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State and actuator fault estimation observer design

integrated in a riderless bicycle stabilization system

Abstract

This paper deals with an observer design for Linear Parameter Varying (LPV)

systems with high-order time-varying parameter dependency. The proposed

methodology allows to design an observer in charge of the estimation of the

actuator fault and the system state, considering measurement noise at the

system outputs, which is as the main contribution for this paper. As a result,

the actuator fault estimation is ready to be used in a Fault Tolerant Control

(FTC) scheme, where the estimated state with reduced noise may be used to

generate de control law. The effectiveness of the proposed methodology has

been tested using a riderless bicycle model dependent on the translational

velocity, where the control objective corresponds to the system stabilization

towards the vertical position despite the variation of the translational velocity

of the bicycle.

Keywords: LPV systems, parameter varying, actuator fault detection,

actuator fault estimation, state estimation.

1. Introduction

The Linear-Parameter-Varying (LPV) modeling has represented, over the

last few decades, a simple way to approach nonlinear dynamics. This rep-

resentation allows the approximation of complex systems based on a set of
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parameters whose value may change along the system trajectories and which

are part of the original system. In addressing the LPV representation, several

formulations exist: polytopic, Linear Fractional Transformation (LFT) and

LPV affine. The polytopic LPV systems have been broadly studied because

they provide a suitable representation computed as the combination of linear

models —that approach the system behavior at a finite number of operating

points— visualized as the vertices of a polytope (Poussot-Vasal et al., 2008;

Rotondo et al., 2013). The LFT representation of LPV systems involves the

separation between the varying and non-varying part of the model (Gonzalez

et al., 2013). Finally, the affine formulation considers an infinite number of

equilibrium points. Within the last case, there is an additional representa-

tion which involves dependency on multiple degree of the parameter varying:

the polynomial LPV systems (Andreo et al., 2010; Gilbert et al., 2010). Such

a particular formulation of LPV systems presents a difficult consideration:

the stability analysis leads to problems related to parameter-varying Lin-

ear Matrix Inequalities (LMI). In other words, the main difficulty within the

polynomial LPV systems corresponds to the solution of parameter-dependent

LMI and, consequently, a less studied case. On the other hand, the continued

growth of the control systems requires to maintain an acceptable level of re-

liability, whence the Fault-Tolerant-Control (FTC) (Zhang and Jiang, 2008)

becomes relevant. In this direction, a very important issue corresponds to the

estimation of the fault acting into the system. The reason comes intuitively:

if the fault magnitude is known, then it is possible to take corrective actions

to ensure the control objectives. Such corrective actions may involve the

modification of the control gains or the addition of virtual actuator and/or
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sensors. Further, in terms of control system design, it is highly desirable to

compute a control law that contributes to a smooth and unforced operation

of the system actuator, which could hardly be accomplished in the presence

of noise at the system outputs. Thus, the main contribution of this paper

corresponds to the design of an observer in charge of the actuator fault es-

timation along with the system state, with less noise than the one presentes

at the system outputs. Thus, the proposed observer can be used in a FTC

framework since the fault estimation and estimated states generate a control

signal with less noise corruption.

In the LPV fault reconstruction literature, Alwi et al. (2012) proposed an

observer applying the sliding mode methodology for fault estimation with

application to a Boeing 747-100 LPV model with affine representation. In

Patton and Klinkhieo (2010), fault estimation and LPV fault compensation

are addressed, maintaining the control objectives, through the use of an affine

LPV model of a two-link manipulator. Bara et al. (2000) deals with a state

observer for affine LPV systems, with a solution computed as a linear com-

bination between the parameters and their boundaries. Furthermore, for a

winding machine system, a polytopic LPV sensor fault detection filter has

been developed in Rodrigues et al. (2013). Although the works in these ref-

erences are applied to LPV systems, the actuator fault estimation remains

insufficiently explored in the polynomial LPV system framework. As a result,

the design of the proposed observer is based on the LTI robust methodology

extension to polynomial LPV systems, considering the stability characteris-

tics for this kind of systems.

The paper structure is as follows: section 2 presents the definition of polyno-
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mial LPV systems as well as its controllability and observability conditions,

section 3 addresses the riderless bicycle model and its dynamical analysis

and section 4 provides the preliminaries on the stabilization of the riderless

polynomial LPV model. Section 5 presents the state and actuator fault esti-

mation observer design, section 6 provides the controller design and section 7

addresses the observer and control gain computation. Finally, section 8 shows

simulation results considering different types of actuator faults. Conclusions

are presented in section 9.

