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Abstract This work studies asymptotical dynamical behav-
ior of the one-dimensional discrete-time system, the so-called
iterated map. Namely, it introduces a bimodal quadratic map
which is obtained as an amplified difference between well-
known logistic and tent maps and is denoted as the so-called
difference map. Difference map exhibits rich possibilities
of the complex dynamical behavior based on its bifurca-
tion parameter selection. The corresponding bifurcationsare
studied theoretically, numerically and experimentally, pre-
senting numerical simulations and experimental bifurcation
diagrams, the stability of this difference map is studied by
means of Lyapunov exponent also the difference map is proved
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to be chaotic according to the Devaney’s definition of chaos.
Later on, the difference map is implemented as an electronic
circuit which is designed and tested. This electronic circuit
is built using operational amplifiers, resistors and an analog
multiplier. It turns out that this electronic circuit presents
fixed points, periodicity, period doubling, chaos and inter-
mittency that match with high accuracy the corresponding
theoretically predicted values. Possible applications are shortly
discussed, among them possibility of chaos based encryp-
tion scheme built in completely independent analog type de-
vice.

Keywords chaotic behavior· Lyapunov exponent·
bifurcation parameter· bifurcation diagram· stability
analysis.

1 Introduction

Iterated maps are simple looking discrete-time dynamical
systems which can exhibit order to chaos transition. It is
well-known that only non-monotonous 1-dimensional maps
may exhibit complex behaviour, the simplest non-monotonous
maps are the so-called unimodal maps. Famous and broadly
studied examples of unimodal maps are the tent map and
the logistic map, being the subject of constant investigation
in many areas such as communication systems [1], genera-
tion of pseudorandom sequences [2–4], neural networks [5],
switching systems [6] and cryptography [7–11] and part of
the interest for these systems is linked to the fact that they
provide an easy and pedagogical way to understand how
complex and chaotic behavior can arise from simple dynam-
ical models. Even more remarkable is the fact that studies of
low-dimensional maps have proven to be fruitful in under-
standing the basic mechanisms responsible for the appear-
ance of chaos in a large class of dynamical systems.
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Further more complex behavior may be provided by the
so-called bimodal, or evenk-modal maps, [12]. This paper
introduces yet another bimodal map, constructed based on
the difference between logistic and tent map multiplied by
a new bifurcation parameter. This new system is therefore
called as thedifference one and is carefully analyzed theo-
retically, numerically and experimentally through electronic
circuit.

One of the most useful and widely accepted definition
of chaos is the one by Devaney [13], which we will call
Devaney-chaos. Roughly speaking, Devaney chaos consists
of three conditions, (1) the sensitive dependence upon the
initial condition, (2) the topological transitivity, and (3) the
dense distribution of the periodic orbits. The third condition
is often omitted for being too stringent [14]. Fortunately,
there is another characterization of dynamic behavior, which
can be measured by Lyapunov exponents [15–17]. With the
aid of their diagnostic, one can measure the average expo-
nential rates of divergence or convergence of nearby orbits
in the phase space, overall with their signs, a qualitative pic-
ture of the variety of dynamics system’s may exhibit, rang-
ing from fixed points via limit cycles and tori to more com-
plex chaotic attractors. Also, bifurcation diagrams are ex-
cellent tools to study dynamical behavior and understand
mechanisms such as the so-called period-doubling cascades
of fixed points, encountered qualitatively in many physical
systems of interest or mathematical models that have been
electronically implemented [18,19].

Electronic implementation of chaotic systems have been
of great help to validate certain theories concerning chaos
and have also been applied to several engineering devel-
opments. Since its inception three decades ago, there are
different implementations of Chua’s circuit [20–22]. His-
torically seen, Chua’s circuit was the first successful phys-
ical implementation of a system designed to exhibit chaos
[23]. This circuit is the first system rigorously proved to be
chaotic [24]. Chua’s circuit is a continuous time dynam-
ical system where chaos can be observed experimentally.
The Chua’s diode has been modified to generate multiscroll
chaotic which is an extension of Chua type double scroll
circuit [25]. The behavior of the difference map is simpler
than Chua’s circuit to comprehend and it has been proved
chaotic. The behavior of Chua’s oscillator is due to the fact
that it contains five different parameters, whereas for dif-
ference map is only one. There are several chaotic circuit
which have been reported based on third order differential
equation, in the area of continuous time dynamical systems,
see [26–30], but few in the area of discrete time dynamical
systems furthermore to present advantage and be useful in
applications like encryption systems, radar systems, secure
communication systems, among others.

