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Abstract In this work we present a Pseudo-Random Bitl Introduction
Generator via unidimensional multi-modal discrete dynam-

ical systems calleé-modal maps. These multi-modal maps These days information security has become an important
are based on the logistic map and are useful to yield pseudg@ssye due to the fact that every day the Internet has more and
random sequences with longer period, i. e., in order to dtteny,ore activity such as online banking, e-commerce, e-mail.
the problem of periodicity. In addition the pseudo-randomconsidering that the internet is an open channel, the infor-
sequences generated via multi-modal maps are evaluated WHation circulating on it can be intercepted by other users, s
the statistical suite of test from NIST and satisfactoryiss iy order to solve this drawback we make use of cryptography
are obtained when they are used as key stream. Furthermogg,q an scheme of confidentiality.

we show the impact of using these sequences in a stream ci- . . . .
P 9 g A variety of ciphers have been proposed with the inten-

pher resulting in a better encryption quality correlatethwi i f i fidentialit dk tlv the inf
the number of modals of the chaotic map. Finally, a statisti- 0" ©' Providing confidentialily and keep secretly the IRto

cal security analysis applied to cipher images is given. Th mation, but these ciphers have been proposed for text like

proposed algorithm to encrypt is able to resist the choser%ES [1.2], IDEA [3], AES [4], RSA [5]. These encryption

plaintext attack and differential attack because the sahe Sschemes_ dq nqt seem to be _|deal forimage applications, due
. . . . to some intrinsic features of images such as bulk data capac-
of encryption keys generates a different cipher image eve

§ ) . ; .
time it is used. Xy, high pixel correlation and high redundancy.

On the other hand, dynamical systems have been a very
active area of research and specifically those with chaotic
behavior; since their inception they have been developed in
many areas such as communication systems [6], neural net-
works [7], switching systems [8], synchronization [9] and
cryptography [10]. There is a close relationship between
chaos and cryptography, for example in [11] authors made a
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Fig. 1 Bifurcation diagram of the tri-modal map given by Eq. 2. Fig. 2 Lyapunov exponent of the tri-modal map.

2 Multi-modal Maps
There have been proposals of generators based on uni-
modals chaotic maps, for example in [13,14] proposed @ discrete-time dynamical system is used to construct a

pseudo-random bit generator by using only one logistic magyseudo-random bit generator and is given as follows:
but in [15] the authors pointed out that bit streams gendrate

through only one chaotic system are potentially insecuee du
to the output may leak some information about the chaotic

system. In order to overcome the afore_:mentioned ViCiSSi\'/vherexn € O andxg is the initial condition, such dynam-
tude, they proposed a pseudo-random bit generator based | o stem is usually referred to asap, as it is fully de-

a couple of piecewise linear chaotic maps, which are itérateyg ineq py its right hand side. To ensure boundedness of
independently and the bit streams are generated by COMfiectories, the study is usually restricted to maps that a

paring the outputs of these chaotic maps. A pseudo-randofj,nning a compact interval into itself and without loss of

bit generator is proposed in [16] which employs the |°giStngenerality we may consider only the compact intef0al].

map as a perturbation and a piecewise linear chaotic map e simplest maps are the so-called uni-modal maps like

the main generator. Other works such as [17-19] used Wihe logistic and tent maps, while their generalization strve

chaotic maps and combined to obtain a complex Sequente|eq muiti-modal ok-modal maps may present even more
of bits. In this paper we show how the use of only a mum'rich dynamical behaviors, [20, 21].

modal chaotic map may replace two uni-modal chaotic maps To be more specific, we denoté :— [0,1] and recall

in the generation of pseudo-random sequences. that thecritical point c of the continuous piecewise smooth
In this work we propose a new architecture for a pseduomap f (x) : .# — .# is c € .# wheref is differentiable and

random bit generator based kimodal chaotic maps where f’(c) = 0. The critical pointc occurs forf’(c) = 0 or f’(c)

we can yield a complex sequence of bits with one multi-does not exist. But continuous smooth maps always present

modal map. The sequences are analyzed by the statisticHl(c) = 0.

suite of tests named NIST. This paper is organized as fol-

lows. In the next Section we introduce tkenodal maps. In

Section 3 a pseudo-random bit generator is presented via Definition 1 [20] The mapf : .# — .7 is called a k-modal

modal maps. In Section 4 the statistical suite of tests of ramrmapping, if it is continuous o and it has critical points

domness proposed by NIST are used to prove safety of th@enoted bycg, ¢; ... ck_1 in .#. Moreover, there exist in-

sequences and the results of the tests are shown. In Sectitemvals.7, i =0,...,k—1, u}‘zlfi_l = .#,suchthatvi =

