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Abstract

In this paper, we present the preservation of a two-wing Lorenz-like attractor

when in the Lorenz system is applied a feedback control, making two of its

equilibria a sink. The forced system is capable of generate bistability and

the trajectory settles down at one stable equilibrium point depending on the

initial condition when the forced signal is zero. Due to a variation in the cou-

pling strength of the control signal the symmetric equilibria of the Lorenz

system move causing the basins of attraction to be dynamic bounded regions

that change accordingly. Thus, the preservation of a two-wing Lorenz-like

attractor is possible using a switched control law between these dynamic

basins of attraction. The forced switched systems also preserve multistabil-

∗Corresponding author
Email addresses: luisjavier.ontanon@gmail.com (L.J. Ontañón-Garćıa ),
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ity regarding the coupling strength and present multivalued synchronization

according to the basin of attraction in which they were initialized. Bifur-

cations of the controlled system are used to exemplify the different basins

generated by the forcing. An illustrative example is given to demonstrate

the approach proposed.

Keywords: forced multivalued synchronization, multistability, dynamic

basins of attraction.

1. Introduction

The idea of having an N -number of equal or different systems by means of

sharing a common behavior due to their interaction or by an external signal

has been thoroughly studied throughout the years from the point of view

of the phenomenon of synchronization. Different ways of synchronization

phenomena have been outline, but one of the most remarkable is forced

synchronization, where two or more systems are constrained by an external

signal. This type of interconnection has unveiled several applications in many

scientific areas, as it is in chemistry [1, 2, 3], robotics [4] and geophysics [5],

in which an external continuous or periodic signal is received by the forced

systems.

About the stability of the forced systems two things are important to

considerer after a system is coupled. i) If the forced system looses chaoticity

and unpredictability due to the control or suppression of chaos. ii) If the

forced system has not only one but multiple regions of stability. Several

reports describe methods and applications whereby systems loose some of

their intrinsic characteristics in order to adopt inherited properties through
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the coupling (see [6, 7] and the references within). Some of these also present

multistability, that has been widely used in areas such as medicine [8] and

optics [9].

Recently multi-scroll and multi-wing systems have caught attention, and

there have been some approaches that present these types of behavior from

different techniques, some of them introduce new terms or modify the Lorenz

equations [10, 11, 12], some design new systems based on the equilibrium

points [13, 14], and some other use different kinds of coupling, such as master-

slave system [12] and bidirectional coupling [15].

This work explores forced synchronization phenomenon where the sys-

tems are constrained by a feedback control and a perturbation generated by

means of a Poincaré plane [16]. This kind of approach allows us to define

the shape of a perturbation by a function of time, which is triggered every

crossing event of the flow of some monitored system through a previously

defined Poincaré plane. Here we have focused on a forced system and its

dynamical basins of attraction resulting from a different coupling strength.

The highlight of this method lies on three important features:

i) By means of a feedback control and its coupling strength, the Lorenz

system presents bistability and becomes stable with two sink equilibria.

ii) The basins of attraction of the system change with respect to a variation in

the coupling strength. Taking advantage of these dynamic basins, a switched

control law can be designed in order to preserve a two-wing Lorenz-like at-

tractor with stable equilibrium points.

iii) The switched systems present multistablity, and forced multivalued syn-
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chronization can be acquired.

The paper is organized as follows: In the Section 2 the multivalued forced

synchronization regarding the dynamical basins of attraction is explained;

Section 3 presents the characterization of the proposed system; Section 4

contains the forced synchronization method with numerical results; finally,

conclusions are drawn in Section 5. Although the perturbation may be any

arbitrary signal, here we implement monitoring a system by a Poincaré plane

to generate a trigger as an activation of the perturbation, a brief explanation

of how to yield this is given in the Appendix A.

2. Multivalued forced synchronization

In order to explain our general approach, let us consider the following

identical forced systems:

ẏ1 = G(y1,u, ξ),

ẏ2 = G(y2,u, ξ),

...

ẏN = G(yN ,u, ξ), (1)

where 2 ≤ N ∈ Z+ and each yi ∈ Rn, represents the state vector of the

forced systems, with corresponding smooth vector field G : Rn ×Rn ×R→

Rn, u ∈ Rn and ξ ∈ R stand for the control signal and a perturbation,

respectively.

