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Abstract

Islets of pancreatic β-cells are of utmost importance in the understanding of diabetes mellitus. We consider here a model of
a network of such pancreatic β-cells which are globally coupled via gap junctions. Some of the cells in the islet are producing
bursting oscillations while other cells are inactive. We prove that the cells in the islet synchronize if the coupling is sufficiently
large and all cells are active (or inactive). If the islet consists of both active and inactive cells and the coupling is sufficiently
large, an active cluster and an inactive cluster emerge. We show that activity of the islet depends on the coupling strength
and the number of active cells compared to the number of inactive cells. If too few cells are active the islet becomes inactive.
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1 Introduction

Diabetes mellitus is a problem of world wide concern
[14,15]. Dynamical analysis and control of pancreatic
cells is one of its issues. The pancreas agglomerates cells
in functional units called Langerhans islets. In particu-
lar, pancreatic β-cells play an important role in glucose
homeostasis since they release insulin which is the hor-
mone mainly responsible for the blood glucose regulation
[1,4]. Experimental studies show that the insulin secre-
tion in β-cell is directly related to spiking/bursting elec-
trical activity of the cell membrane. For instance, the ab-
sence of the spiking or bursting indicates that the insulin
secretion is inhibited [5,6,10]. Synchronization of burs-
ting activity in Langerhans islets is expected to play an
important role in the insulin secretion [4,10]. Moreover,
there is experimental evidence that bursting electrical
activity occurs when analyzing an islet as a whole, while
when β-cells are analyzed in isolation, most of them are
in an inhibited inactive state [4,12]. On the other hand,
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if too many cells are inactive the islet might stop show-
ing activity [6]. In this paper we consider a model of an
islet with active and inactive β-cells and we study how
many cells need to be active the let the islet show acti-
vity such that the insulin secretion will not be inhibited.
A single β-cell will be described by a model proposed
by Pernarowski [6] which is capable of reproducing the
inactive state, bursting oscillations and continuous spi-
king. The behavior of the model can be changed by vary-
ing a single parameter. Each cell will interact with all
other cells via gap-junctions, i.e. a coupling given by the
difference in membrane potential of the cells multiplied
by the coupling strength. Using machinery presented in
[8,9] we prove that if the coupling is sufficiently strong
an islet with all cells active (or inactive) synchronizes,
and if the islet consists of both active and inactive cells
we prove that an active cluster and an inactive cluster
emerge. We show that the network will show activity as
long as the islet contains a sufficient amount of active
cells. It is well known that coupling between cells might
influence the behavior of cells. In for instance [7,11] it
is shown that certain systems that are inactive in isola-
tion can produce stable oscillations when there are cou-
pled. In the analysis it is first shown that solutions of the
interacting systems are bounded, then it is shown that
due to the coupling the equilibrium looses stability. In
our analysis we show that, depending on the coupling
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strength, the equilibrium of the islet changes from un-
stable to stable when not enough cells are active which
in turn implies that the electrical activity of the islet dies
out and the insuline secretion is inhibited. The paper is
organized as follows. In section 2 the model of a single
cell is introduced and its dynamic behavior is briefly ex-
plained. Then in the next section we introduce the islet
of globally coupled β-cells and we present some theoret-
ical results concerning the synchronization of the activ-
ity in the islet. In section 4 we discuss when a islet stops
showing activity and we demonstrate our theoretical re-
sults using numerical simulations. Section 5 contains a
discussion on the results obtained in the paper.

2 A single β-cell

Consider a model of a β-cell [6]

ẏ = f(y) − z1 − z2, (1)

ż1 = w∞(y) − z1, (2)

ż2 = ε (h(y) − z2) , (3)

with ˙ := d
dt

, y ∈ R denotes the membrane potential
which is also the natural output of a cell, z1 ∈ R a
channel activation variable, z2 ∈ R is related to the
concentration of intracellular calcium and ADP, ε ≪ 1 is
a small positive parameter and the polynomials f(y) =
−f3y

3 + f2y
2 + f1y, w∞(y) = w3y

3 + w2y
2 −w1y −w0,

h(y) = b (y + y0). In the sequel we will use the following
parameters from [6]: f3 = 1

12 , f2 = 3
8 , f1 = 37

64 , w3 = 11
12 ,

w2 = 3
8 , w1 = 2 27

64 , w0 = 3, ε = 0.0025 and b = 4. If
y0 = 0.954 the cell bursts; the cell shows activity and we
say the cell is active. On the other hand, if y0 = 1.375
the solutions of (5),(6),(7) converge to an equilibrium
and we say the cell is inactive. Figure 1 shows the state
trajectories of an active cell and an inactive cell.