Some discrete dynamical systems have been implemented
by using digital integrated circuits, for example in [31] presents

a digital implementation of the tent map. The problem that
arises using digital implementation is that the system only
takes a finite number of states. Electronic circuits have been
designed, implemented and tested to accurately realize the
logistic difference equation [18] or the tent map difference
equation [19] by using analog devices in order to have an
infinite number of values that can be visited.

In this paper, we enlarge the set of maps known to be
chaotic by presenting a chaotic map based on the difference
between the logistic map and the tent map. The difference
map, more precisely, enables us to construct a bimodal map
which is chaotic in the sense that it has positive Lyapunov
exponent. We also present one of the simplest electronic im-
plementation of the difference map based on analog devices,
which at the same time is a good engineering model of the
corresponding mathematical system. Through the variation
of only one control parameter, one can examine the bifurca-
tion diagram of the realized system and we have been able
to reproduce the theoretical diagram with high accuracy.

The possible application of this circuit implementation
would be independent analog chaos generator usable for en-
cryption purposes, e.g. as independent device to cipher. In
recent years, a growing number of cryptosystems based on
continuous systems utilize the idea of synchronization of
chaos. However, recent studies show that the performance
of continuous systems is very poor and insecure. The inse-
curity results mainly from the insensitivity of synchroniza-
tion to system parameters [32–35] for this reason we used
discrete time systems.

This paper is organized as follows. In the next section
we recall some basic definitions while section 3 introduces
the difference map, including its theoretical and numerical
study and presents its properties. Section 4 describes elec-
tronic circuit implementation of the difference map, includ-
ing key complex dynamical behavior that matches the the-
oretically predicted one. Some conclusions and outlook are
given in the final section.

2 Basic definitions

This paper aims to contribute in the area of the one dimen-
sional, discrete time systems and an asymptotic dynamics
study, namely to the systems of the form

xk+1 = f (xk), k = 0,1,2, . . .N.

Wherexk ∈ ℜ and x0 is the initial condition, such a dy-
namical system is usually referred to asmap, as it is fully
determined by its right hand side. To ensure boundedness
of trajectories, the study is usually restricted to maps that
are mapping some compact interval into itself and without
any loss of generality one may consider the compact inter-
val [0,1] only. The simplest non-monotonous maps are the
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so-called unimodal maps, while their generalization, the so-
calledk-modal maps may present even more rich dynamical
behaviors, [12].

To be more specific, denoteI := [0,1] and recall, that
thecritical point c of the continuous piecewise smooth map
f (x) : I 7→I is c∈I wheref is differentiable andf ′(c)=
0.

Remark 1: The critical pointc occurs for f ′(c) = 0
or f ′(c) doesn’t exist. But continuous smooth maps always
presentf ′(c) = 0.

First, let us repeat the definition of thek-modal map, in-
troduced in [12].

Definition 1 The mapf : I 7→ I is called as thek-modal
one, if it is continuous onI and it hask critical points
denoted byc0, c1 . . . ck−1 in I. Moreover, there exist in-
tervalsIi, i = 0, . . . ,k − 1,∪k

i=1Ii−1 = I , such that∀i =
0, . . . ,k−1 it holdsci ∈ Ii and f (ci)> f (x,β ),∀x ∈Ii and
x 6= ci, whereβ is a parameter. The casek = 1 will be further
simply referred as to the so-calledunimodal map, while the
casek = 2 as thebimodal one.

Remark 2: The above definition doesn’t constraint a
function to have onlyk critical points. However only con-
sidered those that are local maximum on a subinterval.

Definition 2 The logistic map is defined as

fL(x,α) = αx(1− x), (1)

where parameterα ∈ [0,4].

The logistic map was first presented by Verhulst [36] as a
model for the growth of species and it is one of the clas-
sics in the field of discrete nonlinear dynamics. The logistic
map has been extensively studied and more properties can
be found in [37] while some basic properties can be found
in [38,39].

Definition 3 The tent map is defined as

fT,(x,µ) =

{

µx, for x < 1/2,

µ(1− x), for x ≥ 1/2,
(2)

where parameterµ ∈ [0,2].

