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Abstract This work studies asymptotical dynamical behav-to be chaotic according to the Devaney’s definition of chaos.
ior of the one-dimensional discrete-time system, the dieata Later on, the difference map is implemented as an electronic
iterated map. Namely, it introduces a bimodal quadratic mapircuit which is designed and tested. This electronic éircu
which is obtained as an amplified difference between wellis built using operational amplifiers, resistors and an@gal
known logistic and tent maps and is denoted as the so-calledultiplier. It turns out that this electronic circuit preds
difference map. Difference map exhibits rich possibifitie fixed points, periodicity, period doubling, chaos and inter
of the complex dynamical behavior based on its bifurcamittency that match with high accuracy the corresponding
tion parameter selection. The corresponding bifurcattwas theoretically predicted values. Possible applicatiorshortly
studied theoretically, numerically and experimentallg-p  discussed, among them possibility of chaos based encryp-
senting numerical simulations and experimental bifucrati tion scheme built in completely independent analog type de-
diagrams, the stability of this difference map is studied byvice.

means of Lyapunov exponent also the difference map is proved

M. Garcia-Martinez.

Division de Matematicas Aplicadas, Instituto Potosino ldeesti-
gacion Cientifica y Tecnologica. Camino a la Presa Saé 2055,
78216 México.

Tel.: 01-52-444-8342000.

Fax: 01-52-444-8342010.

E-mail: moises.garcia@ipicyt.edu.mx

|. Campos-Canton.

Facultad de Ciencias, Universidad Autonoma de San LuisdPdfona
universitaria Avenida Salvador Nava S/N, 78290 México.

Tel.: 01-52-444-8262316.

Fax: 01-52-444-8262318.

E-mail: icampos@fciencias.uaslp.mx

E. Campos-Canton.

Division de Matematicas Aplicadas, Instituto Potosino ldeesti-
gacion Cientifica y Tecnologica. Camino a la Presa Saé 2055,
78216 México.

Tel.: 01-52-444-8342000.

Fax: 01-52-444-8342010.

E-mail: eric.campos@ipicyt.edu.mx

S. Celikovsky.
Department of Control Theory, Institute of Information Bing and

Automation, Academy of Sciences of the Czech Republic. Pod

vodarenskou vézi 4, 18208 Prague, CR.
Tel.: 01-42-026-6052020.

Fax: 01-42-028-6890286.

E-mail: celikovs@utia.cas.cz

Keywords chaotic behavior Lyapunov exponent
bifurcation parameter bifurcation diagram stability
analysis.

1 Introduction

Iterated maps are simple looking discrete-time dynamical
systems which can exhibit order to chaos transition. It is
well-known that only non-monotonous 1-dimensional maps
may exhibit complex behaviour, the simplest non-monotenou
maps are the so-called unimodal maps. Famous and broadly
studied examples of unimodal maps are the tent map and
the logistic map, being the subject of constant investigati

in many areas such as communication systems [1], genera-
tion of pseudorandom sequences [2—4], neural networks [5],
switching systems [6] and cryptography [7—11] and part of
the interest for these systems is linked to the fact that they
provide an easy and pedagogical way to understand how
complex and chaotic behavior can arise from simple dynam-
ical models. Even more remarkable is the fact that studies of
low-dimensional maps have proven to be fruitful in under-
standing the basic mechanisms responsible for the appear-
ance of chaos in a large class of dynamical systems.
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Further more complex behavior may be provided by thea digital implementation of the tent map. The problem that
so-called bimodal, or evekkmodal maps, [12]. This paper arises using digital implementation is that the system only
introduces yet another bimodal map, constructed based dakes a finite number of states. Electronic circuits havebee
the difference between logistic and tent map multiplied bydesigned, implemented and tested to accurately realize the
a new bifurcation parameter. This new system is therefortogistic difference equation [18] or the tent map differenc
called as thalifference one and is carefully analyzed theo- equation [19] by using analog devices in order to have an
retically, numerically and experimentally through electic  infinite number of values that can be visited.
circuit. In this paper, we enlarge the set of maps known to be