5 we use a stream cipher and applied statistical security tes, ... ,k— 1 it holdsc; € .% andfg(ci) > fg(x),Vx € .% and

like entropy, pixel correlation, encryption quality. Huet-  x # ¢, where is a parameter. The cage= 1 is simply

more, we show that the proposed cryptosystem can resigtéferred as to the so-calleshi-modal map.

the most common attacks such as chosen plaintext attack

and differential attack. Finally in Section 6 we give con-  The above definition does not constraint a function to

clusions about the pseudo-random bit generator via multihave onlyk critical points. However it only consideres those

modal chaotic maps. that are local maximum on a subinterval. This means that the

Xnt1=f(Xn), N=0,1,2,...,N,
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numberk defines the maximal numbers of modals in a fam- 0.35-
ily .# and the intervaly = [a,b] is divided betweek subin- '
tervals.#p = [d1,dp), #1 = [dp,03), ..., k2 = [Ok_2,0k_1), 0.3}
Sk-1 = [dk_1,dk] so the systenfs is a piecewise function
by k uni-modals maps.

The parameterized family? of mapsfg(x) is defined

0.25¢

by the following piecewise function P2
X 0.15
fg(x) = B(dr+1—X)(X—dr), x€ H 1) o
whered, =r/k, (r =0,1,2,.... k— 1), kis the number of '
modals,B = B(k,y) is the bifurcation parametey,= 1/k 0.05¢
is the carrying on capacity. To obtain the maximum value , ‘ ,
of B with k modals there is a direct relationshifyx = 0 0.1 0.2 0.3

(4)(k)/(y) for more detail information see ref. [20]. Xn

Let's make an example démodal map withk = 3, to Fig. 3 Plot of the phase space of the tri-modal map v@ts ;.
construct the function of the monoparametric family we use
the equation (1) and we will have 3 subintervads, (r =

0,1,2), so the functionfg which is given by the equation 0.7
(2) is expressed as follows 0.6l
(1/3—x)(x), forx € [0,1/3);
fa(x) = B{ (2/3—x)(x—1/3),forxe [1/3,2/3);  (2) 0.51
(1-x)(x—2/3), forxe[2/3,1]; 0.4}
wheref € [0, 3] is the bifurcation parameter, depending 03l
on the value of8 the system may be uni-modal, bi-modal or
tri-modal. 0.2f
Figure 1 shows a bifurcation diagram of the tri-modal 0l
map fz(x). In order to demonstrate whether the system is '
chaotic, there are several ways, but the most common for 0
discrete dynamical systems are based on the definition of 81 5;

Devaney [22] and Lyapunqv eXpon,em [23,24]. In this papey:ig_ 4 Distribution of the 2 regions from the 3-modal map wgk= ;.
we show that the system is chaotic by means of Lyapunov

exponent which is denoted by as is shown in Figure 2.
When A < 0 the system'’s orbit converges to a fixed point
or in a periodic orbit and whei > O the system’s orbit
behaves chaotically.

that it possesses good statistical properties, i. e, itgutut
that resembles to a sequence of true random numbers.

Definition 4 A Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG) is a special type of PRNG
which possesses the following additional property: a
CSPRNG is a PRNG which is unpredictable. This means
that given n consecutive bits of the key stream, there is no
polynomial time algorithm that can predict the nextdit
Definition 2 A True Random Number Generator (TRNG) with better than 50 % chance of success. Another property
is characterized by the fact that its output cannot be reprasf CSPRNG is that given the above sequence, it should be
duced, so this type of generator is based on physical pr&somputationally unfeasible to compute any preceding bits
cesses like semiconductor noise. In cryptography, a TRNG,_1,S,_>.

is often needed for generating session keys but not foratrea
ciphers.

3 Proposed pseudo-random bit generator

First we introduce some basic concepts of Random and
Pseudo-random Number Generators which are givenin [5

In this paper we propose a CSPRNG using kimeodal
map and a combination of itstime series. The algorithm
Definition 3 A Pseudo-Random Number Generator (PRNGlor the construction of the generator is given for any value
produces sequences which are computed from an initial seed k and an example is also given for the particular case of
value, note that a PRNG is not random in a true sense beéri-modal map. The algorithm to produce a CSPRNG is as
cause it can be computed by an algorithm, thus it is comfollows:
pletely deterministic. A common requirement of a PRNG isStep 1: Set the value &fc N™.
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Step 2: Compute the values 8f, for j =1,...,k, by means Table 1 Summary of values.
of the following equations.
Map B=p B=pB B=5s B=ps