The function G in Eq. (1) includes all terms on dynamics, coupling

and perturbation. It can be rewritten in the following form, G(y,u, ξ) =

Ga(y) + Bu(t) + Cξ(t) (see [17]), where Ga stands for the dynamics of the

4



autonomous system, i. e., before being forced and B ∈ Rn×n determines

which states are feedback, the control signal u := KGc is conformed by

Gc : Rn → Rn function of the state vector of the system which acts as a

feedback and K ∈ R is the strength of the dissipative coupling. C ∈ Rn

determines which states are perturbed.

To detect stability and synchronization in the proposed method we use

the Maximum Conditional Lyapunov Exponent (MCLE) [18, 19]. Worth

mentioning that the MCLE is always negative when the forced system is

synchronized but it cannot detect a multivalued synchronization. Thus we

decided to measure the distance between the trajectories of two forced sys-

tems with different initial conditions in order to detect a different basin of

attraction.

In order to define the multivalued forced synchronization, we assume the

constrained systems given by Eq. (1) induce in phase space Rn the flow

(ϕt), t ∈ R such that each forward trajectory of the initial point yi0 is the

set {yi(t) = ϕt(yi0, K, ξ) : t ≥ 0}. We assume the forced systems given

by Eq. (1) have a dissipative bounded region D ⊂ Rn, such that the flow

ϕt(D, K, ξ) ⊂ D for every t ≥ 0. The maximal attractor A is the largest

attracting invariant subset of D.

Remark 2.1. Throughout this work, reference is made to the flow as a set

of two or more trajectories.

The notion of multivalued forced synchronization takes place for multiple

modes in the synchronization regime and can be defined as follows:

Synchronization in a multivalued mode: Let u ∈ Rn be a control

vector, ξ be a perturbation and y1
0,y

2
0, . . . ,y

N
0 ∈ Rn be initial conditions
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yi0 = yi(t = 0) for the N forced systems given by Eq. (1) with yi0 6= yj0 for

i 6= j. Then the forced systems are said to be synchronized at y0 = (yi0,y
j
0)

in a multivalued mode if there exists open sets Vi 3 yi0 in D such that for

every yj0 ∈ Vj ⊂ D the trajectories ϕt(y0, K, ξ) = (yi(t),yj(t)) satisfies the

asymptotic condition if Vi = Vj. However the forced systems do not identical

synchronize if ϕt(y0, K, ξ) belongs to different basin of attraction Vi 6= Vj

lim
t→∞
|yi(t)− yj(t)| =

 0, for Vi = Vj;

dij > 0, for Vi 6= Vj.
(2)

where dij is an arbitrary distance.

Remark 2.2. Since the forced systems are identical then the dissipative

bounded region D is the same for all systems. Inasmuch as D can be made

up by several open sets Vi then forced systems converge to one open set Vi

depending on a particular initial condition yj0, j = 1, ..., N

The aforementioned definition assumes that if the system from Eq. (1)

is in a multivalued forced synchronization regime with multiplicity p, then

there are p open sets Vi, i = 1, ..., p. Thus, for a given control signal u

and perturbation ξ, the distance |yi(t) − yj(t)| has p different asymptotic

behaviors, depending on the initial conditions yi0 ∈ Vi(y0) and yj0 ∈ Vj(y0)

of the forced systems.

This is because of multivalued mode of synchronization regime, the dissi-

pative bounded region D is the union of disjointed open sets. That is, for a

given initial point (y1) ∈ D let us denote V1(K) 3 y1 as its largest neighbor-

hood of multivalued synchronization in D. Assume that the set D − V1(K)

is not empty. Then, V2(K) is the largest neighborhood of multivalued syn-

chronization for an initial condition y2 ∈ V2(K) ⊂ D − V1(K). Similarly, a
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neighborhood of multivalued synchronization V3(K) is defined for an initial

condition y3 ∈ V3(K) ⊂ D − (V1(K)
⋃
V2(K)), and so on, up to a Vp(K),

p ≥ 2.

3. Stability in the forced Lorenz systems

The Lorenz system is given by:

ẏ1 = σ(y2 − y1),

ẏ2 = ρy1 − y2 − y1y3,

ẏ3 = y1y2 − βy3,

(3)

where y1, y2 and y3 are the states, and the parameters σ = 10, ρ = 25 and

β = 8/3, locate the system in a chaotic regime.