2. Polynomial LPV systems

Consider the following dynamical system:

ẋ = A(ζ(t))x+B(ζ(t))u

y = C(ζ(t))x
(1)

where x ∈ Rn, u ∈ Rp and y ∈ Rs correspond to the state,input and out-

put (vector) variables, respectively. A(ζ(t)), B(ζ(t)) and C(ζ(t)) represent

parameter-dependent matrices of compatible dimensions. ζ(t) ∈ Rm is the

time-varying parameter vector. Normally, ζ is considered measurable and

bounded, with a sufficiently smooth-time variation with bounded time ratio

ζ̇, i.e. ∃ν, µ > 0 such that ‖ζ(t)‖ ≤ ν and ‖ζ̇(t)‖ ≤ µ.

If A(ζ(t)), B(ζ(t)) and C(ζ(t)) adopt the form:

χ(ζ) = χ0 +
k∑
i=1

m∑
j=1

χ[(i−1)m]+jζ(t)ij (2)

for some k ≥ 1, where χl, l = 0, . . . , km, are matrices of compatible di-

mensions (depending the referred matrix A(ζ(t)), B(ζ(t)) or C(ζ(t))), then
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the state model (1) corresponds to a polynomial LPV system. As an exam-

ple (from now on the term t will be omitted for practical reasons), consider

ζ ∈ R2, i.e. two time-varying parameters ζ1 and ζ2. With m = 2, the Ec. (2)

will correspond to :

χ(ζ) = χ0 + χ1ζ1 + χ2ζ2 + χ3ζ
2
1 + χ4ζ

2
2 (3)

As a result, the system dependency in the time-varying parameter vector will

appear in polynomial form.

2.1. Controllability and observability

According to (Briat , 2008), the controllability and observability conditions

for polynomial LPV systems can be seen as the extension for those criteria

applied to Linear Time Invariant (LTI) systems. The polynomial LPV system

(1) is controllable if:

rank[B(ζ) A(ζ)B(ζ) . . . A(ζ)n−1B(ζ)] = n ∀ ζ ≤ ν (4)

In analogous way, a polynomial LPV the system will be observable if:

rank


C(ζ)

C(ζ)A(ζ)
...

C(ζ)A(ζ)n−1

 = n ∀ ζ ≤ ν (5)

3. The Riderless bicycle model and its dynamical analysis

The riderless bicycle dynamics can be formulated in terms of a general frame

which includes a rigid body, a front frame composed by the handle and the
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tires. The general representation (Schwab et al., 2005) for this system is

given as:

Qq̈ + vWq̇ + (gE0 + v2E1)q = f (6)

where q ∈ R2 is the angular position vector containing the roll angle φ and

the handlebar angle δ, i.e. q = [φ δ]T , f ∈ R2 is the input force vector

composed by the torque applied to the general frame Tφ and handlebar Tδ,

i.e. f = [Tφ Tδ]
T as shown in Figure 1. In Ec. (6) Q and W are the mass and

damping constant matrices, respectively; E0 and E1 are stiffness coefficient

matrices, and g is the gravity acceleration. The referred matrices, Q, W , E0

and E1, are related with the physical properties of the prototype and the

effects of its interaction with the environment. The motion equation (6) has

been validated for small variations around φ and δ, considering the bicycle

at a vertical position (Schwab et al., 2005).

FIGURE 1

Defining the state vector as x =
[
φ δ φ̇ δ̇

]T
, the translational velocity of

the bicycle as the time-varying parameter, i.e. ζ = v, and taking the torque

applied to the handlebar Tδ as a unique input force, the state space repre-

sentation for (6) can be expressed as:

ẋ = A(v)x+Bu

y = Cx
(7)

Where (Andreo et al. (2010)):
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A(v) =


0 0 1 0

0 0 0 1

13.67 0.225− 1.319v2 −0.164v −0.552v

4.857 10.81− 1.125v2 3.621v −2.388v

B =


0

0

−0.339

7.457


C =

 0 1 0 0

0 0 1 0


(8)

It can be seen that the matrix A(v) is velocity-dependent and it can be

rewritten as A(v) = A0 + A1v + A2v
2, which is consistent with Ec. (2).

The Figure 2 shows the open-loop eigenvalues (of A(v)) as a function of the

varying parameter v, as a reference to establish the open-loop eigenvalues

as the parameter varying v changes. It is worth to note that the open-loop

criterion, since LPV systems are related to Linear Time Varying systems

(LTV), is not a sufficient condition for determine the stability of the system.