Br=(4)(K); (B) k=1 ki=1/2 - -
K?=0.2273
Bj=ij*B, for j>2 (4) k=2 «kl=1/4 k2=06020 - -
K% = 0.8931
Taking these values ¢ we are avoiding periodic windows K3 = 0.1465
and guarantee chaotic orbits. k?=0.1521 k3 =0.3960

Step 3: Take the values @ and split the space into=2] k=3 k{=1/6 Kj=04017 é =06390 -
. i i . . k5 =05954 k; =0.8335
regionsd, , ..., 62*j which are determined by values

J. J i KS =0.9572
Ki:-->Kip.j)_1- Iterating the system, = fg, (Xn) and de- i~ 01070
pending on which region evolves i.61,3) represent the Ki:O.llO5 K4 =0.2911
value of 0 or 1, this generates a binary sequeficeNote k?=01140 k3=02970 K3 =0.4829

. . . _ _ 2 __ 3 _ _

that the generation of the number of O's is approximately K=4 ki =1/8 5= 8'2222 5 8'2‘;28 E{{ = 828;2
o . 2-0. 3=0 2=0.

;aoc?graéllrt]c;éhoef rluoj/omber of I'sin all generated sequences with a k2 = 0.7180 K§ _ 8’3%2

. k7 =0.
Step 4: Ak number of chaotic time series are generated by
Xh = fBj (xn) and each one produces a binary sequefice
These sequences are mixed and the final sequéisgot-
ten as follows:

of sequences=[xy, ..., xn] andy = [y1, ..., yn] are computed
as follows [19]:

Cy = SR =X (i =)

N (v —30211/2[sN (v — v)12]11/2

In order to clarify the mechanism to generate CSPRNG (200 =02 = V7
we exemplify the process fde= 3 and iterate the system  wherex= £ N, x andy= & N,y are the mean val-
1,000,000 times. So the first step is given lby= 3. Ac-  ues ofx andy, respectively. The coefficienG, are com-
cording to the second stef; = 12,3, = 24,33 = 36. The  puted for each pair of produced sequences with nearby ini-
third step is to takgs; for obtaining the sequendé, there- tial conditions and this has been done for every valug. of
fore the space is divided in two regioﬁ% and 621 split by  Remember when the parameleincreases, then the num-
Kll =1/6. These regions represent a 0 and a 1, respectivelper of sequences and the number of initial conditions also
as is shown in Figure 3. The histogram of the two regions isncrease, for example, in the case of bi-modal rkap 2.
shown in Figure 4. In the same step three, we need to conT-here are two sequenceb and x2 with initial conditions
puteZ? andZ?3, so carry on withB,, we have a bi-modal map xo1 andxg; for evaluateC,y, we need other two sequences
with four regionsd?, .., 87 separated by? = 0.1521 k2= x andxZ with small different initial conditionso; + 5 and
0.40174 K§ = 0.5954. In Figure 5 is shown the bi-modal xgp2+ 8. The corresponding data are listed in Table 2 where
map forf3; and the regiongd’s. Figure 6 shows the histogram it is possible to see that there is no correlation between the
of the binary sequenc&?. Now for the last cas@s splits  generated sequences as a consequence that the chaotic map
the space in six regionéf,...,ég which are determined is very sensitive to very small changes in all initial condi-
by the values<} = 0.1465k3 = 0.396 k3 = 0.639k3 = tions.
0.8335k2 = 0.9572.

Finally, the sequences are mixed By= (1@ 72 @ 3,
where® is the operation XOR. We have computed some
values thak can take for differentvalues &f=1,...,4and 4 Tnhe Statistical Suite Test
they are shown in Table 1.

For security reasons and in order to increase the kejph order to characterize the proposed generator and demon-
space, we use the high sensitivity to initial conditiongrth  strate that it is safe for use in cryptography, it must be ana-
we iterate the algorithm 200 times without considering itslyzed with a variety of statistical tests. These statistiests
output bits. determine whether the generated sequences possess specific

Thus, the correlation is checked between the producecharacteristics similar to truly random sequences. Toesehi
sequences) = fﬁj (xn) by the proposed algorithm (step 3) this goal there are several options available for analyzing
with nearby keys and also it is verified the sensitivity te ini the randomness of the pseudo-random bit generators, for
tial conditions. The correlation coefficie@}, for each pair example the suite developed by Beker and Piper [25], the

Z=0'aol?e.. 0l (5)

(6)
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Unimodal  x} — xo1 = 0.24879652 XX — Xo1 4 & = 0.248796520000001 C,u,1 — 0.0015