The logistic and tent maps are obviously unimodal ones,
as they are continuous onI with a single critical pointc0 =

0.5 and they increase forx ∈ [0,0.5) and they decrease for
x ∈ [0.5,1]. Their rich complex behavior has been demon-
strated many times [40,41], based on the evolution of their
bifurcation parametersα,µ .
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Fig. 1 Difference map for different valued ofβ : 1.333 (line formed by
circles), 2.666 (dotted line) and 4 (line formed by triangles).

Example 1 The following quadratic map

fQ(x,γ) = γ(1−2x)

{

x, if x < 0.5,
(x−1), other case,

(3)

is the bimodal map in the sense of the Definition 1. As a
matter of fact, the map given by Eq. (3) has three critical
points and two of them arec0 = 0.25 andc1 = 0.75 located
at intervalsI0 = [0,0.5) andI1 = [0.5,1], respectively. The
other critical pointc= 0.5 due tof ′Q(0.5) does not exist. No-
tice that this critical point does not satisfied the definition 1.
Thus the map given by Eq. (3) is a bimodal map.

Definition 4 (Devaney’s Definition of Chaos)[14]. Let(X ;d)
be a metric space. Then, a mapf : X → X is said to be
Devaney-chaoticon X if it satisfies the following condi-
tions.

1. f hassensitive dependence on initial conditions. That
is, there exists a certainε > 0 such that, for anyx ∈ X
andδ > 0, there exists somey ∈ X where the distance
d(x;y) < δ andm ∈ ℵ = {1,2,3...} so that the distance
d( f m(x); f m(y))> ε.

2. f is topologically transitive. That is, for any pair of
open setsU,V ⊂ X , there exists a certainm ∈ ℵ such
that f m(U)

⋂

V 6= /0.
3. f hasdense distribution of the periodic orbits. That is,

supposeY is the set that contains all periodic orbits off ,
then for any pointx ∈ X , there is a pointy in the subset
Y arbitrarily close tox.

The concept of neighborhood of a pointx ∈ X is im-
portant for demostrating the second condition of Devaney’s
definition of chaos and is given as follows.

Definition 5 A neigborhood of a pointx ∈ X is a setNδ (x)
consisting of all pointsy∈ X such that the distanced(x,y)<
δ . The numberδ is called theradius of Nδ (x).
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Fig. 2 Stability of the fixed points. The asterisks and circles denote
stable and unstable fixed points, respectively.

3 Difference map

The main contribution of this paper is to present the so-
called difference map and to provide its implementation as
an electronic circuit. The difference map, denoted asfD(x,β ),
will be a particular case of the above described bimodal
quadratic map Eq.(3) denotedfQ(x,γ) : [0,1] → [0,1] with
γ = 2β , where parameterβ ∈ [0,4]. This difference map is
constructed based on the difference between logistic map
and tent map, which explains such a terminology. More pre-
cisely, consider the following

Definition 6 Consider the logistic and tent maps with maxi-
mum bifurcation parametersα = 4, µ = 2. DefinedfD(x,β )
as the difference between these two maps multiplied by the
parameterβ ∈ [0,4], namely,fD(x,β )= β ( fL(x,4)− fT (x,2)),
i.e.:

fD(x,β ) =

{

2β x(1−2x), for x < 1
2;

2β (x−1)(1−2x), for x ≥ 1
2.

(4)

Indeed, the difference map defined in the Definition 6 is
exactly the bimodal map Eq.(3) withγ = 2β . Now, β is a
new bifurcation parameter which amplifies the difference
between the logistic map and the tent map. This new pa-
rameter belongs to the interval[0,4], notice that forβ = 4
the difference mapfD(x,β ) : [0,1]→ [0,1]. Figure 1 shows
the difference map given by Eq. (4) for different values ofβ :
1.333 (line formed by circles), 2.666 (dotted line) and 4 (line
formed by triangles). Notice that the difference map always
has a fixed point at 0 and it can have others depending the

value ofβ at 2β−1
4β , 6β−1−

√
4β 2−12β+1
8β and6β−1+

√
4β 2−12β+1
8β .

For analyze the asymptotic behavior of the discrete time
dynamical system we put the map as its right hand side, i.e.
the system

Fig. 3 Bifurcation diagram for the difference map given by Eq.(4).

xk+1 = fD(xk,β ), for x0 given andk = 0,1,2,3, . . .