FIGURE 2

3.1. Controllability and observability conditions

The controllability and observability criteria for the LPV riderless bicycle

model can be computed using (4) and (5), respectively, considering the fol-

lowing procedure (where | · | is used to denote the determinant of a matrix):

|Λc(v)| = |[B A(v)B A(v)2B A(v)3B]|
|Λc(v)| = −5806.5321v4 + 19463.1274v2 − 22.3115

(9)

Solving for v and taking the positive values, the loss of controllability condi-

tion occurs when v lies in the following translational velocity set:

v ∈ R = {0.03386, 1.8305} ⇒ det(Λc) = 0 (10)
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The observability condition, meanwhile, can be computed from the transpose

of Ec. (5), since rank[Q] = rank[QT ]. Let us point out that Ec. (5) will

result in a rectangular matrix, by considering the system matrices defined in

Ec. 8. As a result, the transpose of (5) referred from now on as Λo(v) is:

Λo(v) =


0 0 0 13.67 4.857

1 0 0 0.225− 1.319v2 10.81− 1.125v2

0 1 0 −0.164v 3.621v

0 0 1 −0.552v −2.388v

−4.922v 37.9v 187.961− 26.520v2

0.837v3 − 6v −2.089v3 − 24.996 2.5v4 − 17.758v2 + 5.51

13.67− 1.971v2 4.857− 9.240v2 0.648v3 − 6.350v

0.089v2 + 0.225 2.578v2 + 10.81 1.711v3 − 14.087v



(11)

In order to compute rank[Λo(v)] = rank[Λo(v)T ], since it corresponds to a

rectangular parameter-varying dependent matrix, the procedure begins with

a non-zero determinant operation considering a square matrix with n − 1

dimension. Once the previously has been solved, the procedure continues by

adding the resting rows and columns in order to obtain square matrices of

n dimension. For each one of those square matrices, the determinant should

be computed (the determinant operation will result in an equation involving

the time-varying parameter v). Thus, for all v such that rank[Λo(v)] 6= n,

and consequently the LPV model is not be observable. From Ec. (11), the

n − 1 × n − 1 square matrix considered corresponds to a identity matrix

formed by the rows 2 − 4 and columns 1 − 3. By following the mentioned

procedure, incorporating the row 1 and column 4:
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Λo1 =


0 0 0 13.67

1 0 0 0.225− 1.319v2

0 1 0 −0.164v

0 0 1 −0.552v

 =

 01×3 13.67

I3 V1

 (12)

where I3 is the identity matrix ∈ R3×3 and V1 ∈ R3×1 whit |Λo1| = −13.67.

Incorporating the row 1 and column 5:

Λo2 =


0 0 0 4.857

1 0 0 10.81− 1.125v2

0 1 0 3.621v

0 0 1 −2.388v

 =

 01×3 4.5857

I3 V2

 (13)

in which case |Λo2| = −4.857. In analogous way, matrices Λo3, Λo4 and Λo5

were found to be:

Λo3 =

 01×3 −4.922v

I3 V3

 Λo4 =

 01×3 37.9v

I3 V4


Λo5 =

 01×3 187.961− 26.520v2

I3 V5

 (14)

By computing the respective determinants of these last three matrices, it

can be concluded that the riderless bicycle LPV model is observable ∀ v,

since there is not a coincident v value in the solutions. As a result, the

controllability and observability analysis allow to define the translational

velocity interval for the bicycle for practical purposes as Φ = [0.5, 1.7] m/s.
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4. Preliminary on the stabilization of a riderless bicycle

The control objective is to maintain the vertical position of the bicycle

through a torque applied to the handle-bar axis Tδ despite a variant trans-

lational velocity v. Consider the system (7) with measurement noise and an

additive actuator fault:

ẋ = A(v)x+Bu+Bffa

y = Cx+Dz
(15)

where the matrix Bf considers the columns of B associated with the actuator

under fault condition and fa the fault magnitude vector. D and z represents

the noise matrix and its magnitude, associated to the outputs of the system.

