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Introduction 
Aligned carbon nanotubes (ACNTs) carpets represent a new and interesting materials with a great 

potential of applications in electronic devices.  The production of this material is carried out by 

means of chemical deposition (CVD) method. The control of the synthesis parameters combined 

with new ideas on the experimental setups have allowed the production of  carpets of ACNTs with 

fascinate morphologies.1 Another route to produce carpets of ACNTs is the realization of CVD 

experiment on a pre-fabricated substrates with micro pattern array or on already synthesized 

vertically aligned nanotubes.2-5 These microarrays with CNTs grown in specific sites have been 

considered as good candidates for device fabrication, such as field electron emission, due to high 

emission currents, low turn on voltages and better emission stability.4,6-7 There exist different 

reports on the fabrication of micro patterns based on CNTs: 1) CNTs grown on supports that wet in 

water, creating tipped array morphologies by capillarity;8-10 2) CNTs grown on deposited diamond 

or graphite as seeds for produce sp2 and sp3 carbon generating hybrid structures by hot filament 

CVD11, and  3) CNTs grown on deposited nanoparticles .12-13 In general, they showed that small 

changes can modify substantially the morphology of carbon nanotube structures. 

  

In this work, a single step modified CVD method is proposed to synthesize carpets containing 

micro-mountains formed by vertical stacked nitrogen-doped carbon nanotubes with varied lengths, 

adopting pine-like morphologies. Electron field emission properties of pine-like morphologies will 

be discussed. 

 

Experimental 
Figure 1 displays a schematic representation of the chemical vapor deposition (CVD) method used 

for the synthesis of multiwalled carbon nanotubes (CNx) carpets with pine morphology arrays. In 

this set up, the atomized solution (97.5% of benzylamine and 2.5% of ferrocene) is transported by 

an Ar flow of 2.5 l/min inside of quartz tube and pyrolized during 20 min. using a tubular 

Thermoline Minimite furnace at 850 C. The CNx were grown on Si/SiO2 substrates previously 

distributed along the quartz tube axis (labeled by 1, 2 and 3 regions),. These substrates were placed 

in the second zone of the furnace (right side, 2 cm from the middle), separated 1 cm between them. 

The main modification in our CVD experiment is performed on the exit or trap zone (enclosed by 

the red square). In the conventional CVD method, the exit zone contains a half-filled bubbler with 

acetone (only one container), in our modified CVD method, the first container was emptied and  a 

second container was added and filled with ethanol; in addition, the exhaust gas was forced to pass 

through a small diameter glass nozzle (i. d. ~ 0.6 mm).  
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Figure 1. Schematic representation of the modified chemical vapor deposition (CVD) method setup 

for the synthesis of pine-like CNx structures.  These structures grow under the substrates with better 

defined pines in substrate labeled by 2. The CVD modification consists in addition of a double trap 

(see exit zone).  

 

The CNx were grown on both sides, superior and inferior parts of the substrates. On the superior 

part, a typical aligned CNx were found. On the inferior part, different structures were observed. 

Inset in figure. 1 displays a schematic representation of the sample under substrate wafer in zone 2,  

showing the region where the pine-like morphologies were obtained (purple zone). The other 

substrates (1 and 3) presented similar distribution structure although at microscopic level the 

morphologies are different.  

 

Results 
Figure 2 shows SEM images of the morphology observed under substrate 2, focusing in the pines 

zone (see inset in figure 1, purple color). Notice that the SEM images show pine-like structure 

distributed randomly.  These pine structures are mainly composed by CNx with different lengths 

and diameters, which possibly were growing at different rates or at different stages in the synthesis 

process. The pine base and length averages are 29.42 ± 5.86 m, with 39.47 ± 5.73 m, 

respectively, and composed by CNx which diameter average is 33.95 ± 5.43 nm. Figure 2b depicts a 

SEM image magnification taken from the  rectangular enclosed area in figure 1.  

      



 
Figure 2. SEM images of pine-like structure morphologies. (a) Pine structures array and (b) close 

up image taken from the marked rectangle in (a). The pine structures are made of several CNx with 

different heights. 