The difference map can behave as a bimodal or unimodal
map according to theβ bifurcation parameter value. For ex-
ample, if β = 2, then for any initial conditionx0 ∈ [0,1],
fD(x,β ) behaves after the first iteration as an unimodal map
fD(x,β ) : [0,0.5]→ [0,0.5]. The stability of fixed points of
the difference map can be attractive or repulsive as is shown
in Figure 2. An asterisk denotes an attractive fixed point
and a circle denotes a repulsive fixed point. The fixed point
located at zero is attractive forβ ∈ [0,0.5) and repulsive
for β ∈ [0.5,4]. The second fixed point is given by2β−1

4β
which is attractive forβ ∈ [0.5,1.495) and repulsive forβ ∈
[1.495,4]. The third fixed point located at6β−1−

√
4β 2−12β+1
8β

is always repulsive forβ ∈ [2.915,4] and last one given by
6β−1+

√
4β 2−12β+1
8β is attractive forβ ∈ [2.915,3.235) and

repulsive forβ ∈ [3.235,4].
It is well known that an attractive fixed point does not

let oscillations meanwhile a repulsive fixed point can yield
periodic orbits and even chaotic orbits. Figure 3 shows a bi-
furcation diagram of the orbit of the difference mapΦβ (x0),
which is on[0,1]× [0,4]. Two period doubling bifurcations
appear approximately atβ = 1.5 andβ = 3.2312. Forβ ∈
[0,2] the difference map resembles to the logistic map but it
oscillates in the interval[0,0.5], and forβ ∈ [2,4] it behaves
as a bimodal map and it can oscillate in the interval[0,1].

The Lyapunov exponent, which is denoted byλ , gives
the global stability of the system Eq.(3) and it is shown
in Figure 4. Forβ ∈ [0,0.5] the system only has a fixed
point which is attractive andλ < 0, the orbit settles down
at the fixed point. Forβ ∈ [0.5,1.5) the system has two
fixed points: one attractive and the other repulsive andλ < 0
due to the orbit settles down at the attractive fixed point but
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Fig. 4 Lyapunov exponent of the difference map.

whenβ = 1.5 the systems has a bifurcation and the value of
λ = 0. Forβ ∈ (1.5,2.915) the system has two fixed points
and both are repulsive andλ < 0 when the orbit periodically
oscillates orλ > 0 when the orbit oscillates chaotically. For
β ∈ (2.915,3.235) the system has four fixed points and three
of them are repulsive and the other fixed point is attractive,
λ < 0, thus the orbit settles down at the attractive fixed point
again and also whenβ = 3.235 another bifurcation occurs
and thereforeλ = 0. Forβ ∈ (3.235,4] the system maintains
its four fixed points but now all of them are repulsive. The
orbit oscillates periodically or chaotically whenλ < 0 and
λ > 0, respectively.

Theorem 1 The difference map fD(x,β ) is Devaney-chaotic
on [0,1] for β = 4.

Proof From Definition 4, we need to prove three conditions,
(1) the sensitive dependence upon the initial condition, (2)
the topological transitivity and (3) the dense distribution of
the periodic orbits.

We start by demonstrating the last property. We need to
prove that there exists aY subset of the intervalI = [0,1]
constitutes for periodic orbits, and thatY is dense inI. The
I interval can be divided byJ1

0 = [0,c1
0], J1

1 = [c1
0,η0

0 = 0.5],
J1

2 = [η0
0 = 0.5,c1

1] andJ1
3 = [c1

1,1], (see Figure 5) each in-
tervals contains one fixed point of the difference mapfD,
∆1 = {p1

0 = 0, p1
1 = 0.4375, p1

2 = 0.5899, p1
3 = 0.8476}, re-

spectively. These fixed points in the closed intervalI belong
to Y as periodic orbits of period one, wherec1

0 = 0.25 and
c1

1 = 0.75 are the critical points. Notice thatfD : J1
i → [0,1],

i = 0, . . . ,3, then each subinterval resembles the difference
map for f 2

D. Notice that fD(0) = fD(0.5) = fD(1) = 0 and
fD(c1

0 = 0.25) = fD(c1
1 = 0.75) = 1. The foregoing observa-

tion let us to infer that for allx ∈ I and if f k
D(x) = 0.5 then

Fig. 5 The differece map and the subintervalsJ1
i , i = 0,1,2,3. Circles

denote critical points, squares denote fixed points and triangles denote
η .

f k+1
D (x) = 0.

