the emergence of bounded
behavior is restricted to the hub nodes; for globally coupled and small-worlds, their homogeneous
connectivity allows for the emergence of chaotic behavior for the entire network. To illustrate
these findings, a numerical study of the emergence of bounded solution on networks of the
benchmark Lorenz system and of electrically coupled pancreatic β cells is presented in the
following section.

4. Numerical Simulations

4.1 An illustrative example

Consider that each node in the network described by (1) is a Lorenz system, with the following
dynamical description (Chen and Dong 1998):





χ̇(t)

ψ̇(t)
ω̇(t)



 =





a(ψ(t) − χ(t))
ρχ(t) − ψ(t) − χ(t)ω(t)
−bω(t) + χ(t)ψ(t)



 (21)

where x(t) = [χ(t), ψ(t), ω(t)]⊤ ∈ R3 are the state variables of each node in isolation; and the
parameters are set to a = 10, b = 8

3 , and ρ = 0.5. For these parameter values the Lorenz

system has an unique asymptotically stable equilibrium point at x̄=[0, 0, 0]⊤. The Lyapunov
exponents of (21) are estimated from its Jacobian matrix evaluated around x̄, and are taken to
be η1 = −0.5, η2 = −3 and η3 = −12.

Figure 1 shows the intervals [c∗, c∗] and [N ∗,N
∗
], obtained using (17), for a network of stable

Lorenz systems. The line with ‘⋆’ corresponds to the lower limits (N ∗ and c∗), while the line
with ‘◦’ corresponds to the upper limits of the emergence interval (N

∗
and c∗). For combinations



March 3, 2011 11:5 International Journal of Systems Science 1*OnEmergenceIJSS*Vf

8 J. G. Barajas Ramı́rez and R. Femat

Figure 1. The shaded area corresponds to the intervals [c∗, c∗] and [N∗, N
∗

], obtained using (17), such that bounded
behaviors emerge on networks of stable Lorenz systems.

(N, c) below the line with ‘⋆’ the condition for synchronization (11) is satisfied and the network
synchronizes to the common equilibrium point. For values inside the shaded area, the conditions
(12) and (13) are satisfied and bounded solutions emerge away from the equilibrium. While for
combinations above the line with ‘◦’ the trajectories of at least one node become unbounded.

0 10 20 30

−2

−1

0

1

2

x i

(a)

0 10 20 30

−2

0

2

4

x i

(b)

Figure 2. Trajectories of N = 10 stable Lorenz systems connected into: (a) star coupled, and (b) globally coupled networks.

The type of bounded solutions generated in the network of stable Lorenz systems is determine
by the connectivity of the network. As discussed above, the number of positive tLes generated as
c or N increases is different for homogeneously than heterogeneously coupled networks. In Figure
2, we show the trajectories for globally and star coupled networks with a fixed number of nodes
(N = 10) with two coupling strengths, initially forming a combination below the shaded area
(c = 0.5), and then at given time (t = 10s), the coupling strength is changed to a combination
within the shaded area of the Figure 1 (c = 2.0). The results on Figure 2(a) corresponds to
the star coupled network, in this case emergence of bounded trajectories is concentrated on the
hub node, which moves away form the equilibrium, but the rest of the nodes remain at the
equilibrium. However, if the nodes are connected into a globally coupled network, all the nodes
have positive tLes; then as shown in Figure 2(b), unsynchronized chaotic behavior emerges for
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every node in the network.

4.2 A networks of electronically coupled pancreatic β cells

In this subsection, we illustrate the potential applicability of the results presented above to
biological networks. In particular, we consider networks of pancreatic β cells. These networks
are the insulin producing part of the Langerhans islets in the pancreas; as such, they play a
fundamental part in the homeostasis of glucose in the body. The insulin liberation process in
β cells is directly related to the electrical activity of their membrane. A particularly significant
aspect of their operation is that in isolation β cells are usually neurons which are switch-off,
that is, their insulin liberation electrical activity is inhibited, with their dynamical behavior that
of a stable equilibrium associated to their electrical activity. However, when they are coupled
together, within the islet, all the cells transits to their active state, that is, a state characterized
by a spike-busting behavior (Smolen et al. 1993). The dynamic description of the electrical
activity of an isolated β cell is given by (Pernarowski 1998):

v̇(t) = f(v(t)) −w(t) − k(d(t)) + I(t)
ẇ(t) = 1

τ̄
(w∞(v(t)) − w(t))