One of the most useful and widely accepted definitiorchaotic by presenting a chaotic map based on the difference
of chaos is the one by Devaney [13], which we will call between the logistic map and the tent map. The difference
Devaney-chaos. Roughly speaking, Devaney chaos consisRap, more precisely, enables us to construct a bimodal map
of three conditions, (1) the sensitive dependence upon thghich is chaotic in the sense that it has positive Lyapunov
initial condition, (2) the topological transitivity, an@)the ~ exponent. We also present one of the simplest electronic im-
dense distribution of the periodic orbits. The third coindit ~plementation of the difference map based on analog devices,
is often omitted for being too stringent [14]. Fortunately, Which at the same time is a good engineering model of the
there is another characterization of dynamic behaviorgtwhi corresponding mathematical system. Through the variation
can be measured by Lyapunov exponents [15—17]. With thef only one control parameter, one can examine the bifurca-
aid of their diagnostic, one can measure the average expfon diagram of the realized system and we have been able
nential rates of divergence or convergence of nearby orhit® reproduce the theoretical diagram with high accuracy.
in the phase space, overall with their signs, a qualitatice p ~ The possible application of this circuit implementation
ture of the variety of dynamics system’s may exhibit, rang-would be independent analog chaos generator usable for en-
ing from fixed points via limit cycles and tori to more com- Cryption purposes, e.g. as independent device to cipher. In
plex chaotic attractors. Also, bifurcation diagrams are exrecent years, a growing number of cryptosystems based on
cellent tools to study dynamical behavior and understang@ontinuous systems utilize the idea of synchronization of
mechanisms such as the so-called period-doubling cascadelsaos. However, recent studies show that the performance
of fixed points, encountered qualitatively in many physicalof continuous systems is very poor and insecure. The inse-

systems of interest or mathematical models that have bedirity results mainly from the insensitivity of synchroaiz
electronically implemented [18,19]. tion to system parameters [32—-35] for this reason we used

Electronic implementation of chaotic systems have beeffiScrete time systems.
of great help to validate certain theories concerning chaos 1Nis paper is organized as follows. In the next section
and have also been applied to several engineering devel® recall some basic definitions while section 3 introduces
opments. Since its inception three decades ago, there de difference map, including its theoretical and numérica
different implementations of Chua’s circuit [20—22]. His- study and presents its properties. Section 4 describes elec
torically seen, Chua’s circuit was the first successful phystronic circuitimplementation of the difference map, inttiu
ical implementation of a system designed to exhibit chao¥'d key complex dynamical behavior that matches the the-
[23]. This circuit is the first system rigorously proved to pe oretically predicted one. Some conclusions and outlook are
chaotic [24]. Chua’s circuit is a continuous time dynam-given in the final section.
ical system where chaos can be observed experimentally.
The Chua’s diode has been modified to generate multiscroll . o
chaotic which is an extension of Chua type double scrolf Basic definitions

circuit [25]. The behavior of the difference map is simpler hi . ibute in th fh di
than Chua’s circuit to comprehend and it has been prove-(lj— IS paper aims to contribute in the area of the one dimen-

chaotic. The behavior of Chua’s oscillator is due to the facts'onal’ discrete time systems and an asymptotic dynamics

that it contains five different parameters, whereas for dif—StUdy’ namely to the systems of the form

fer(_ance map is only one. There are se_veral chaqtic circ_uit X1 = (%), k=0,1,2,...N.

which have been reported based on third order differential

equation, in the area of continuous time dynamical systemsyherex, € 0 andxo is the initial condition, such a dy-

see [26-30], but few in the area of discrete time dynamicahamical system is usually referred tomsp, as it is fully

systems furthermore to present advantage and be useful ¢ietermined by its right hand side. To ensure boundedness

applications like encryption systems, radar systems,reecuof trajectories, the study is usually restricted to maps tha

communication systems, among others. are mapping some compact interval into itself and without
Some discrete dynamical systems have been implemengst loss of generality one may consider the compact inter-

by using digital integrated circuits, for example in [31¢pents val [0, 1] only. The simplest non-monotonous maps are the
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so-called unimodal maps, while their generalization, the s

calledk-modal maps may present even more rich dynamice ! AAAMAAA ‘ AAMAAA
behaviors, [12]. 08 5 N & <
To be more specific, denot¢ := [0,1] and recall, that e A 2 ‘s
thecritical point c of the continuous piecewise smoothmap  ggl > .7 2 R
f(x): . — #isce .# wheref is differentiable and’(c) = E a2 O o oA
0. =< 0.4+ AA : e A'-' ',AA i
Remark 1: The critical pointc occurs for f’(c) = 0 0.2fa % A A OOQOM%OO'A
or f/(c) doesn’t exist. But continuous smooth maps always éc')ooo Oooizooo oooc’f
present’(c) =0. % 02 04 06 08 1
Xn

First, let us repeat the definition of tkemodal map, in-

troduced in [12]. Fig. 1 Difference map for different valued @&: 1.333 (line formed by

circles), 2666 (dotted line) and 4 (line formed by triangles).