The fixed points correspond to the intersection between
fD and the identity functionfI(x) = x. If we consider the
intersection between the second iterationf 2

D and fI we find
that these functions intersect at 16 points, the set of fixed
points ∆1 and a set of periodic points of period two∆2.
Now the intervalI consisted of 16 subintervalsJ2

0 = [0,c2
0],

J2
1 = [c2

0,η1
0 ], J2

2 = [η1
0 ,c

2
1], J2

3 = [c2
1,c

1
0], J2

4 = [c1
0,c

2
2], J2

5 =

[c2
2,η

1
1 ], J2

6 = [η1
1 ,c

2
3], J2

7 = [c2
3,0.5], J2

8 = [0.5,c2
4], J2

9 =
[c2

4,η
1
2 ], J2

10 = [η1
2 ,c

2
5], J2

11 = [c2
5,c

1
1], J2

12 = [c1
1,c

2
6], J2

13 =

[c2
6,η

1
3 ], J2

14 = [η1
3 ,c

2
7] andJ2

15 = [c2
7,1]. Figure 6 shows the

subintervalsJ2
i , i = 0,1,2, ...,15, the fixed points are marked

with squares and the periodic points with period two with as-
terisk,∆2 = p2

0, p2
1, p2

2, p2
3, ..., p2

11. The set{c2
0,c

2
1,c

2
2,c

2
3,c

2
4,

c2
5,c

2
6,c

2
7} contains the critical points off 2

D andη1
i = fD(x)=

0.5, i = 0, . . . ,3. The periodic points of period one and two
belong toY ⊃ ∆1∪∆2. In general, the intersections between
f n
D and fI give the periodic points of periodn and may be

periodic points of less period.I is comprised by subinter-
valsJn

i , i = 0, . . . ,4n −1 and the end points of the intervals
are given by the critical points off k

D, ηk−1 = f k−1
D (x) = 0.5,

k = 1, . . . ,n, and the previous end points. The particularity
is that each subintervalJn

i contains at least a periodic point
and |Jn

i | → 0 when n→ ∞. Thus for anyx ∈ I, there is a
point y in the subsetY arbitrarily close tox, so this proves
that periodic points are dense in[0,1].

In order to demonstrate thatfD is topologically transi-
tive. We consider a pair of open setsNδ (y1),Nδ (y2)⊂ I, for
any y1,y2 ∈ I, we need to show that there exists a certain
m ∈ N ={1,2,3, ...} such thatf m

D (Nδ (y1))∩Nδ (y2) 6= /0, i.
e. , we need to show that at least one orbit with initial condi-
tion x0 ∈ Nδ (y1) evolves toNδ (y2) ∋ f m

D (x0). First we con-
sider two open setsNδ (y1) andNδ (y2) arbitrarily located at
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Fig. 6 Distribution of the periodic orbits of period two, circles denote
critical points, squares denote fixed points, and trianglesdenoteη .

Fig. 7 There exists an orbit such two points with a neighborhood
comes arbitrarily close.

I as is shown in Figure 7. In the previous paragraphs we dis-
cuss that each subintervalsJk

i tends to zero when k tends to
infinity, also we know that each subintervalJk

i is mapped
onto the intervalI, f k

D : Jk
i → I. Thus, consider a subinter-

val Jm
i ⊂ Nδ (y1). as is shown in Figures 8 and 9. Accord-

ingly f (Jm
i ) = I ⊃ Nδ (y2) then f m

D (x0) ∈ Nδ (y2), for any
x0 ∈ Nδ (y1), this proves thatfD is topologically transitive.

Finally, we need to demonstratesensitive dependence
on initial conditions of the difference map, so that we start
to defineε = |I|/2, where|I| = 1, such that for anyx01 ∈ I
and anyδ > 0 there is ax02∈ Nδ (x01) such that the distance
between| f m

D (x01)− f m
D (x02)| ≥ ε.

Remak 3:The definition of sensitivity does not require that
the orbit ofx02 remain far fromx01 for all iterations. We only
need one point on the orbit to be far from the corresponding
iterate ofx01.

Fig. 8 Transitivity of an orbit of period n (f n
D) of difference map.

Fig. 9 A zoom of figure 8 in order to appreciate the transitivity of an
orbit of period n wheref (Jm

i )⊇ I ⊃ Nδ (y1).

So if we consider the subintervalJm−1
i such thatJm−1

i ⊂
Nδ (x01) then there is ax02 ∈ Jm−1

i such that | f m
D (x01)−

f m
D (x02)| ≥ 1/2. Thus we have sensitive dependence on ini-

tial conditions. Now the proof is completed.