In order to estimate the state x and the fault magnitude fa an observer with

the following structure is proposed:

˙̂x = A(v)x̂+Bu+Bf f̂a +K0(v)(y − ŷ)

˙̂
fa = L0(v)(y − ŷ)

ŷ = Cx̂

(16)

where K0(v) and L0(v) are the time-varying observer gains. The objective

is to design the observer (16) in order to provide the fault estimation f̂ as

well as the system state, minimizing the measurement noise presented at the

system outputs. To reach the control objective, consider a control law:

u = Tδ = k(v)x̂ (17)

where k(v) corresponds to the parameter-dependent control gains and x̂ rep-

resents the state estimated by the observer (16). In order to analyze the dy-

namical behaviour of the stabilization system for the riderless bicycle model,

10



consider the dynamics of the state estimation error ee = x − x̂ along with

estimation error for the actuator fault ef = fa − f̂a:

ėe = A(v)x+Bu+Bffa − (A(v)x̂+Bu+Bf f̂a +K0(v)(y − ŷ))

= (A(v)−K0(v)C)ee +Bfef −K0Dz

ėf = ḟa − L0(v)(y − ŷ)

= ḟa − L0(v)Cee − L0Dz

(18)

Using the control law (17) in terms of the state estimation error ee:

u = Tδ = k(v)x̂ = k(v)(x− ee) (19)

the closed-loop system can be computed as follows:

ẋ = (A(v) +Bk(v))x−Bk(v)ee +Bffa (20)

As a result, the estimation errors ee, ef and the closed-loop system can be

represented in matrix form as follows:


ẋ

ėe

ėf

 =


A(v) +Bk(v) −Bk(v) 0

0 A(v)−K0(v)C Bf

0 −L0(v)C 0



x

ee

ef

+


Bf 0 0

0 −K0(v)D 0

0 −L0(v)D I



fa

z

ḟa


(21)

From Ec. (21) the accomplishment of the separability principle can be con-

cluded. The separability principle addresses the dynamical conditions to be
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fulfilled in such way that the observer and control design can be done inde-

pendently. To explain the previous, let us point out that through the observer

gain k0(v) the state estimation error ee involved in the closed-loop system

(term −Bk(v)) will be ee → 0 as t → ∞, consequently, the control design

can be realized from the remaining term A(v) + Bk(v). The observer, in

turn, will be able to provide the fault estimation f̂a by designing L0(v) such

that ef → 0 as t→∞. The main issue in (21), corresponds to how to deal

with the effects referred to the measurement noise z and the fault fa, within

the estimation errors dynamics and the closed-loop system. Whit this in

mind, the observer design should consider a procedure capable to guarantee

the observer stability despite on the fault and measurement noise magnitude.

For this to be achieved, the conditions fa = 0 and fa 6= 0 should be taken

in account in the observer design, issue addressed in the present article as

the extension procedure existing in LTI systems to polynomial LPV systems.

The guarantee of the observer stability despite on the fault magnitude and

measurement noise is considered la main contribution of the present work.

5. Observer design: Stability

To begin with the observer design, consider the error estimation dynamics

ėe and ėf (18) involved in the observer (16), represented in matrix form as

follows. ėe

ėf

 =

 A(v)−K0(v)C Bf

−L0(v)C 0

 ee

ef

 +

 −K0(v)D 0

−L0(v)D I

 z

Ḟa


(22)
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Defining the vectors ∆ = [ee ef ]
T and Ψ =

[
z ḟa

]T
, Eq. (22) can be rewrit-

ten in compact form as ∆̇ = Ã(v)∆ + b̃Ψ with:

Ã(v) =

 A(v)−K0(v)C Bf

−L0(v)C 0

 b̃ =

 −K0(v)D 0

−L0(v)D I

 (23)

To ensure the state and fault estimation error convergence, a parameter-

varying Lyapunov function (Rugh and Shamma, 2000) is considered V (∆, v) =

∆TP (v)∆ where P (v) denotes a symmetric positive definite matrix. In order

to guarantee ∆ → 0 as t → ∞, it is necessary to solve V̇ (∆, v) < 0,∀∆ ∈
Rn,∀v ∈ Φ. As a result, the problem for state and fault estimation is re-

duced to find two parameter-dependent observer gains K0(v) and L0(v) such

that the asymptotic convergence of ∆ is accomplished if Ψ = 0 and the er-

ror vector ∆ be bounded if Φ 6= 0. Both conditions can be formulated in

mathematical terms as:

∆→ 0 as t→∞ if Ψ = 0

||∆||Q∆
6 (ς(v))2||Ψ||QΨ

if Ψ 6= 0
(24)

whereQ∆ andQΨ are positive-defined matrices, ‖∆‖Q∆
= ∆TQ∆∆, ‖Ψ‖QΨ

=

ΨTQΨΨ and ς(v) is the parameter-varying attenuation level. The expressions

in (24) are fulfilled if:

V̇ (∆, v) + ∆TQ∆∆− (ς(v))2ΨTQΨΨ < 0 (25)
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which in turn, corresponds to:

∆TP (v)(Ã(v)∆ + b̃Ψ) + d
dt

(∆TP (v))∆ + ∆TQ∆∆− (ς(v))2ΨTQΨΨ < 0

∆TP (v)(Ã(v)∆ + b̃Ψ) + ∆T v̇ ∂P (v)
∂v

∆ + (Ã(v)∆ + b̃Ψ)TP (v)∆+

∆TQ∆∆− (ς(v))2ΨTQΨΨ < 0

∆TP (v)∆ + ∆TP (v)b̃Ψ + ∆T v̇ ∂P (v)
∂v

∆ + ∆T Ã(v)TP (v)∆ + ΨT b̃TP (v)∆+

∆TQ∆∆− (ς(v))2ΨTQΨΨ < 0

(26)

In the inequality (26) is important to stand the significance of the ∆T v̇ ∂P (v)
∂v

∆

term. In LPV framework, the stability analysis considers the parameter

varying velocity, which, in this particular case, corresponds to the bicycle

translational acceleration. The previous is an important characteristic for

the LPV system stability. Carry on with the observer design, Ec. (26) can

be represented as:

 ∆

Ψ

T  P (v)Ã(v) + Ã(v)TP (v) + v̇ ∂P (v)
∂v

+Q∆ P (v)b̃

b̃TP (v) −(ς(v))2QΨ

 ∆

Ψ

 < 0

(27)

As a result, the estimation error convergence will be accomplished if the

parameterized LMI:

 P (v)Ã(v) + Ã(v)TP (v) + v̇ ∂P (v)
∂v

+Q∆ P (v)b̃

b̃TP (v) −(ς(v))2QΨ

 < 0 (28)

is feasible with P (v) = P (v)T > 0. In order to solve (28) a brief modification

should be performed:
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Ã(v) = Ã1(v)−Ks(v)C1

=

 A(v) Bf

0 0

−
 K0(v)

L0(v)

 [C 0]
(29)

b̃ = − Ks(v)b̃1 + C2

= −

 K0(v)

L0(v)

 [D 0] +

 0 0

0 I

 (30)

where I is the identity matrix of appropriated dimensions. The previous mod-

ification is made in order to eliminate the bilinear condition P (v)K0(v) and

P (v)L0(v). Further, by making Kfo(v) = P (v)Ks(v) and M(v) = (ς(v))2,

the following is proposed.

Proposition I: The observer (16) will provide the fault and state estimation

considering the state estimation error ee → 0 as t→∞ if Ψ = 0 and bounded

by a factor ς(v) when Ψ 6= 0 if: κ(v) +Q∆ −Kfo(v)b̃1 + P (v)C2

−b̃T1Kfo(v)T + CT
2 P (v) −M(v)QΨ

 < 0 (31)

is feasible with κ(v) = P (v)Ã1(v)−Kfo(v)C1 + Ã1(v)TP (v)−CT
1 Kfo(v)T +

v̇ ∂P (v)
∂v

, P (v) = P (v)T > 0, [K0(v) L0(v)]T = Ks(v) = P (v)−1Kfo(v) and

ς(v) =
√
M(v).

6. Controller Design

The following control law is proposed:

u = k(v)x̂ =
[
kφ(v) kδ(v) kφ̇(v) kδ̇(v)

]
x̂ (32)
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where the k(v) is the parameter-varying control gain and x̂ is provided by

the observer given in (16). Forming the closed-loop system in fault-free case:

ẋ = (A(v) +Bk(v))x−Bk(v)ee +Bffa (33)

under the consideration that the solution of (31) guarantees the fault and

state estimation error convergence as well as the effect of the actuator fault

within the estimation, it is only necessary to design the control gain k(v)

such that x → 0 when t → ∞ considering A(v) + Bk(v) in Eq. (33). For

this to be achieved, the controller design considers a parameter-dependent

Lyapunov function V (x, v) = xTQ(v)x with a derivative term:

V̇ (x, v) = Q(v)(A(v) +Bk(v)) + (A(v) +Bk(v))TQ(v) + v̇ ∂Q(v)
∂v

< 0

(34)

for some Q(v) = Q(v)T > 0. Since the inverse of a symmetric and positive-

definite matrix is symmetric and positive-definite, performing the pre-multiplication

and post-multiplication operation in (34) by Q(v)−1:

(A(v) +Bk(v))Q(v)−1 +Q(v)−1(A(v) +Bk(v))T + v̇Q(v)−1 ∂Q(v)Q(v)−1

∂v
< 0

A(v)Q(v)−1 +Bk(v)Q(v)−1 +Q(v)−1A(v)T +Q(v)−1k(v)TBT+

v̇Q(v)−1[∂Q(v)
∂v

Q(v)−1 +Q(v)∂Q(v)−1

∂v
] < 0

(35)

let us point out that:

v̇Q(v)−1[∂Q(v)
∂v

Q(v)−1 +Q(v)∂Q(v)−1

∂v
] = v̇Q(v)−1 ∂Q(v)

∂v
Q(v)−1 + v̇ ∂Q(v)−1

∂v
= 0⇒

v̇Q(v)−1 ∂Q(v)
∂v

Q(v)−1 = −v̇ ∂Q(v)−1

∂v

(36)

combining (35) and (36) V̇ ((x, v)) < 0 will corresponds to:
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A(v)Q(v)−1 +Bk(v)Q(v)−1 +Q(v)−1A(v)T +Q(v)−1k(v)TBT + v̇Q(v)−1−
v̇ ∂Q(v)−1

∂v
< 0

(37)

Finally, by making X(v) = Q(v)−1 and Y (v) = k(v)X(v) in order to retrieve

the bilinear condition k(v)X(v), the following LMI is obtained:

A(v)X(v) +BY (v) +X(v)TA(v)T + Y (v)TBT − v̇ ∂X(v)
∂v

< 0 (38)

As a result, the asymptotic stability is guaranteed if the LMI (38) is solvable

with X(v) = X(v)T > 0. The final solution for the control gain is computed

by:

k(v) = Y (v)X(v)−1 (39)

7. Observer gain and control gain computation

The previous LMI restrictions can be seen as a set of parameter-varying LMI

due to the translational velocity. The methods to solve this kind of prob-

lems are relaxation (Tuan and Apkarian, 1999), sum of Squares (Prajna and

Wu, 2005) and discretization (Rugh and Shamma, 2000). In this paper the

discretization method was used. The method is based on a discretization for

the varying-parameter range using a difference approximation for the deriva-

tive term. Once the discrete solution has been computed, an interpolation

method is used to generate the continuous one. The final LMI set to be

solved for the controller gains corresponds to:
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A(jh)X(jh) +BY (jh) +X(jh)TA(jh)T + Y (jh)BT±v̇ Y (jh+h)−Y (jh)
h

< 0

X(jh) = X(jh)T > 0

(40)

and for Proposition 1:

 κ(jh) +Q∆ −Kfo(jh)b̃1 + P (jh)C2

−b̃T1Kfo(jh)T + CT
2 P (jh) −M(jh)QΨ

 < 0 (41)

where κ(jh) = P (jh)Ã1(jh)−Kfo(jh)C1 + Ã1(jh)TP (jh)− CT
1 Kfo(jh)T

±v̇ P (jh+h)−P (jh)
h

, P (jh) = P (jh)T > 0, Ks(jh) = P (jh)−1Kfo(jh) and

ς(jh) =
√
M(jh).

For the controller and observer design, a LMI region (Chilali and Gahinet,

1996) has been considered. In this context, the closed-loop eigenvalues, as a

result of the control gains, will be allocated to the left side of the βc value

within the left complex plane by solving:

A(jh)X(jh) +BY (jh) +X(jh)TA(jh)T + Y (jh)BT + 2X(jh)βc < 0

X(jh) = X(jh)T > 0

(42)

The LMI region for the observer, on the other hand, will be defined by the

parameter βo and the following LMI: κ̃(jh) +Q∆ + 2βoP (jh) −Kfo(jh)b̃1 + P (jh)C2

−b̃T1Kfo(jh)T + CT
2 P (jh) −M(jh)QΨ + 2βoP (jh)

 < 0 (43)

where κ̃(jh) = P (jh)Ã1(jh)−Kfo(jh)C1 + Ã1(jh)TP (jh)− C1TKfo(jh)T .
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In Eqs. (40)-(43), j = 1, 2, ..., N is the gridding varying-parameter space and

h > 0 the step width.