We will briefly recall the fast-slow analysis of the system
(1), (2), (3) as presented in [6] to explain how the model
generates the different behaviors depicted in Figure 1.
See also, for instance, Chapter 6 of [2] and Section 11.4
of [3]. We focus first on an active cell, i.e. y0 = 0.954. On
the fast t time scale, the time scale dominating during
the bursts, the behavior of the cell is governed by letting
ε = 0 such that

ẏ = f(y) − z1 − z2, ż1 = w∞(y) − z1, (4)

with z2 now a constant parameter. The bifurcation di-
agram is depicted in Figure 2. A family of stable limit
cycles starts at a Hopf bifurcation indicated by point B
in the diagram and terminates at the homoclinic bifur-
cation point C. The equilibria of the fast subsystem (4)
lie on z2 = S(y) := f(y)−w∞(y). The equilibria located
on the S-shaped curve S(·) between the left knee (point
A) and the Hopf bifurcation point B are unstable, the
other equilibria are stable. On the slow t∗ := εt time
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Figure 1. Numerical simulation of an isolated β-cell with
the parameters presented in the text and initial conditions
(yi(0), z1,i(0), z2,i(0)) = (−1,−2, 1). The black trajectories
correspond to an active bursting cell (y0 = 0.954), the gray
trajectories represent an inactive cell (y0 = 1.375). The single
burst in the beginning is due to the initial conditions.

Figure 2. Fast-slow analysis and a projection of the trajec-
tories of an active cell onto the z2-y plane.

scale the time between the bursts, the dynamics are given
by the equations z2 = S(y), dz2

dt∗
= h(y) − z2. Between

the bursts the solutions of (1), (2), (3) follow the lower
branch of the curve z2 = S(y) with z2 slowly decreasing
since this branch lies below the nulcline z2 = h(y). The
equilibrium of the system (1), (2), (3) is given by the in-
tersection of the S-shaped curve with the nulcline of the
slow system h(y) = 0. If y0 = 0.954 the unique equilib-
rium is located at the unstable branch of S(y). Suppose
that the initial conditions of (1), (2), (3) are chosen near
the lower branch of S(y). Then the solutions follow the
lower branch with decreasing z2 until the left knee (point
A) is reached. At this point stability is lost and the fast
subsystem starts to dominate. Hence the systems starts
to oscillate. During these oscillations z2 will be slowly
increasing such that at a certain moment a homoclinic
bifurcation occurs (at point C) which forces the solu-
tions back to near the lower branch of S(y). This proces
repeats over and over resulting in the stable bursting be-
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havior. On the other hand, if y0 = 1.375 the intersection
of S(y) and h(y) is on the lower branch of S(y) which
implies that the equilibrium of (1), (2), (3) is stable.

3 An islet of β-cells

Consider an islet consisting of k coupled β-cells

ẏi = f(yi) − z1,i − z2,i + ui, (5)

ż1,i = w∞(yi) − z1,i, (6)

ż2,i = ε (b (yi + y0,i) − z2,i) , (7)

with i = 1, . . . , k and ui ∈ R is an input with which the
cell is able to “communicate” with other cells. The islet
consists of k1 cells that are active while the remaining
k− k1 =: k2 cells are inactive. Recall that the difference
of a cell being active or inactive depends only on the
value of y0,i, i.e. y0,i = 0.954 if a cell is active and y0,i =
1.375 if the cell is inactive.