Definition 1 The mapf : .# — 7 is called as th&-modal
one, if it is continuous on# and it hask critical points
denoted bycy, ¢1 ... ¢ 1 in |. Moreover, there exist in-
tervals.#,i = 0,...,k— 1,Uk | .%_1 = .#, such thatvi =
0,...,k—1itholdsc € .% andf(c) > f(x,3),¥x € .% and
X # ¢j, wheref is a parameter. The cake- 1 will be further
simply referred as to the so-calledimodal map, while the
casek = 2 as thebimodal one.

Example1 The following quadratic map

X, if X< 0.5,
(x—1), other case,

folxy) =y(1-20 { ©)
is the bimodal map in the sense of the Definition 1. As a
matter of fact, the map given by Eq. (3) has three critical
points and two of them arg = 0.25 andc; = 0.75 located
atintervals#, =[0,0.5) and.#; = [0.5, 1], respectively. The
other critical point = 0.5 due tof,(0.5) does not exist. No-
tice that this critical point does not satisfied the defimitio
Thus the map given by Eq. (3) is a bimodal map.

Remark 2: The above definition doesn’'t constraint a
function to have onlyk critical points. However only con-
sidered those that are local maximum on a subinterval.

Definition 4 (Devaney’s Definition of Chaos)[14]. LéX;d)
be a metric space. Then, a mép X — X is said to be
Devaney-chaoticon X if it satisfies the following condi-
tions.

Definition 2 The logistic map is defined as

fL(x,a) = ax(1-x), 1)

where parameter < [0,4].

1. f hassensitive dependence on initial conditionsThat
is, there exists a certain> 0 such that, for anx € X
andd > 0, there exists somge X where the distance
d(xy) < d andme O = {1,2,3...} so that the distance
d(f™(x); f™(y)) > e.

The logistic map was first presented by Verhulst [36] as a
model for the growth of species and it is one of the clas-
sics in the field of discrete nonlinear dynamics. The logisti

map has been extensively studied and more properties can

be found in [37] while some basic properties can be found
. 2.
in [38,39].

Definition 3 The tent map is defined as

(2)

f is topologically transitive. That is, for any pair of
open setdJ,V C X, there exists a certaim € [0 such
thatf™(U)NV #£0.

. f hasdense distribution of the periodic orbits. Thatis,

suppos¥ is the set that contains all periodic orbitsfof
then for any poink € X, there is a poiny in the subset

X, forx<1/2,
fr.(x, 1) =
H(l—x), forx>1/2,

where parametqt € [0,2].

Y arbitrarily close tax.

The concept of neighborhood of a poE X is im-

The logistic gnd tent maps are _obV|ou§I_y unlm_odal Onesportant for demostrating the second condition of Devaney’s
as they are continuous aff with a single critical pointy = definition of chaos and is given as follows

0.5 and they increase fore [0,0.5) and they decrease for

x € [0.5,1]. Their rich complex behavior has been demon-Definition 5 A neigborhood of a pointx € X is a setNs(x)
strated many times [40,41], based on the evolution of theigonsisting of all pointy € X such that the distanax,y) <
bifurcation parameters, 1. 5. The numbep is called theradius of Ns(x).
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Fig. 2 Stability of the fixed points. The asterisks and circles deno

stable and unstable fixed points, respectively. Fig. 3 Bifurcation diagram for the difference map given by Eq.(4).