The feedback function of the state vector will take the formGc = (y1, 0, 0)T ,

and only one state will be forced so

B =


−1 0 0

0 0 0

0 0 0

 and u = (Ky1, 0, 0)T .

Considering a perturbation on the state y1, then C = (1, 0, 0)T . Summa-

rizing the forced systems results as follows:

ẏi =


ẏ1

ẏ2

ẏ3

+


−Ky1

0

0

+


ξ

0

0

 , (4)

where i = 1, 2, . . . , N stands for the number of coupled systems.
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Considering ξ = 0 and N = 1 in order to study the stability of the

equilibria as a function of the K coupling strength. The equilibria of the

coupled system is given by:

Q = ( 0, 0, 0 ), (5)

R = ( η, ηµ, ρ− µ ), (6)

S = ( −η, −ηµ, ρ− µ ), (7)

where η =
√
β
(

σρ
σ+K
− 1
)

and µ = (σ+K)
σ

. Notice that the Q equilibrium

point is independent of the values of parameters and the coupling force, in

contrast to the R and S equilibrium points that vanish when σρ < (σ +K).

Since R and S given by Eqs. (6) and (7) depend on the coupling strength, we

present the location of these equilibrium points for a variation of 0 ≤ K ≤ 240

in Figure 1, where the Q equilibrium point is marked with asterisk remains

at the origin for any value of K, however, the other two points marked with

diamonds for R and circles for S begin to approach to the origin as K tends

to increase.

The local stability of the equilibrium points also depend on the coupling

strength. The eigenvalues for the equilibria Q, R and S given by the Jacobian

of system (4) for ξ = 0 can be appreciated in Figure 2. Here we depicted

their values for the same variation of 0 ≤ K ≤ 240. Figure 2 a) shows the

eigenvalues corresponding to Q which are all real, the positive one begins to

approach zero as K increases. The equilibrium points R and S have the same

stability, which are shown in Figure 2 b). Each of these two points presents

a saddle equilibrium point for K < 0.1, i. e., two of their eigenvalues are

complex conjugate with positive real part and the other is real negative.
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Figure 1: Location of the equilibrium points of system (4) projected onto the (y1, y2) plane.

These points were calculated due to a variation on the coupling strength for 0 ≤ K ≤ 240

depicted with the colors of the bar in the right. The three points are marked with asterisks

forQ from Eq. (5), circles and diamonds forR from Eq. (6) and S from Eq. (7), respectively.

In the interval of 0.1 < K < 170, the saddle disappears due to the complex

conjugate real parts changes from positive to negative. For values of K > 170

all the eigenvalues turn negative real meaning that both equilibrium points

become sink, and any trajectory near them will be attracted to them. This

is the reason why the phenomena of bistability occurs for 0.1 < K < 240,

notice that trajectories converge to an equilibrium point depending on the

initial condition given to each forced system and the basin of attraction that

it corresponds.
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4. Multistability by forced Lorenz systems

The perturbed signal ξ can be generated in many ways as previously

discuss. We will focus on the generation of the perturbed signal in the

same spirit as in [16], only considering the viewpoint of activation. A brief

explanation is described in Appendix A, and ξ will take the form ξ =

Ae−τ(t−ti) cos(w(t − ti)) from Eq. (A.2) taken from a Rössler system as in

[16], where A increases accordingly K increases, we particularly considered

A = K. Here 0 ≤ τ ∈ R represents an underdamping factor which allows

us to modulate the signal and the scalar w ∈ R stands for the frequency.

Thereby is possible to generate a process akin to a Poisson process, but

instead of be a stochastic process is chaotic.

Figure 3 a) shows a projection of the forced system onto the (y1, y2) plane
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Figure 2: Jacobian eigenvalues of the equilibrium points of the forced system due to a

variation of the coupling strength for 0 ≤ K ≤ 240. The eigenvalue was marked with red

triangle when is a real value and with blue circle or dot when is complex, in the upper

graphic λ1, λ2 and in the lower graphic λ3. a) Eigenvalues corresponding to the equilibrium

point at origin. b) Eigenvalues corresponding to symmetrical equilibrium points given by

(6) and (7).
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for K = 20. The size of the attractor is tiny because the system is stable

and every initial condition goes to the equilibrium point, but the perturba-

tion makes the system’s trajectory to oscillate around the stable equilibrium

points. Figure 3 b) shows the MCLE of the system for different values of the

coupling strength, the range vary from 0 ≤ K ≤ 240. For values of K greater

than 4 the system presents a negative Lyapunov exponent, meaning that the

forced systems can be synchronized in presence of the same perturbations.