It is well known that β-cells couple via so-called gap
junctions [10]. We assume that the cells are globally (all-
to-all) coupled with uniform coupling strength. Hence
the coupling for the ith cell is given by the equations

ui = gc

∑k

j=1,j 6=i
(yj − yi), (8)

with coupling strength gc > 0. The cells are called syn-
chronized if limt→∞ |xi(t) − xj(t)| = 0 for all i, j =
1, . . . , k with xi := col (yi, z1,i, z2,i). Using the machin-
ery presented in [8,13] we have the following two results.

Lemma 1 The solutions of the cells (5),(6),(7) coupled
via (8) are ultimately bounded.

Theorem 2 Consider an islet with k cells (5),(6),(7)
coupled via (8). There exists a constant ḡc > 0 such that
if gck > ḡc, then

(1) if all cells are active (k1 = k), all cells show syn-
chronized bursting oscillations;

(2) if all cells are inactive (k2 = k), all cells are syn-
chronized but there are no oscillations;

(3) if k1 < k cells are active and k2 < k cells are in-
active, the active cells synchronize and the inactive
cells synchronize, but the active cells do not syn-
chronize with the inactive cells.

The proofs of Lemma 1 and Theorem 2 are provided in
the appendix. Lemma 1 states that all solutions of the in-
terconnected cells enter some compact set in finite time
and the solutions remain in that set thereafter. Note
that this result is not trivial: it is well known that the
solutions of interconnected systems might become un-
bounded even if the solutions of a system in isolation are
bounded. This typically happens when the systems are

non-minimum phase, cf. [7,13]. Theorem 2 states that if
the coupling strength multiplied by the number of cells
exceeds the threshold ḡc, i.e. the coupling is sufficiently
strong and/or the number of cells is sufficiently large,
a cluster of synchronized active cells and a cluster of
synchronized inactive cells emerge. If all cells are either
active or inactive then all cells in the islet synchronize
when the coupling is sufficiently strong.

Remark 1 Lemma 1 and Theorem 2 also hold for the
biophysically plausible conductance based models of β-
cells such as the models in [10,2]. See [13] for details.

Remark 2 Lemma 1 is also true for a general network
topology, Theorem 2 can be generalized for a general net-
work topology in case that all cells are either active or
inactive. See [8,13] for details.

4 An active or an inactive islet?

In this section we consider an islet of coupled cells (5),
(6), (7), (8) of which k1 cells are active and k2 cells are
inactive. In the remainder it is assumed that gck ≥ ḡc

such that (as follows from Theorem 2) we end with a
cluster of active cells and a cluster of inactive cells. Due
to the interaction of the clusters two scenarios can occur:

(1) the active cluster “stimulates” the inactive cluster
such that the cells in the inactive cluster start to
produce oscillations;

(2) the inactive cluster suppresses the activity in the
active cluster such that all activity in the islet dies
out.

As one might imagine there will be two parameters that
determine whether the islet will be active or inactive,
namely the coupling strength gck and the number of
active cells relative to the number of inactive cells, i.e.
the relative sizes of the clusters. Let η be the portion
of active cells relative to the number of total cells, i.e.
η = k1

k
. It follows that 1 − η represents the number of

inactive cells relative to the number of total cells in the
islet. In what follows we present estimates of the critical
portion η∗ = η∗(gck) at which there is a change from
activity of the islet to dead of all activity.

The dynamics of a cluster are given as

ζ̇1,m = f(ζ1,m) − ζ2,m − ζ3,m + νm, (9)

ζ̇2,m = w∞(ζ1,m) − ζ2,m, (10)

ζ̇3,m = ε (b (ζ1,m + y0,m) − ζ3,m) , (11)

with m = 1, 2. Note that the equations describing the
dynamics of the cluster are copies of the equations that
describe the single cell. This is because the cells in a
cluster are synchronized and share the same dynamics.
We let m = 1 be the inactive cluster and m = 2 the
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Figure 3. S-shaped curves of the uncoupled, i.e. ν̃m = 0, ac-
tive cluster (cm = 1.184) and inactive cluster (cm = −0.5).
Also presented are the S-shaped curve corresponding to
cm = 0 and the line ξ3,m = b(ξ1,m + 1.250).