3 Difference map

The main contribution of this paper is to present the so- 1= fo(xB), forxo givenanck =0,1,2,3, ..

called difference map and to provide its implementation as e gifference map can behave as a bimodal or unimodal
an electronic circuit. The difference map, denote@ss, 8),  map according to thg bifurcation parameter value. For ex-
will be a particular case of the above described blmodaémme’ if B = 2, then for any initial conditionx, € [0, 1],
quadratic map Eq.(3) denotdg(x,y) : [0,1] — [0,1} with ¢, x B) hehaves after the first iteration as an unimodal map
y = 2B, where paramete < [0,4]. This difference mapis f;y g): [0,0.5] — [0,0.5]. The stability of fixed points of
constructed based on the difference between logistic mae difference map can be attractive or repulsive as is shown
and tent map, which explains such a terminology. More pre, Figure 2. An asterisk denotes an attractive fixed point
cisely, consider the following and a circle denotes a repulsive fixed point. The fixed point

located at zero is attractive fg@@ € [0,0.5) and repulsive
: int is given K1
Definition 6 Consider the logistic and tent maps with maxi- for B € [0.5,4]. The second fixed point is given by;;

mum bifurcation parameters= 4, u = 2. Definedfp(x,8) ~ Which s attractive fo € [0.5,1.495) and repulsive fop €
as the difference between these two maps multiplied by thet 495 4]. The third fixed point located §{3*1fv;‘52*125+1

parametef € [0,4], namely,fo(x, B) = B(fL(x.4)— fr(X.2)), s always repulsive fop € [2.9154] and last one given by

He- L SB-LIVARR 12841 i attractive forB € [2.915 3.235) and
2Bx(1—2x), forx <3 (4) repulsive forB € [3.2354].
2B(x—1)(1— 2x), for x> 3. It is well known that an attractive fixed point does not
. ] ] o _let oscillations meanwhile a repulsive fixed point can yield
Indeed, the difference map defined in the Definition 6 isyeriggic orbits and even chaotic orbits. Figure 3 shows a bi-
exactly the bimodal map Eq.(3) with=23. Now, B isa  ,rcation diagram of the orbit of the difference Mm@ (o),
new bifurcation parameter which amplifies the difference,ich is on[0,1] x [0,4]. Two period doubling bifurcations
between the logistic map and the ten_t map. This new P3sppear approximately #& — 1.5 and = 3.2312. Forf3 &
rameter belongs to the intervidl, 4], notice that forB =4 g 9) the difference map resembles to the logistic map but it
the difference magp (x, B) : [0, 1] — [0, 1]. Figure 1 shows  yijiates in the intervdD, 0.5], and for € [2,4] it behaves
the difference map given by Eq. (4) for different valuegof < o himodal map and it can oscillate in the intef0al].
1.333 (line formed by circles), 2.666 (dotted line) and Al The Lyapunov exponent, which is denoted bygives

formed by triangles). Notice that the difference map alwaysgy,o global stability of the system Eq.(3) and it is shown
has a fixed point at 0 and it can have others depending thg Figure 4. ForB ¢ [0,0.5]
68—1—+/4B2—128+1 6B—1++/4B2—12B+1 ' g

8 8 :

fo(x,B) =

the system only has a fixed

value off3 at 2;31’;1, and 5 point which is attractive and < 0, the orbit settles down
For analyze the asymptotic behavior of the discrete timat the fixed point. Fo3 € [0.5,1.5) the system has two

dynamical system we put the map as its right hand side, i.dixed points: one attractive and the other repulsive &rd0

the system due to the orbit settles down at the attractive fixed point but
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Fig. 5 The differece map and the subintervalsi = 0,1,2, 3. Circles
denote critical points, squares denote fixed points andgtés denote

Fig. 4 Lyapunov exponent of the difference map.

whenf = 1.5 the systems has a bifurcation and the value 010'

A =0. Forf € (1.5,2.915) the system has two fixed points

and both are repulsive anid< 0 when the orbit periodically fé“(x) =0.

oscillates oA > 0 when the orbit oscillates chaotically. For

B € (2.915,3.235) the system has four fixed pointsand three  The fixed points correspond to the intersection between

of them are repulsive and the other fixed point is attractivefp and the identity functiorf|(x) = x. If we consider the

A <0, thus the orbit settles down at the attractive fixed poinintersection between the second iteratignand f; we find

again and also whefi = 3.235 another bifurcation occurs that these functions intersect at 16 points, the set of fixed

and thereford = 0. Forf € (3.235,4] the system maintains points A and a set of periodic points of period tw?.

its four fixed points but now all of them are repulsive. TheNow the interval consisted of 16 subintervalg = [0,c3],

orbit oscillates periodically or chaotically wheén< 0 and 3% = [c3,nd], 33 = [nd,c?], 32 = [c2,c}], I = [cd.c3], 2 =