4 Electronic implementation of the difference map

Devaney’s definition of chaos makes sense only for the itera-
tive dynamical systems on continua. From Definition 4, one
can immediately see that no map is Devaney-chaotic ifX is
a discrete space. This is a strong condition why chaotic dis-
crete dynamical systems need to be implemented electroni-
cally by analog devices in both of its parts: 1) the electronic
implementation of the map and 2) the electronic implemen-
tation of the iterative process, see Fig. 10. First we will focus
on explaining the circuit of the difference map.
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Fig. 10 Circuit diagram of an electronic map.

Fig. 11 Block diagram of the difference map used to construct the
electronic circuit.

The experimental development of this map is achieved
by means of electronic devices as multipliers, operational
amplifiers, diodes and resistors. In the same spirit that other
implementations of this kind of circuits [18,42] analog mul-
tipliers have been employed with a normalization of the sig-
nal by a factor of about 10. This normalization is necessary
because of the physical restrictions in the analog multiplier.
The starting point is a block diagram of the difference map
that is shown in Figure 11. The output of the electronic cir-
cuit has three branches: The former generates the logistic
map (node A) and the last two correspond to the tent map
(node B and C). Typically, these circuits contain several op-

Fig. 12 Schematic diagram of the difference map electronic circuit.

erational amplifiers, which perform linear operations (e.g.,
integration and summation), as well as a couple of integrated
circuits that perform the nonlinear operations (i.e., multipli-
cation). Here, we describe a new circuit that contains active
components, speeds of radio frequencies, and is capable of
reproducing the transition from steady state to chaos as ob-
served in the difference map equation when the bifurcation
parameter is varied.

Figure 12 shows a schematic diagram of the electronic
circuit realization of the difference map. The output of the
circuit is analyzed using the voltages at the nodes: A, B, C,
D.

The A node voltage is given by theM1 multiplier which
has four input terminals (x1,x2,y1,y2) and an output terminal
given byW = (x1−x2)(y1−y2)

10 . Inputsx1 = Vin(R2R4)/(R1R3)
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Table 1 The values of the electronic components employed in the con-
struction of the difference map electronic circuit.

Device Value

R1,R3,R5,R6,R7,R8,R9,
R10,R12,R16,R18 10kΩ Resistor
R4 4kΩ Resistor
R11,R14,R15,R17 40kΩ Resistor
R13 20kΩ Resistor
R19 40kΩ Potentiometer
D1,D2 1N4148 Diode
U1,U2,U3,U4,U5,U6,U7,U8 TL084 Op. Amp.
M1 AD633 Multiplier

andy2 =Vin(R2R6)/(R1R5) are given by operational ampli-
fiers U2 and U3, respectively. Inputsx2 andy1 are 0V and
5V, respectively. Hence, the output at A node is given by

VA =

(

Vin
R2R4

R1R3

)(

5−Vin
R2R6

R1R5

)

/10, (5)

the A node voltage isVin(1−Vin) after evaluating com-
ponents values of the Table 1, this signal corresponds to the
logistic map fL without considering theα bifurcation pa-
rameter .

The B node voltage is given by the U4 amplifier output
which is fed back to the inverting input, the output voltage
is

VB =−VinR13/R12. (6)

The C node voltage is given by the U5 amplifier output
which is a piecewise linear signal, then

VC =











0, for Vin <
R7

2R8
;

R11

R10

(

R9Vin

R7
− R9

2R8

)

, for Vin ≥
R7

2R8
.

(7)

Equations 6 and 7 correspond to the tent map, remem-
ber that fT (x,µ) is defined in two parts, to ensure that the
map is symmetric the bifurcation parameterµ must be equal
on both sides. We can see thatµ is given byR13/R12 and
R11/(2R10). This yields the following restrictionsR11= 2R13

andR10= R12.
The U7 amplifier output is the adding of A, B and C

node voltages which corresponds to D node voltage, giving

VD =−R17

(

VA

R16
+

VB

R15
+

VC

R14

)

, (8)

it is worth mentioning that the rationR17/R16 is the param-
eterα = 4. Thus, the D node voltage is(− fL + fT ) that is
indeed the difference map invested without taking account
of the bifurcation parameterβ .