active cluster, i.e. y0,1 = 1.375 and y0,2 = 0.954. It is
not difficult to see that the coupling between the clus-
ters is given by the equations ν1 = gckη(ζ1,2 − ζ1,1),
ν2 = gck(1 − η)(ζ1,1 − ζ1,2). We will use the machinery
presented in Section 2 to determine the estimate of the
critical portion η∗. First we introduce a change of coor-
dinates: ξ1,m = ζ1,m, ξ2,m = ζ2,m and ξ3,m = ζ3,m + cm

with cm := b(1.250 − y0,m), i.e. c1 = 1.184 and c2 =
−0.5. Hence

ξ̇1,m = f(ξ1,m) − ξ2,m − ξ3,m + cm + ν̃m, (12)

ξ̇2,m = w∞(ξ1,m) − ξ2,m, (13)

ξ̇3,m = ε (b (ξ1,m + 1.250)− ξ3,m) , (14)

and

ν̃1 = gckη(ξ1,2 − ξ1,1), (15)

ν̃2 = gck(1 − η)(ξ1,1 − ξ1,2). (16)

Figure 3 depicts the S-shaped curves of the fast
subsystem of the uncoupled clusters and the line
ξ3,m = b(ξ1,m + 1.250). Again, the equilibrium of the
clusters are given by the intersection of the S-shaped
curve and the line. Note that the location of the equilib-
rium of the original model (1), (2), (2) (and thus that of
a uncoupled cluster) is changed by varying y0. In Figure
2 this corresponds to shifting the line z2 = h(y) up or
down while keeping the S-shaped curve fixed. After the
change of coordinates the location of the equilibrium
still changes with y0 since cm = cm(y0), but, as can
be seen in Figure 3, this corresponds now to shifting
the S-shaped curves to the left or right while keeping
the line ξ3,m = b(ξ1,m + 1.250) fixed. Let now the two
clusters (12) – (14) be coupled via (15), (16). Due to
the interaction the location of the S-shaped curves of
the active and the inactive clusters change, hence the
locations (and thus stability) of the equilibria change.

We now determine η∗(gck) by estimating for which val-
ues of η, gck and the equilibrium of the inactive cluster
the equilibrium of the active cluster is at the left knee
of its S-shaped curve. In particular we consider the two
following extreme cases:
Case 1. The location of the equilibrium of the inac-
tive cluster (ξo

1,1, ξ
o
2,1, ξ

o
3,1) does not change due to the

interaction with the active cluster. This is the case
when the portion of active cells is small, i.e. η → 0. Let
(ξo

1,2, ξ
o
2,2, ξ

o
3,2) be the equilibrium of the active cluster,

then if the equilibrium is at the left knee we require

0 = S̃(ξo
1,2) − b

(

ξo
1,2 + c2

)

+ gck(1 − η∗)(ξo
1,1 − ξo

1,2), (17)

0 = S̃′(ξo
1,2) − gck(1 − η∗), S̃′′(ξo

1,2) > 0, (18)

where S̃(ξ1,m) := f(ξ1,m) − w∞(ξ1,m) + cm and ′ indi-
cates the derivative with respect to ξ1,m. Here (17) is
the equilibrium equation for the active cluster and (18)
is the condition that guarantees the equilibrium to be at
the left knee. Solving (17), (18) for the given model pa-
rameters results in gck(1−η∗) = c with c ≈ 1.213. Since
η∗ ∈ [0, 1] it follows that η∗ = max(0, 1 − c

gck
).

Case 2. The equilibria of both the active and inactive
cluster are at the left knee of the S-shaped curve with
cm = 0. This happens if the coupling strength gck is
large. In Figure 3 this corresponds to shifting the S-
shaped curve of the active (inactive) cluster to the left
(right) by an amount of c1 (c2) such that the S-shaped
curves of the active and inactive cluster coincide with
the S-shaped curve with cm = 0. Thus we require

0 = gckη∗(ξo
1,2 − ξo

1,1) + c1, (19)

0 = gck(1 − η∗)(ξo
1,1 − ξo

1,2) + c2, (20)

from which it follows that η∗ = c1

c1−c2

≈ 0.297.