However with the MCLE is not possible to know whether the trajectories

are in the same basin of attraction or a different one. In order to detect the

multistability in the coupled system we calculated the Euclidean distance be-

tween the trajectories of two forced systems with different initial conditions.
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y
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2
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Figure 3: a) Projection of the system Eq. (4) in the (y1, y2) plane for K = 20, τ =

1/1000, ω = π/50. b) Maximum Conditional Lyapunov Exponent due to a variation

in the coupling strength 0 ≤ K ≤ 240. c) Euclidean distance between the trajectories

of forced systems with different sets of initial conditions. For the line “1” marked with

squares (y1
0, y

2
0). For the line “2” marked with circles (y1

0, y
3
0).
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This distance was calculated from d(y1,y2) =
√∑n

i=1(y
1[i]− y2[i])2, where

n stands for the number of iterations in the numerical simulation made with

a fourth-order Runge Kutta method, for this case we considered n = 100, 000

iterations after the transient state.

The sets of initial conditions considered are given by:

y1
0 = (1, 1, 1), (8)

y2
0 = (7, 8, 24), (9)

y3
0 = (−7,−8,−24). (10)

Notice in Figure 3 c) from line 1 marked with squares that there is com-

plete synchronization at (y1
0,y

2
0) and the asymptotic condition Eq. (2) is met

due to y1
0 and y2

0 belong to the same open set V1 for 10 < K < 240. The set

y1
0 and y3

0, results on different behaviors between the forced systems, this is

shown in Figure 3 c) from the line 2 marked with circles. The forced systems

present generalized synchronization at (y1
0,y

3
0) and the trajectory ϕt(y1

0,y
3
0)

does not satisfy the asymptotic condition due to d(y1,y3) > 0, so y1
0 ∈ V1

and y3
0 ∈ V2 with V1 6= V2 for 10 < K < 240. The trajectories oscillate near

the equilibrium points R and S for the two different basins of attraction. Fig-

ure 4 shows a bifurcation diagram calculated by means of local maxima of

the time series y1 when the forced systems present bistability, 4 ≤ K ≤ 240.

The upper branch of Figure 4 shows when the trajectory oscillates around

the S equilibrium point and the below branch shows oscillation around the

R equilibrium point.

In this systems configuration, only two basins of attraction emerge. These
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Figure 4: Bifurcation diagram of the forced Lorenz system in the y1 state for different

values of the coupling strength K. The trajectories in the two different basins of attraction

are marked with blue and red.

two basins may be appreciated in Figure 5, where the y3 = 4 plane for the

region −50 ≤ y1 ≤ 50 and −50 ≤ y2 ≤ 50 are shown for different values of the

coupling strength K. Figure 5 a) shows the two different basins for K = 5,

calculated with the Euclidean distance, one is marked with red circles and

the other one with blue dots. These two basins of attraction are interlaced,

presenting irregular forms. However in Figure 5 b) for K = 200, the basins

are dividing the grid, but the irregular structure has been lost. This is a

clear example of how the basins of attraction are being dynamic respect to

the value of K.

Remark 4.1. When there are multiple basins of attraction where synchro-

nization occurs, the dissipative bounded region D is the union of disjointed

open sets that are localized in different parts of Rn.
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With the forcing signal the Lorenz-type oscillations are lost, instead they

occur near the equilibrium point in the corresponding basin of attraction.
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Figure 5: Two basins of attraction on the y3 = 4 plane for the region −50 ≤ y1 ≤ 50 and

−50 ≤ y2 ≤ 50 for different values of the coupling strength: a) K = 5, b) K = 200. The

basins V1 and V2 are marked with red circles and blue dots, respectively.

Two-wing Lorenz-like attractor

Due to the dynamic basins of attraction V1 and V2 as a function of the

coupling parameter K, we are able to design a switched system with spe-

cific values of the coupling strength K1, K2, . . . , Kn that determine a pair of

equilibrium points R1, S1, R2, S2, . . . , Rn, Sn that belong to basins of

attraction V1,2(K1), V1,2(K2), . . . , V1,2(Kn), respectively. With the purpose of

describing the switched system, let us define a neighborhood around a given

point x ∈ R3 as Nδ(x) = {y ∈ R3|d(x,y) < δ}, where δ is a scalar that

stands for the radius of each Nδ(x) neighborhood.