A > 0, respectively. [c3,ni], 32 = [n}, g, 32 = [3,0.5], 33 = [0.5,¢3], I =
(Cndl, o= Ind.c2l, 3 = (Rl By = [chcdl, 3 =
[c2,n3], 32, = [n},c2] andJZ, = [c2,1]. Figure 6 shows the

Theorem 1 Thedifferencemap fp (x, 8) is Devaney-chaotic subintervals]iz,i =0,1,2,...,15, the fixed points are marked

on [0,1] for B =4. with squares and the periodic points with period two with as-
terisk, A% = p3, p2, p3, p3, ..., p2;,. The set{c3,c?,¢c3,¢c3,¢3,

Proof From Definition 4, we need to prove three conditions,c, ¢3, ¢} contains the critical points d§ andn = fp(x) =

(1) the sensitive dependence upon the initial conditiol, (20.5,i =0,...,3. The periodic points of period one and two

the topological transitivity and (3) the dense distribataf ~ belong toY > AYUAZ. In general, the intersections between

the periodic orbits. f3 and f; give the periodic points of period and may be
periodic points of less period.is comprised by subinter-

We start by demonstrating the last property. We need tvalsJ, i =0,...,4" — 1 and the end points of the intervals

prove that there exists ¥ subset of the interval = [0,1]  are given by the critical points cffg nk1= fgfl(x) =0.5,

constitutes for periodic orbits, and thétis dense il. The k=1,...,n, and the previous end points. The particularity

| interval can be divided byt = [0,¢], 31 = [c},nd = 0.5], s that each subintervd]' contains at least a periodic point

J3 =[nd=0.5,c}] andJi = [c}, 1], (see Figure 5) each in- and|J"| — 0 when n— c. Thus for anyx € I, there is a

tervals contains one fixed point of the difference nfgp  pointy in the subseY arbitrarily close tox, so this proves

Al = {p}=0,pl =0.4375 p} = 0.5899 p} = 0.8476}, re-  that periodic points are dense|[ 1].

spectively. These fixed points in the closed intefvia¢long In order to demonstrate thé is topologically transi-
to Y as periodic orbits of period one, wherg= 0.25 and  tive. We consider a pair of open seg(y1),Ns(y2) C I, for
¢t = 0.75 are the critical points. Notice thés : J' — [0,1],  anyyi,y» € |, we need to show that there exists a certain

i =0,...,3, then each subinterval resembles the differencene N ={1,2,3,...} such thatfJ'(Ns(y1)) "N5(y2) # 0, i.
map for f3. Notice thatfp(0) = fp(0.5) = fp(1) =0 and e., we need to show that at least one orbit with initial condi-
fD(cé =0.25) = fD(c% =0.75) = 1. The foregoing observa- tion xg € N5(y1) evolves toN5(y2) > f5'(xo). First we con-
tion let us to infer that for alk € | and if f§(x) = 0.5 then  sider two open sets(y;) andN;(yz) arbitrarily located at
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Fig. 6 Distribution of the periodic orbits of period two, circlesmbte ) o ) . )
critical points, squares denote fixed points, and triangémter]. Fig. 8 Transitivity of an orbit of period nfg) of difference map.
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Fig. 7 There exists an orbit such two points with a neighborhoodFig- 9 A zoom of figure 8 in order to appreciate the transitivity of an
comes arbitrarily close. orbit of period n wheref (J™) 2 1 O N5(y1).

| as is shown in Figure 7. In the previous paragraphs we dis- SO if we consider the subintergl"* such that™* ¢
cuss that each subintervalfstends to zero when k tends to Ns(Xo1) then there is axpz € I such that| f5'(xo1) -
infinity, also we know that each subintend is mapped ~ 5'(X02)| > 1/2. Thus we have sensitive dependence on ini-
onto the interval, f& : 3 — I. Thus, consider a subinter- fial conditions. Now the proof is completed.
val J™ C N5(y1). as is shown in Figures 8 and 9. Accord-
ingly f(IJ™ =1 D Ns(y2) then f5'(xo) € Ns(y2), for any
Xo € N5(y1), this proves thafp is topologically transitive. 4 Electronic implementation of the difference map