Figure 4 summarizes the result. The estimated critical
portion η∗ is indicated by the thick gray line. The area in
gray in the (gck, η) plane indicates the region where we
can guarantee that there is still activity of the islet. For
instance, for large gck at least 30% of the cells should be
active to have any activity of the islet. The circles in Fig-
ure 4 indicate the critical portion obtained by numerical
simulations of an islet with k = 100 cells. The analytical
estimate approaches the numerical results well for small
η and large gck.

Figure 5 shows the results of numerical simulations of a
network consisting of k = 7 cells. The coupling strength
gc = 1. In Figure 5(a) k1 = 3 cells are active and k2 = 4
cells are inactive. As expected two clusters emerge and
the network shows activity. In Figure 5(b) k1 = 2 cells
are active and k2 = 5 cells are inactive. Again, as ex-
pected, two clusters emerge but now all activity dies out.
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Figure 4. Analytical estimates of the critical portion (thick
gray line) and the result of numerical simulations (circles).

5 Discussion

We have considered a model of an islet of globally cou-
pled β-cells, where some are active and others are in-
active. As stated in the introduction, the activity of an
islet of β-cells is directly related to the blood glucose
level, cf [5,6,10]. We have investigated here to what ex-
tent it is possible that coupled β-cells ultimately may
exhibit active or inactive behavior. First we have proven
that the solutions of all cells in the islet are ultimately
bounded and we proved that if all cells are active or all
cells are inactive, given that the coupling is sufficiently
strong, all cells synchronize. Next we have proven that
an active cluster and an inactive clusters emerge when
the islet consists of both active and inactive cells and
the coupling is sufficiently strong. Using stability anal-
ysis of the equilibria of the clusters an estimate of the
critical portion η∗(gck) is determined. If for some fixed
coupling strength gck the portion of active cells η > η∗,
the islet will still show some activity. Results of numer-
ical simulations show that the estimates of η∗(gck) are
accurate for small η and large gck.

In [6] the critical portion for an islet consisting of a large
number (O(1

ε
)) of cells that couple to their nearest neigh-

bors is estimated to be 0.283. Although the analysis in
[6] is different, the value of the estimated portion in the
large islet with nearest neighbor coupling is close to the
value we estimate for an globally coupled islet consist-
ing of an arbitrary number of cells. Hence it would be
interesting to study the influence of the topology of the
network and the coupling strength in more detail.
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A Proofs

Proof of Lemma 1. Let xi := col (yi, z1,i, z2,i)
and consider the positive definite storage function
Vi(xi) = 1

4y4
i + 1

2w3
z2
1,i + µ

2ε
z2
2,i with a positive constant

µ. Let the constants λj ∈ (0, 1), j = 1, . . . , 4, constant

µ = 1
4f3λ1λ3(1−λ4) , then V̇i = y3

i ui−Hi with the function

Hi(xi) =
λ2

w3

(

z1,i +
w1

2λ2
yi −

w2

2λ2
y2

i

)2

+ λ1f3

(

y3
i +

1

2λ1f3
z2,i

)2

+ µλ3λ4

(

z2,i −
b

2λ4
yi

)2

+ (1 − λ3)µz2
2,i − µby0,iz2,i + (1 − λ2)

1

w3
z2
1,i +

w0

w3
z1,i

+ (1 − λ1)f3y
6
i − f2y

5
i − f1y

4
i −

µλ3b
2

4λ4
y2

i

−
1

4w3λ2

(

w1yi − w2y
2
i

)2
(A.1)

which is positive for sufficiently large |xi|. Let W (x) :=
∑k

i=1 Vi(xi), x := col (x1, . . . , xk), then Ẇ =
∑k

i=1 yiui−

Hi. Note that
∑k

i=1 y3
i ui ≤ gc

2

∑k

i=1

∑k

j=1,j 6=i y2
i (y2

j −

y2
i ). Since

∑k

i=1

∑k

j=1,j 6=i(y
2
j − y2

i ) ≤ 0 and thus
∑k

i=1 y3
i ui ≤ 0 it follows that Ẇ = −

∑k

i=1 Hi ≤ 0 for
sufficiently large |x|. The function W is radially un-
bounded since each function Vi is radially unbounded,
hence there exists a constant c∗ such that Ẇ < 0 for
each constant c and all x satisfying W ≥ c > c∗. Thus
the set