Suppose that R1 ∈ V1(K1), S1 ∈ V2(K1), R2 ∈ V1(K2), S2 ∈ V2(K2), ..., Rn

∈ V1(Kn), Sn ∈ V2(Kn). Now the idea is to initialize a forced system with

y01 ∈ D and a specific value for the coupling strength K1, when the forward
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trajectory ϕ(y01, K1, ξ) of the initial condition enters to whatever neighbor-

hood Nδ(R1) or Nδ(S1), the coupling strength will be changed to K2 and at

this time the system will be initialized with the current location of the tra-

jectory y02 = ϕ(y01, K1, ξ). Hence the new forward trajectory ϕ(y02, K2, ξ)

changes the value of coupling strength to K3 until it enters to any neighbor-

hood Nδ(R2) or Nδ(S2), and so on. The coupling strength will return to its

starting value K1 when the trajectory ϕ(y0n, Kn, ξ) enters to any neighbor-

hood Nδ(Rn) or Nδ(Sn) and the cycle begins again.

For each time the system switches the coupling strength, the basins of

attraction also switch depending on the value of K. For specific values of

the coupling strength and taking into consideration the interlacing of the

resulting basins and initial conditions, it is possible to preserve a two-wing

Lorenz-like attractor with stable equilibrium points.

In order to explain this in more detail we will start by considering one

forced system from Eq. (4) with a perturbation ξ given by Eq. (A.2). With-

out loss of generality, the approach is exemplified by taking two values for

K1,2 = 5, 200. These coupling strengths K1 = 5 and K2 = 200 determine

the location of the pairs of equilibrium points at S1 = (−6.45, −9.7, 23.5)

and R1 = (6.45, 9.7, 23.5), and S2 = (−0.73, −14.94, 4) and R2 =

(0.73, 14.94, 4), respectively. Now, considering the following initial condi-

tions x01 = (0.73, 14.94, 4)∈ V1(K1) and x02 = (−0.73, −14.94, 4) ∈ V2(K1)

that correspond to the location of the equilibrium points R2 and S2 de-

termined by K2 = 200, respectively. The forward trajectories ϕ(x01 =

R2, K1, ξ) ∈ V1(K1) → S1 and ϕ(x02 = S2, K1, ξ) ∈ V2(K1) → R1 will be

led to oscillate near the equilibrium points. This is depicted in Figure 6 a),
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Figure 6: Projection onto the (y1, y2) plane for two different sets of initial conditions

marked with green dots and different values of the coupling strength. The two resulting

trajectories are marked with red and blue. a) The initial conditions are x01 = R2 =

(0.73, 14.94, 4), and x02 = S2 = (−0.73, −14.94, 4), with K1 = 5. b) The initial

conditions are x03 = R1 = (6.45, 9.7, 23.5), and x04 = S1 = (−6.45, −9.7, 23.5), with

K2 = 200.

where both forward trajectories are marked with blue and red, respectively,

the initial condition x01 = R2 is marked with a green square and x02 = S2

with a green circle. The equilibrium points R1 ∈ V2(K1) and S1 ∈ V1(K1)

are marked with a green diamond and a green star, respectively.

Now by changing the coupling strength to K2 = 200 and selecting the

set of initial conditions at x03 = R1 = (6.45, 9.7, 23.5) and x04 = S1 =

(−6.45, −9.7, 23.5), the trajectories of the systems converge to each corre-

sponding basin of attraction V1(K2) and V2(K2), respectively. This may be

appreciated in Figure 6 b), where the two systems trajectories are marked

with blue and red, also the set of initial conditions x03 = R1 ∈ V1(K2) and

x04 = S1 ∈ V2(K2) are marked as a green diamond and a green star, re-

spectively, and the equilibrium points S2 in a green circle and R2 as a green
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square, respectively.

Notice that the equilibrium points R1 and S1 for K1 correspond to the

initial conditions x03 and x04, respectively, and the equilibrium points R2 and

S2 for K2 correspond to the initial conditions x01 and x02, respectively.
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Figure 7: Preservation of a two-wing Lorenz-like attractor from the switched law in

Eq. (11) for K1 = 5, K2 = 200 and δ = 0.05. a) Projection onto the (y1, y2) plane.

b) Projection onto the (y1, y3) plane.