Bimodal X} — Xo1 = 0.19685672 XX — Xo1+ & = 0.196856720000001 C,1,1 = 0.0018
2 5 Xo2 = 0.86241957 X2 — Xpp+ & = 0.862419570000001 C,zy2 = —0.0022
n X

B

Xt — X1 = 0.38461795 X — Xo1+ 3 = 0.384617950000001 C,1,2 = —0.0004
Trimodal X2 — Xgp = 0.73519846 X2 — X2+ & — 0.735198460000001 C,zy2 = —0.0013
X3 — Xo3 = 0.48617852 X3 — Xp3+ & = 0.486178520000001 C,a,s = —0.0016

Xt — Xo1 = 0.26487146 X — Xo1 -+ & = 0.264871460000001 C,,1 = —0.0006
Quadmodal X3 — o2 = 0.52975314 X2 — xgp + 6+ 0.529753140000001 C,2,> = 0.00001

X3 — Xo3 = 0.93457812 X — Xo3+ & = 0.934578120000001 C,s,s = —0.0004

X — Xos = 0.63789514  X# — xg4+ & = 0.637895140000001 C,4 = 0.0008

Table 2 Correlation coefficients of pseudo-random sequences.

K4 ing a process whose outcomes do not follow a determinis-
tic pattern, but follow an evolution described by probabil-
82 62 ity distributions. So a randomness is a probabilistic prop-
erty; that is, a theoretical reference distribution of 8tatis-

tic is determined by mathematical methods, in addition the
results of statistical testing must be interpreted with som
care and caution to avoid incorrect conclusions about a spe-
0 11 cific generator. First we need to define a significance level
Typically, it is chosen in the range [0.001, 0.01], by defaul

o = 0.01 and indicates that one would expect one sequence
of 100 sequences to be rejected by the test if the sequence is

Xn+1

‘ , random.
0.2 0.4 06 The NIST has adopted two ways to interpret results. In
Xn this paper we used the examination of the proportion of se-
Fig. 5 Plot of the phase space of the tri-modal map vtk (3,. guences that pass a statistical test. For this we need the con
fidence interval defined as:
0.35 : : : : (1-0)+£3 w, (7
0.3k . whereo = 0.01 andm s the sample size of sequences that
in our case is 1,000 sequences and each has 1,000,000 of
0.25¢ elements. If the proportion falls outside of this intertagn
0.2k there is evidence that the data is hon-random.
0.15¢
In Figures 7 and 8 we show the confidence intervatef the
0.1y sequences generated with- 1, ..., 4. The dash-dot line with
0.05} marker plus “+" represents the result for uni-modal map or
logistic map, and we can see that there are some results out-
0 side of the confidence interval then we cannot use this se-

quence for cryptography. On the other hand, the dot line
Fig. 6 Distribution of the tri-modal map wit = ;. with marker empty circle 8” corresponds to the bi-modal
map, the dash line with marker squai@™corresponds to

the tri-modal map, and the solid line with marker diamond

Gustafson’s suite [26] or the DIEHARD suite [27]. However _ © is the quad-modal map. This information is summarized
the most used and standard test is defined by the NIST [2$I]1 Tables 3 and 4.

that contains a sufficient number of independent statlsticad It IS clear tlhr?t the n;]aps witk > 2 lie inside the conf;_ I
tests and detects any deviation from the randomness. ence interval hence these sequences are cryptograghica

A random process means lack of pattern or predictabilit)fecure according to the suite of tests proposed by NIST.

in events and it is a sequence of random variables describ-
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Test

1) Frequency (Monobit) Test

2) Frequency Test within a Block (Block=128)

3) Runs Test

4) Test for the Longest Run

5) Binary Matrix

6) Discrete Fourier Transform (Spectral Test)

7) Overlapping Template Matching Test (Block=9)
8) Maurer’s Universal Statistical Test

9) Approximate Entropy

10) Linear Complexity

Fig. 7 Part 1 of the results of the suite of statistical tests.

4.1 Differential attack

This technique of cryptanalysis is mainly applicable orchklo
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Test name Uni-modal Bi-modal Tri-modal Quad-modal

Portion Result Portion Result Portion Result Portion Resul

passing passing passing passing
Frequency Test 0.9820 Success  0.9900 Success  0.9910 Suc€e8930 Success
Frequency Test 0.9770 Fail 0.9850 Success  0.9890 Succe$#9000. Success
within a Block
Runs Test 0.9860 Success  0.9920 Success  0.9910 Success00 0.99  Success
Test for the 0.9850 Success  0.9890 Success  0.9930 Succe8920 0. Success
Longest Run
Binary Matrix 0.9810 Success  0.9920 Success  0.9840 Succ€s3930 Success
Discrete Fourier 0.9850 Success  0.9920 Success  0.9840 esSucc0.9930 Success
Transform
Overlapping Template  0.9790 Fail 0.9870 Success 0.9930 ceSac 0.9890 Success
Matching Test
Maurer’s Universal 0.9900 Success  0.9880 Success 0.9880 cceSu  0.9900 Success
Statistical Test
Approximate Entropy  0.9790 Fail 0.9850 Success  0.9900 &3scc 0.9890 Success
Linear Complexity 0.9830 Success  0.9910 Success 0.9900 ceSaic 0.9940 Success