ḋ(t) = ε(h(v(t)) − d(t)).
(22)

where v(t) refers to the membrane potential; w(t) refers to an ionic channel activation; d(t) refers
to the glucose concentration of the cell, and I is a exogenous current input. The terms f(v(t)),
k(d(t)), h(v(t)) and w∞(v(t)) that are used in above formulas are given by: f(v(t)) = f3v(t)

3 +
f2v(t)

2 + f1v(t), f3 = −a
3 , f2 = av̂, f1 = 1

τ̄
− a(v̂2 − η2), h(v(t)) = β(v(t) − vβ), k(d(t)) = τ̄ d(t),

w∞(v(t)) = w3v(t)
3 +w2v(t)

2 +w1v(t)+w0, w3 = τ̄ − a
3 , w2 = av̂, w1 = 1

τ̄
−a(û2 −η2)−3τ̄ , and

w0 = −3τ̄ . The parameter values for an inhibited β are: a = 1
4 , η = 3

4 , v̂ = 3
2 , β = 4, ε = 0.0025,

τ̄ = 1, I(t) = 0, and vβ = −1.300. For this set of values the β cell has an stable equilibrium
point x̄ = [−1.0472,−1.1043, 1.0071], and its Lyapunov exponents in its vicinity are found to
be: η1 = −0.0277, η2 = −0.3621 and η3 = −1.1233.

Figure 3. The shaded area corresponds to the intervals [c∗, c∗] and [N∗, N
∗

], obtained using (17), such that bounded
behaviors emerge on networks of electrically coupled inhibited pancreatic β cells.

We will assume that inside the Langerhans islet β cells are only coupled electrically, that is,
they form a network coupled only through the variable v(t). According to the conditions in
(12) and (13), a linearly and diffusively coupled network of inhibited β cells produces bounded
behaviors for combinations of N and c within the shaded area of Figure 3.
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Figure 4. Trajectories of globally coupled networks of electrically connected inhibited β cells for the combinations: (a)
N = 3 with coupling strength c = 0.005, and (b) N = 8 with coupling strength c = 0.05.

In Figure 4(a) the trajectories of a globally coupled network with three electrically connected
inhibited β cells are shown for a coupling strength of c = 0.005. Notice that this combination
(N, c) is below the shaded area of Figure 3, accordingly the trajectories of the networks eventually
synchronized at the stable equilibrium point. As shown in Figure 4(b) for a combination of
coupling strength and the number of β cells within the interval for emergence (N = 8, c = 0.05),
all the β cells in the network are activated with the characteristic spike-busting behavior on
their membrane potential.

5. Closing Remarks

There are two basic conditions for the emergence of bounded solutions on a network of sta-
ble dynamical systems: Local instability of the synchronized solution and boundedness of the
trajectories of the network. Although, these conditions where already identified in previous con-
tributions, here we present them in terms of topological characteristics of the network. Namely,
intervals of values [c∗, c∗] and [N∗,N

∗
] for the emergence of bounded complex trajectories. We

analyze the tLes of the network to derive the convergence of the trajectories to a ball containing
the unstable synchronized solution. Further, we establish a relation between the nature of the
behavior around the synchronized solution with the connectivity of the network. This relation
exist since the intervals for emergency are determine by the Lyapunov spectrum of an isolated
node, and the eigenvalue spectrum of the connectivity matrix. In this sense, the connectivity of
the network not only affects the endpoints of the intervals for emergence, but also the number
of positive tLes generated by the coupling topology. As such, the number of nodes that have
associated positive tLes with a negative overall sum are limited for heterogeneous connectivity,
like star couple and scale-free networks, where the emergent bounded behavior is restricted to
oscillation on the hub nodes. While for globally coupled and small-world networks, the homoge-
neous connectivity forces the entire network towards complex oscillations. Using these results,
we describe the transition toward complex behavior on networks of stable Lorenz systems; and
the activation of inhibited pancreatic β cells.
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