Focusing on this resulting basins and in the interconnection with the ini-

tial conditions due to the coupling strength, we choose the neighborhoods

Nδ(R1), Nδ(S1), Nδ(R2), Nδ(S2) with δ = 0.05. Then we may define the

switched system given by Eq. (4) and starting with K = K1 and chang-

ing as follows:

K =

 K1 y(t) ∈ Nδ(R2) or y(t) ∈ Nδ(S2);

K2 y(t) ∈ Nδ(R1) or y(t) ∈ Nδ(S1).
(11)

Figure 7 a) shows a projection onto the (y1, y2) plane of the resulting

attractor of the switched system. Here we can see the similarity with the

oscillations for the independent values of the coupling strengths K1 and K2

depicted in Figure 6 a) and b). The two-wing structure can be appreciated
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in more detail from the projection onto the (y1, y3) plane depicted in Figure

7 b), and the dynamics of each independent state may be seen in Figure 8

a) the time series of the y1 state, b) y2 state and c) y3 state.
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Figure 8: Time series of the states of the resulting two-wing Lorenz-like attractor with

K1 = 5 and K2 = 200 for some iterations in time: a) y1, b) y2, c) y3.

Generalized synchronization via forced switched systems

Since the switched systems are being forced by the same perturbation,

this subsection is devoted to study synchronization among them. So we
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Figure 9: Four basins of attraction of the forced switched system in the a) y3 = 4 plane,

b) y3 = 24 plane for the region −20 ≤ y1 ≤ 20 and −30 ≤ y2 ≤ 30.

initialized two of them with different initial conditions. By controlling two

forced systems with the switched control law given by Eq. (11), with K1 =

5, K2 = 200 and using two different sets of initial conditions we can detect

the region where the basins of attraction are located using the Euclidean

distance between the forced systems. The result is that after the switching

of the coupling strength, the systems present four basins instead of two as

the regular system does for one value of the coupling strength.

The location of these different basins of attraction can be seen in Figure 9,

for different regions on planes perpendicular to y3 axis. Figure 9 a) shows the

y3 = 4 plane and Figure 9 b) the y3 = 24 plane for the region −20 ≤ y1 ≤ 20

and −30 ≤ y2 ≤ 30.

Remark 4.2. For A ⊂
p
∪
i=1
Vi(K) , y(t) = ϕt(y0, K, ξ) goes through each

Vi(K) an infinite number of times for every y0 ∈ D. The basins of attraction

where synchronization occurs are not static sets. For each initial condition

y0 ∈ A the time evolution of the basin of attraction Vi(K) is denoted by
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V t(K) := ϕt(y0, K, ξ).

As aforementioned, the four basins exist, and the systems synchronize and

satisfy the asymptotic condition from Eq. (2). In addition of preserving the

two-wing Lorenz-like attractor, the coupled systems preserve multistability in

their phase space due to the switching of the coupling strength and they are

capable of synchronize regarding of whether the initial conditions belong to

the same basin of attraction or not. Different switched control law’s including

a large number of coupling strengths may be designed in order to have more

complex attractors.

5. Concluding remarks

Multistability is presented in the Lorenz system by applying a perturba-

tion and a feedback control law. The perturbation signal ξ may be periodic,

random or chaotic as some existing system in nature (see [20]). Here it was

generated by means of a monitored chaotic system by a Poincaré plane in

order to avoid periodicity and simulate a perturbation similar to a Poisson

process. The variation in the coupling strength K changes the stability of

the forced system and modifies the region of the corresponding basins of

attraction. The different basins of attraction are detected by checking the

asymptotic behavior of different initial conditions, depicted by means of the

bifurcation diagram and the projection of the equilibrium points for different

values of K. Taking advantage of the dynamics of the basins of attractions

of the stable system the flow of the trajectory may be redirected preserving

a two-wing Lorenz-like attractor.
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The forced synchronization has application in chaotic communication sys-

tems, where there are always at least two forced systems involved: i) the

transmitter, which has the information signal as its external driving and ii)

the receiver, which is forced by the incoming carrier delivered by the trans-

mitter. The goal of a communication systems is achieved when the transmit-

ter forces the receiver to synchronize. Thus the forced synchronization in a

Lorenz-like system can be used to construct a communication system and the

key to synchronize due to the multivalued synchronization is the sequence

that the coupled strength can take. This work is under investigation and

may be reported elsewhere.
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[11] S. Yu, W.K.S. Tang, J. Lü and G. Chen, Multi-wingbutterfly attractors

from the modified Lorenz systems, Circuits and Systems. ISCAS 2008.