{

x ∈ R
3k : W ≥ c

}

is a positively invariant
compact set under the dynamics (5),(6),(7), (8) and all
solutions exist and are bounded. 2

Proof of Theorem 2. We assume without loss of
generality that the cells i = 1, . . . , k1 are active

and the cells i = k1 + 1, . . . , k are inactive. We
will prove that the active cells will synchronize with
each other even in presence of coupling to the in-
active cells. First, for notational convenience we de-
fine zi := col (z1,i, z2,i), ẏi = a(yi, zi) + ui, with
a(yi, zi) = f(yi) − zi,i − z2,i and żi = q(yi, zi) :=
col (w∞(yi) − z1,i, ε (b (yi + y0,i) − z2,i)). Define ỹ1 =
y1, ỹj := y1−yj+1, z̃1 = z1, z̃j = z1−zj+1, j = 2, . . . , k1,

then ˙̃yj = a(y1, z1) − a(y1 − ỹj , z1 − z̃j) + u1 − uj and
˙̃zj = q(z1, y1)−q(z1−z̃j , y1−ỹj). Consider the Lyapunov
function V = 1

2 ỹ⊤ỹ + 1
2 z̃⊤P z̃ with ỹ = col (ỹ2, . . . , ỹk1

),
z̃ = col (z̃2, . . . , z̃k1

) and

P = P̃ ⊗ I, P̃ =
1

ε

(

ε 0

0 1

)

. (A.2)

Note that a(y1, z1)− a(yj , zj) = (a(y1, z1)− a(yj, z1))+
(a(yj , z1)−a(yj, zj)). Using the ultimate boundedness of
the states of all systems (Lemma 1), the triangle inequal-
ity and Lipschitz continuity of a(·, ·), it follows that there
exist constants c0, c1 ∈ R>0 such that ỹj(a(y1, z1) −

a(yj, zj)) ≤ c0 |ỹj| · |z̃j| + c1 |ỹj |
2
. Similarly we have

z̃⊤j P̃ (q(z1, y1)−q(zj , yj)) ≤ − |z̃j |
2
+c0 |ỹj|·|z̃j | for some

constant c2 ∈ R>0. Hence there exist positive constants

C0, C1 such that V̇ ≤ − |z̃|
2
+ C0 |z̃| · |ỹ|+ C1 |ỹ|

2
+ ỹ⊤ũ

with ũ := col (u1 − u2, . . . , u1 − uk1
). Note that the con-

stants C0 and C1 only depend on the bounds on the tra-
jectories yi and zi and the functions a(·, ·), q(·, ·) and not
on the number of cells. Since the coupling is global we
have

u1 = gc(yj − y1) + gc

∑k

ℓ=2,ℓ 6=j
(yℓ − y1), (A.3)

uj = gc(y1 − yj) + gc

k
∑

ℓ=2,ℓ 6=j

(yℓ − yj), (A.4)

such that ũj = −gckỹj. Hence ỹ⊤ũ = −gck |ỹ|2 such

that if gck ≥ ḡc :=
C2

0

4 + C1 there exists a constant

ǫ > 0 such that V̇ ≤ −ǫV . It follows that
∫ t

t0
−V̇ (τ)dτ =

V (t0) − V (t) ≤ V (t0) < ∞. Hence, using Barbalat’s

lemma (note that V̇ is uniformly continuous), we can
conclude that the active cells synchronize. Using the
same machinery one can easily prove that the inactive
cells will also synchronize with each other. On the other
hand, the active cells will not synchronize with the in-
active cells since the linear manifold corresponding to
synchronization M := {col (x1, . . . , xk) ∈ R

3k : x1 =
. . . = xk1

= xk1+1 = . . . = xk}, xi := col (yi, z1,i, z2,i),
is not invariant under the closed loop dynamics (5), (6),
(7), (8). It follows immediately that all cells in the islet
synchronize whenever gck ≥ ḡc provided that all cells
are active (k1 = k) or all cells are inactive (k2 = k) such
that M is invariant under the given dynamics. 2
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