Finally, we need to demonstrasensitive dependence
on initial conditions of the difference map, so that we start Devaney’s definition of chaos makes sense only for the itera-

to definee = |I|/2, where|l| = 1, such that for anyo; € I tive dynamical systems on continua. From Definition 4, one
and anyd > 0 there is aq2 € Ns(Xo1) such that the distance can immediately see that no map is Devaney-chaoXcig
between f5'(xo1) — f3'(X02)| > €. a discrete space. This is a strong condition why chaotic dis-

Remak 3: The definition of sensitivity does not require that crete dynamical systems need to be implemented electroni-
the orbit ofxy, remain far fromxg; for all iterations. We only  cally by analog devices in both of its parts: 1) the elecironi
need one point on the orbit to be far from the correspondingmplementation of the map and 2) the electronic implemen-
iterate ofxp;. tation of the iterative process, see Fig. 10. First we witli®

on explaining the circuit of the difference map.
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Xn Xn+1
1 Map
S, Sy
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Fig. 10 Circuit diagram of an electronic map.
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Vuut =
0
Ri7
Rig
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i {0 if Vi <0 V‘ﬂ_ N
s otherwise B us
L L
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Fig. 12 Schematic diagram of the difference map electronic circuit
0
0 1

Fig. 11 Block diagram of the difference map used to construct the_er‘rj‘tlon‘g_lI ampllflers, Wh_'Ch perform linear operat|qns (e.g
electronic circuit. integration and summation), as well as a couple of integrate

circuits that perform the nonlinear operations (i.e., tipliit

. . . . 8at|on). Here, we describe a new circuit that contains activ
The experimental development of this map is achieve . X .
) . - ) (]:omponents, speeds of radio frequencies, and is capable of
by means of electronic devices as multipliers, operationa . .
o . ) o reproducing the transition from steady state to chaos as ob-
amplifiers, diodes and resistors. In the same spirit thatroth

. ) L I served in the difference map equation when the bifurcation
implementations of this kind of circuits [18,42] analog mul . . peq

o . T . _parameter is varied.

tipliers have been employed with a normalization of the sig- . o )
nal by a factor of about 10. This normalization is necessary F19ure 12 shows a schematic diagram of the electronic
because of the physical restrictions in the analog mutipli CIrcuit realization of the difference map. The output of the

The starting point is a block diagram of the difference magfircuit is analyzed using the voltages at the nodes: A, B, C,
that is shown in Figure 11. The output of the electronic cir-D-

cuit has three branches: The former generates the logistic The A node voltage is given by thé1 multiplier which
map (node A) and the last two correspond to the tent mapas four input terminals, xo, y1,y») and an output terminal
(node B and C). Typically, these circuits contain several opgiven byW = %. Inputsx; = Vin(R2Rs) / (R1R3)
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Table 1 The values of the electronic components employed in the con
struction of the difference map electronic circuit.

Device Value

R1,Rs,Rs,Rs, R7, Rs, Ro,
Ri0, Ri2, Ri6, Rus

10kQ Resistor

R4 4kQ Resistor
R11,R14,R15,R17 40kQ Resistor

Ri3 20kQ Resistor

Rig 40kQ Potentiometer
D1,D2 1N4148 Diode
U1,U2,U3,U4,U5,U6,U7,U8 TLO84 Op. Amp.
M1 AD633 Multiplier

andy, = Vin(R:Rs)/(R1Rs) are given by operational ampli-
fiers U2 and U3, respectively. Inputs andy; are 0V and
5V, respectively. Hence, the output at A node is given by

Vi — ( R2R4) < Rst) /10,

Vins = | [ 5—Ving o5~
the A node voltage i¥in(1 — Vin) after evaluating com-

5
RiRs R1Rs ®)

ponents values of the Table 1, this signal corresponds to th8:s

logistic map f without considering thex bifurcation pa-
rameter .

The B node voltage is given by the U4 amplifier output
which is fed back to the inverting input, the output voltage
is

VB = —VinR13/Ru2. (6)

The C node voltage is given by the U5 amplifier output
which is a piecewise linear signal, then

0, for Vin < &;

Ve = 2% )
¢ E (RgVin _ &) for\/— > &
Ro\ Rz 2Rg) "= 2Rg

Equations 6 and 7 correspond to the tent map, remem

ber thatfr (x, i) is defined in two parts, to ensure that the
map is symmetric the bifurcation parametemust be equal
on both sides. We can see thats given byR;3/R;2 and
R11/(2Ryp). This yields the following restrictiorR;; = 2R3 3
andeo = Ryo.