8. Simulation results

8.1. Control and observer gains: Solutions

The LMI set (40)-(43) was solved using h = 0.02, N = 60, and v̇ = 0.05 with

YALMIP Toolbox (Lofberg et al., 2009) and MATLAB. The observer gains

were computed considering Q∆ = 1e−3I, QΨ = 750I and βo = 6 in Ecs. (41)-

(43), solved simultaneously. The interpolated observer gains corresponds to

the 3 order function as follows:

Ks(v) = ZF3v3 + ZF2v2 + ZF1v + ZF0 (44)

ZF3 =



−8.899 4.481

−3.589 2.486

−2.327 1.911

−17.585 −10.529

−14.965 −17.049


ZF2 =



11.555 −9.530

−5.491 −3.120

20.876 −8.127

20.132 135.237

20.385 149.398


(45)

ZF1 =



22.240 7.315

−7.723 0.558

−41.298 11.004

−799.597 −217.092

−437.676 −242.273


ZF0 =



38.508 28.576

137.35127 0.280

7.818 26.794

2282.818 13.078

1338.391 3.758


(46)
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For the control gains the LMI region considered was defined by βo = 1. The

solution, by solving (40) and (42) simultaneously, interpolated to functions

of 4 order, were found to be:

k(v)T =


−79.0188 283.6894 −234.4882 −165.4273 262.0917

−3.6333 10.3396 −1.5758 −22.6184 15.8127

−22.1225 79.8812 −68.4279 −41.8261 70.3465

0.3839 −3.1946 8.6688 −10.3002 3.9232





v4

v3

v2

v

1


(47)

The eigenvalues corresponding to the estimation error matrix (29) are dis-

played in Figure 3. The real and imaginary part of the observer error eigen-

values are presented in Figure 3a), the real part of the eigenvalues in function

of v in Figure 3b) and the parameter-varying attenuation level ς(jh) for the

Eq. (24) in Figure 3c). The error convergence of state and fault estimation

can be concluded from Figure 3.

FIGURE 3

Figure 4 shows the controller gains. The asterisks corresponds to the dis-

crete values computed by solving the LMI (40) and (42), the continuous line,

meanwhile, was obtained by using Eq. (47).

FIGURE 4

The closed-loop eigenvalues for A(v) + Bk(v) in Ec. (33) are presented in

Figure 5, concluding with the system stabilization ∀v ∈ Φ despite on a

decreasing or creasing translational velocity.
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FIGURE 5

8.2. Non-faulty case closed-loop simulation

Once the observer and controller gains have been computed, the simulation

of the system (15) by using the control law (32) and the estimated x̂ from

(16) can be carried out. Gaussian noises z1 with mean value 0 and variance

5e−3 and z2 with mean 0 and variance 3e−3 and D = 0.2I for (15) were

considered, while applying initial conditions x = [0 0.1 − 0.04 0]T and x̂ =

[0 0.075 − 0.02 0]T were taken. Figure 6 show the response of the controlled

system with a translational velocity from 1.7 to 1.35 m/s (see Figure 6d).

Figures 6a) and 6b) present the real and the estimated outputs yδ and yφ̇

showing the effectiveness of the proposed observer, able to compute the state

estimation minimizing the measurement noise.

FIGURE 6

The control law, the roll angle estimated φ̇ and, the velocity for the handlebar

δ̇ can be seen in 6c), 6e) and 6f), respectively. Let us point out that the

LPV riderless bicycle model is valid for small variation around φ and δ,

which should be consistent with the closed-loop state magnitude. With the

previous in mind, the measurement noise presented at the system outputs

have a magnitude of approximately ±0.04 rad. or ±2.29 degrees, which is

a considerable noise with respect to the LPV model characteristics. Despite

this fact, the proposed observer provides a state estimation in order to build

the control law with less noise, which in turn will contribute to the smooth

operation of the actuator.
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8.3. Closed-loop simulation with BIAS actuator fault

This section shows the performance of the closed loop system by considering

a BIAS actuator fault in the system (15). For this simulation, similar initial

conditions were considered as in the previous case. Figures 7 and ?? present

the results for a BIAS faulty case Fa = 0.25 at t = 2.5 s. The real and

reconstructed outputs for the system are depicted in Figure 7a), whence one

can see the fault occurrence and its implication in the closed-loop system.

Figure 7a) displays a deviation from the bicycle equilibrium point in yδ caused

by the applied BIAS fault magnitude, where the referred output finishes at

1 rad. equivalent to a 5.73 degrees. The translational velocity variation is

displayed in Figure 7d).