Finally, theVout voltage is given by the U8 inverting am-
plifier, the output is(R19/R18)VD. Assuming ideal perfor-

Fig. 13 Schematic diagram of the iterative circuit, U1 and U2 are
LF398 and the MC microcontroller is a PIC16F88.

mance from all components, the circuit output in Fig. 12 is
modeled by the following equation:

Vout =

R19
R18

{

4Vin(1−Vin)−2Vin, for Vin <
1
2V;

4Vin(1−Vin)+2Vin−2, for Vin ≥ 1
2V.

(9)

Then, equation 4 can be derived from equation 9 by the
change of variablesVin = xn, Vout = xn+1 andβ = R19/R18.

The second part of the circuit is responsible to make
the iterative operation, (see Fig. 10), this circuit considers a
microcontroller PIC16F88 of Microchip, and two hold and
sample LF398 of National Semiconductors in order to hold
the Vout signal given by Eq. 9. That is, the hold and sam-
ple circuits have been used as an analog memory in order
to store the value ofxk and getxk+1, thus this is the way
how the electronic circuit shown in Fig. 12 generates the
iterative operation. Obviously, there are different ways to
perform this iterative operation, but this is a matter that de-
pends of the designer and the application. Figure 13 shows
a schematic diagram for this part of the circuit, one can see
that each device LF398 (U1 and U2) has an input for acti-
vation, the signal for both hold and sample comes from the
microcontroller PIC16F88.

The time of each trigger to activate the devices is defined
for the designer, in this case we set 20 ms between each shot,
where the duration of each shot is 1 ms, these times are pro-
grammed into the microcontroller and can vary depending
the application. Figure 14 shows a diagram with the time of
activation of each hold and sample.

Once both circuits are tuned in correct operation the dif-
ference map begins its iterative process. Figure 15 shows
a time series forβ = 4. Despite of parasitic reactance, fi-
nite bandwidth of active components, and other experimen-
tal perturbations, the presented electronic circuit displays
closely the behavior of the mathematical model given by
Eq. 4. We have implemented this design on a printed circuit
board (PCB) manufactured in our laboratory. In the experi-
mental circuit the TL084 operational amplifiers and LF398
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Fig. 14 Times of activation for hold and sample.

Fig. 15 The time series with chaotic dynamics generated by the tent
map forβ = 4.

hold and sample have been supplied with a power source at
±15V and soldered directly to the PCB without a socket,
also a source power of−0.5V is used for proper operation
of the tent map. The voltage Vdc has been supplied by a
variable dc supply with an output range of 0−15V.

The value of the bifurcation parameterβ can be fixed
at certain values by simply adjusting the potentiometerR19

located in the operational amplifiers U8. In order to explore
the full range of the dynamics accessible to this circuit, we
have experimented with different values forR19. The value
of this potentiometer has been adjusted in the closed in-
terval [0 Ω , 40 kΩ ]. Then the value ofβ has been varied
to obtain the bifurcation diagram shown in Fig. 16, where
fixed points, periodic oscillations, period-doubling cascade
and chaos can be clearly seen and it can be seen that the cir-
cuit exhibits the entire range of behaviors of the difference
map. In fact, our experimental results of the dynamics of
this circuit are found to be in good agreement with numeri-
cal simulations.

5 Conclusion

In this paper we introduced a new discrete-time dynamical
system of 1-dimension that works in a closed interval and
is based on the logistic and tent map which presents chaotic

Fig. 16 Experimental bifurcation diagram for the difference map.

behavior in means of Lyapunov exponent also one of the
main properties of this map is that it has two critical points
making this a bimodal map but setting theβ parameter it can
show the behavior of unimodal map or a bimodal map, be-
sides this paper includes a theoretical analysis of their equi-
librium points as well as the stability also were obtained the
corresponding bifurcation diagram from numerical simula-
tions and finally a simple difference map electronic circuit
has been presented here and its implementation using analog
components as multipliers, operational amplifiers, diodes,
and resistors was also provided. Therefore, it can be assem-
bled even by students at the level of an undergraduate lab-
oratory. Its experimental behavior was tested and compared
with the numerical behavior given by the difference map Eq.
4. The circuit replicates the whole known range of behaviors
of the difference map and the it have many potential appli-
cations, for example: random number generation, frequency
hopping, ranging, and spread-spectrum communications. As
the outlook for further research, the possibility of encryption
using stream ciphers based on the analog circuit independent
from computer with date to be encrypted is considered. This
is the object of currently ongoing research.
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