 

It is worth to mention that the morphology in the inferior part of substrate 1 (not showed) presented 

also conic structure with an amorphous carbon thin layer covered its surface, while in the case of 

substrate 3 (inferior part too) forest of CNx is formed with not clear defined pine structures (not 

showed).  In general, different morphologies were obtained depending on the position of each 

substrate. We believe that depending of the substrate position, it experiments different flux gas 

turbulence and atomized mixture (benzylamine and ferrocene) composition variation which could 

influence in the pine structure formation.  Apparently, in substrate 1, the atomized mixture is 

passing under it and forming CNx with some pine structure possibly due to the reduced small 

space,13 but also producing amorphous carbon after some time.  In substrate 2, the CNx formation is 

possibly due to the type-cloud mixture that it was not altered and it is passing by the superior part of 

substrate 1 and the mixture that is emerging from the inferior part of substrate 1. Other structures 

have been produced taking advantage of type-space confinement or peculiar surface tratments.12-13 

In the case of the substrate 3 should be similar than substrate 2, but in this case the cloud mixture 

passing below the substrate 2 is participating with less intensity and  the CNX  are fabricated below 

the substrate 3 by the mixture that comes from above.  However, more investigations on the 

formation mechanism of pine structures are now needed.  

 

 

 

 

      

 
Figure 3. The field emission current as a function of the applied field for pine structures containing  

CNx. 

 



Due to their conic geometry, the pine-like structures are expected to have good field emission (FE) 

properties.14-15 Their FE characteristics were evaluated by measuring the I-V plot in an area of 2×2 

mm2 of substrate labeled as 2  containing the pine structure. A homemade field emission chamber 

with a high vacuum system (around 5×10-8 Torr), a distance of 200 µm between the anode and the 

sample, and an area of 1 cm2 were fixed.  

     

Figure 3 shows the FE curve of pine structures . The curve shows exponential behavior of current 

for increasing voltage, achieving a turn-on voltage of 0.7 V/µm. This value is lower than other 

materials, such Ga doped ZnO nanopins (1.92 V/µm).16 It is also lower than a CNx forest (1.80 

V/µm),17 but is in the range of pure non-aligned MWCNT (0.75 V/µm).18 However, it is lower than 

the turn-on voltage of long individual bundles of CNT (0.18V/µm).19  

 

 

 

 
Figure 4. Fowler-Nordheim plot calculated from the FE plot of pine structures. 

 

The FE properties of the samples were analyzed using the model of Fowler-Nordheim (FN) by 

plotting 1/V versus ln(I/V2) (see figure 4).  From this plot, the field enhancement factor β was 

calculated from B = -d/s, where s is the slope of the linear region; B is a constant (6.83×109 V 

eV3/2 m-1), φ is the work function (5 eV, taken from graphite),19 and d is the distance between 

electrodes (200 µm). The field enhancement factor of our pines based on CNx was near to 7000, 

which is superior to that reported for forest of CNx (2000).17 

 

Figure 5 exhibits the current stability versus time for pines measured approximately by four days. 

This plot suggests that our pines have good stability for a range current of 4-10 µA.  Raman was 

also measured along the pines (not shown).  ID/IG was approximately of 0.83 along the shape.  

 

 
Figure 5.  Time dependence of the current stability for pines measured approximately for four days. 

 

Conclusions 

A modified chemical vapor deposition method was employed in order to synthesize pine-like 

morphologies formed by nitrogen-doped carbon nanotubes. These pines like structures were grown 

in the inferior side of a Si/SiO2 substrate. The inferior  side of substrate and the quartz tube form a 



confined space which was not directly exposed to the flow gas feedstock. SEM characterization 

showed that the pine morphology is formed by vertical well stacked CNx following a length conical 

distribution. The field emission measurements revealed that pine-morphologies are better emitters 

than CNTs previously reported16-18, showing low turn-on voltage (0.7 V/µm) and large field 

enhancement factor (~7000).  A more detailed account on experimental setup and growth 

mechanism of these fascinate structures will be published elsewhere.20     
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