The U7 amplifier output is the adding of A, B and C

VDD VEE VDD VEE
[
Xn ’\ﬂl\l} e Xn+1
LT ol
lc1 |e2
i i
1 1

51 Sz

=
(9]

Fig. 13 Schematic diagram of the iterative circuit, U1 and U2 are
LF398 and the MC microcontroller is a PIC16F88.

mance from all components, the circuit output in Fig. 12 is
modeled by the following equation:

Vout =
4Vin(1—Vin) — 2Vin, for Vin < lV;
{ 4Vin(1—Vin) + 2Vin— 2, for Vip > j\/-

Then, equation 4 can be derived from equation 9 by the
change of variablegn = xn, Vout = Xn+1 andf = Rig/Rys.

The second part of the circuit is responsible to make
the iterative operation, (see Fig. 10), this circuit coesith
microcontroller PIC16F88 of Microchip, and two hold and
sample LF398 of National Semiconductors in order to hold
the Vot signal given by Eq. 9. That is, the hold and sam-
ple circuits have been used as an analog memory in order
to store the value ok and getxy, 1, thus this is the way
how the electronic circuit shown in Fig. 12 generates the
iterative operation. Obviously, there are different wags t
perform this iterative operation, but this is a matter that d
pends of the designer and the application. Figure 13 shows
a schematic diagram for this part of the circuit, one can see
that each device LF398 (U1l and U2) has an input for acti-

(9)

Rig

vation, the signal for both hold and sample comes from the
microcontroller PIC16F88.

The time of each trigger to activate the devices is defined
for the designer, in this case we set 20 ms between each shot,
where the duration of each shot is 1 ms, these times are pro-
grammed into the microcontroller and can vary depending
the application. Figure 14 shows a diagram with the time of

node voltages which corresponds to D node voltage, giVingactivation of each hold and sample

Va

Ve
Ris

Ve
Ria

Vb = 8)

o )

it is worth mentioning that the ratioR; 7/Ry¢ is the param-
etera = 4. Thus, the D node voltage {s-f_ + fr) that is

Once both circuits are tuned in correct operation the dif-
ference map begins its iterative process. Figure 15 shows
a time series fo3 = 4. Despite of parasitic reactance, fi-
nite bandwidth of active components, and other experimen-
tal perturbations, the presented electronic circuit @digpl

indeed the difference map invested without taking accountlosely the behavior of the mathematical model given by

of the bifurcation parameteg.
Finally, theVy; voltage is given by the U8 inverting am-
plifier, the output is(Ryg/Ris)Vp. Assuming ideal perfor-

Eq. 4. We have implemented this design on a printed circuit
board (PCB) manufactured in our laboratory. In the experi-
mental circuit the TLO84 operational amplifiers and LF398
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S1
5V
oV H 20ms H 20ms
Ims Ims

Fig. 16 Experimental bifurcation diagram for the difference map.

Sz
5v
behavior in means of Lyapunov exponent also one of the
main properties of this map is that it has two critical points
making this a bimodal map but setting tB@arameter it can
ov 20ms show the behavior of unimodal map or a bimodal map, be-
1ms 1ms sides this paper includes a theoretical analysis of theii-eq
Fig. 14 Times of activation for hold and sample. librium points as well as the stability also were obtaineal th

corresponding bifurcation diagram from numerical simula-
tions and finally a simple difference map electronic circuit
has been presented here and its implementation using analog
e components as multipliers, operational amplifiers, dipdes
: | and resistors was also provided. Therefore, it can be assem-
bled even by students at the level of an undergraduate lab-
oratory. Its experimental behavior was tested and compared
with the numerical behavior given by the difference map Eq.
Fig. 15 The time series with chaotic dynamics generated by the tent}, The circuit replicates the whole known range of behaviors
map forf = 4. of the difference map and the it have many potential appli-
cations, for example: random number generation, frequency

hold and sample have been supplied with a power source 3PPPING, ranging, and spread-spectrum communications. As
+15V and soldered directly to the PCB without a socket € outiook for further research, the possibility of endiyp
also a source power 6f0.5V is used for proper operation USiNg stream C|phers based onthe analog C|rCU|t.|ndep03nd§n
of the tent map. The voltage Vdc has been supplied by Hom con_wputerwnh date to belencrypted is considered. This
variable dc supply with an output range of@5V. is the object of currently ongoing research.
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