FIGURE 7

Finally, let us point out that v̇ = |1.7−1.35
0−7

| = 0.05 (see Figure 7d), according

to the stipulated value used to compute the control and observer gains. The

control law Tδ, in turn, is depicted in Figure 7c). The estimated and the real

fault are presented in Figure 8. It is seen that the fault estimation converges

correctly in approximately t = 0.5 seg. Under the consideration that the

translational velocity is changing its value continuosly, the actuator fault

estimation error ef = fa − f̂a stay close to 0, once the fault estimation has

been estimated correctly.

FIGURE 8

8.4. Closed-loop simulation with a loss of effectiveness in the actuator

In this simulation, a loss of effectiveness in the actuator with magnitude 45%,

Fa = −0.45 in t = 4.5 s is considered. A translational velocity variation from
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1 to 1.6 m/s is applied using the same initial conditions in x and x̂ mentioned

in section 8.2. For this test, an increasing translational velocity were con-

sidered, in order to evaluate the proposed observer and system stabilization

design. The results obtained in this case lead to interpretations analog to

those perceived in the previous faulty case. It is possible to see, from Figure

12a), that the fault condition generates a strong inference in the closed-loop

system presented in yδ output due to the fault magnitude.

FIGURE 9

In Figure 12c) the control law, after the actuator fault, presents a variation

from the equilibrium, caused by the fault magnitude. The Figure 10a) show

the applied actuator fault and its correctly estimation. The actuator fault

estimation ef , finally, is depicted in Figure 10b).

FIGURE 10

8.5. Closed-loop simulation with time varying actuator fault

As a final test, a time varying actuator fault is considered. As said in pre-

vious sections, the most difficult task for the proposed observer consists in

guarantee the state estimation error ee convergence despite on the fault mag-

nitude. With this in mind, the proposed observer should be evaluated under

a time-varying actuator fault occurrence. The Figure 11a) and 11b) shows

the real and estimated output yδ and yφ̇, respectively. The control law can

be seen in Figure 11c) and, finally, 11d) show the translational velocity con-

sidered. The real and estimated fault, on the other hand, are depicted in

Figure 12a), while the actuator fault estimation error ef = fa − f̂a can be

seen in Figure 12b).
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FIGURE 11

From Figure 12b), it can be seen a small variation from 0 for the actuator

estimation error ef . The previous can be concluded from the fact that there

is not an additional condition imposed in the observer design. In other words,

the classical linear system theory stipulate that there is a error in the case

of tracking references using integer actions. Despite this fact, the proposed

observer design is able to maintain its stability in spite of any actuator fault

type.

FIGURE 12

9. Conclusions

The results presented in this paper correspond to the design of an observer

which is simultaneously in charge of the actuator fault and state estimation

using a riderless bicycle polynomial LPV model. Taking the translational

velocity of the bicycle as a parameter varying along the system trajectories,

the observer is able to estimate the state and the actuator fault despite a

BIAS, loss of effectiveness o time-varying fault occurrence. As an additional

condition, the estimation comes with less noise than the actual system output

measurements and, as a result from the test carried out, the correct perfor-

mance for the proposed observer can be concluded. It is important to point

out that with the proposed design, a versatile observer is generated, allowing

to generate a stabilizing control signal with a less-noise estimated state (with

respect to the presented in the system outputs). Moreover, the actuator fault

estimation can be used in the FTC framework. The efficiency and usefulness
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of the proposed observer —which may be considered the main contribution

of the present work— has been corroborated through simulations considering

BIAS, loss of effectiveness and time-varying faults.
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Figure 1: a) Front view of the bicycle and roll angle φ. b) Top view of the bicycle:

handlebar angle δ and forces f
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Figure 2: a) Open-loop eigenvalues; b) real part of open-loop eigenvalues in function of v
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Figure 3: a) Observation error eigenvalues; b) real part of eigenvalues in function of v; c)

parameter-varying attenuation level
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Figure 4: Discrete and interpolated controller gains. a) k(φ); b) k(δ); c) k(φ̇); d) k(δ̇)
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Figure 5: a) Closed-loop eigenvalues; b) real part of closed-loop eigenvalues in function of

v
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velocity variation
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velocity variation
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Figure 8: Real and actuator fault estimation
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Figure 9: a) Real and estimated output yδ; b) real and estimated output yφ̇; c) translational

velocity variation
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Figure 10: Real and actuator fault estimation
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Figure 11: a) Real and estimated output yδ; b) real and estimated output yφ̇; c) transla-

tional velocity variation
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Figure 12: Real and actuator fault estimation
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