IEEE International Symposium, pp. 768–771, (2008).

[12] K. Bouallegue, A. Chaari and A. Toumi, Multi-scroll and multi-wing

chaotic attractor generated with Julia process fractal, Chaos, Solitons

and Fractals vol. 44, pp. 79–85, (2011).

[13] S. Cang, G. Qi and Z. Chen, A four-wing hyper-chaotic attractor and

transient chaos generated from a new 4-D quadratic autonomous system,

Nonlinear Dyn. vol. 59, pp. 515–527, (2010).

[14] S. Dadras, H.R. Momeni, G. Qi and Z.L. Wang, Four-wing hyperchaotic

attractor generated from a new 4D system with one equilibrium and its

fractional-order form, Nonlinear Dyn vol. 67, pp. 1161–1173, (2012).

[15] G. Grassi, F.L. Severance and D.A. Miller, Multi-wing hyperchaotic

attractors from coupled Lorenz systems, Chaos, Solitons and Fractals

vol. 41, pp. 284–291, (2009).
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Appendix A. Perturbed Signal

Although the perturbation ξ can be generated in several ways, usually

is considered as a periodical signal, but in order to avoid the periodicity we

take the model of triggering given by [16]. An autonomous system described

as:

x′ = F (x), F : Rm → Rm (A.1)

is being monitored by a Poincaré plane Σ := {(x1,x2,x3) : α1x1 + α2x2 +

α3x3+α4 = 0} where α1, . . . , α4 ∈ R are coefficients of a hyperplane equation

whose values are considered arbitrarily according to the following discussion.

We are interested in the crossing events of the trajectory of the monitored

24



system Eq. (A.1) restricted to the projection Ax with Σ, captured by the

points {ϕt0m(x0), ϕ
t1
m(x0), ϕ

t2
m(x0), . . .} ∈ Σ at each crossing event. Where

ϕtim(x0) is the flow restricted to Ax. Therefore, we can specify the following

time series ∆x0 = {t0, t1, t2, . . .}, which depends on the initial conditions of

the system in Eq. (A.1). The location of the plane must be located in order

to meet the condition Ax
⋂

Σ 6= ∅, assuming that at least one crossing event

at time ti exists. Throughout this work we have focused in the crossing

events of the trajectory of the monitored system with Σ in only one direction.

So the time series ∆x0 contains each crossing event that satisfy d
dt

(x1) > 0.

Following the above discussion, the term ξ(t) from equation (1) is determined

as follows:

ξ(t) = (Ae−τ(t−ti) cos(w(t− ti)), 0, 0)T , (A.2)

where τ ∈ R represents an underdamping factor which allows us to modulate

the signal and the scalar w ∈ R stands for the frequency. Therefore the

underdamped signal is triggered with each crossing event of Eq. (A.1) with

Σ. Notice that for a value of τ = 0, the coupling becomes the negative

feedback from the classical form described above [17]. Figure A.10 a) shows

the projection of the Chen system [21] with the following equations:

ẋ1 = a(x2 − x1),

ẋ2 = (c− a)x1 − x1x3 + cx2,

ẋ3 = x1(x2 − bx3).

(A.3)

with the parameters a = 35, b = 3, c = 28. The system is being monitored

by a Poincaré plane with values α1 = 0.5934, α2 = −1.1636, α3 = 0, α4 =

25



−2.4068, every event of crossing between the system and the plane Σ is

marked with an asterisk. And the form of the signal (A.2) generated is

depicted in Figure A.10 b).
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Figure A.10: a) Projection of the monitored Chen system onto the plane

(x1, x2) intersected by the Poincaré plane Σ. The points of each crossing event

{ϕt0
m(x0), ϕt1

m(x0), ϕt2
m(x0), . . . } are marked with asterisk. b) Signal ξ(t) from a monitored

Chen system marked in solid line, and state y1 of the forced Lorenz system marked with

dashed line. Marked with asterisk the ti of the crossing events with A = 1.5, τ = 0.05,

ω = π/50 and K = 20.
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