Table 3 Part 1 of results from statistical suite of tests.
1.005 1.005

0.995/
0.99}
0.985/
P
0.98| .g‘
y
0 10 20 30

Test
1) - 2) Serial Test (Block=16)
3) - 4) Cumulative Sums
5)-9) Non-overlapping Template Matching
Test (Block=9)
10) - 17) Random Excursions Test
18) - 35) Random Excursions Variant Test

Fig. 8 Part 2 of the results of the suite of statistical tests.

plain-text, there are two initial conditions and an outpithw
the corresponding sequences, the difference can be used as:
1. Sum of Absolute Difference (SAD): which is applica-
ble to sequences, € [ and is defined by SAB |(x) — x{)|
where the sequencebandx; are obtained with initial con-
ditionsxg1 andxp; + 9, respectively.
2. XOR Difference: is applicable to sequenc&g’ €

ciphers and was introduced by Biham and Shamir [29]. Th€0, 1} and is defined byp = Z @ Z' where the sequencés
basic idea is to analyze the effect of a small difference irandZ’ are obtained withk initial conditions.

two inputs and the difference of corresponding two cipher _
outputs. In this case we applied the same idea to pseudo- In previous section we analyzed the sequenges [
random sequences and instead of having two inputs witlvith nearby initial conditions, now the goal in this section
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Test name Uni-modal Bi-modal Tri-modal Quad-modal

Portion Result Portion Result Portion Result Portion Resul

passing passing passing passing
Serial Test 1 0.9870 Success  0.9870 Success  0.9890 Succe8830 0 Success
Serial Test 2 0.9820 Success  0.9920 Success  0.9910 Succe8850 0 Success
Cumulative Sums Test Success
a)Forward 0.9850 Success  0.9920 Success  0.9930 Succes840 0.9 Success
b)Backward 0.9850 Success  0.9890 Success  0.9940 Succe89300. Success
Non-overlapping
Template
Matching Test
a) 0.9820 Success  0.9890 Success  0.9820 Success  0.9950 essSucc
b) 0.9830 Success  0.9850 Success  0.9820 Success  0.9890 esssucc
c) 0.9840 Success  0.9890 Success  0.9830 Success  0.9920 essucc
d) 0.9850 Success  0.9850 Success  0.9870 Success  0.9920 esssucc
e) 0.9770 Fail 0.9910 Success  0.9970 Success  0.9910 Success
Random Excursions
Test
a) -4 0.9850 Success  0.9860 Success  0.9900 Success 0.9900 ccesSu
b) -3 0.9880 Success  0.9890 Success  0.9930 Success 0.9830 cces$u
c)-2 0.9920 Success 0.9870 Success  0.9930 Success 0.9830 ccesSu
d)-1 0.9920 Success  0.9870 Success  0.9900 Success 0.9850 ccesS$u
el 0.9890 Success  0.9900 Success  0.9850 Success  0.9930 cesssuc
f) 2 0.9920 Success  0.9820 Success  0.9880 Success  0.9950 cesSuc
g3 0.9850 Success  0.9900 Success  0.9820 Success  0.9900 cessuc
h) 4 0.9860 Success  0.9890 Success  0.9900 Success  0.9900 cessSuc

Random Excursions
Variant Test

a) -9 0.9850 Success  0.9930 Success  0.9960 Success 0.9900 ccesSu
b) -8 0.9850 Success  0.9930 Success  0.9930 Success 0.9880 ccesSu
c)-7 0.9860 Success  0.9900 Success  0.9950 Success 0.9900 ccesS$u
d) -6 0.9900 Success  0.9900 Success  0.9950 Success 0.9900 ccesSu
e)-5 0.9910 Success  0.9920 Success  0.9980 Success 0.9880 ccesSu
f)-4 0.9900 Success  0.9890 Success  0.9950 Success 0.9870 ccesSu
g) -3 0.9900 Success  0.9920 Success  0.9930 Success 0.9850 cces$u
h) -2 0.9930 Success  0.9860 Success  0.9900 Success 0.9850 ccesS$u
i)-1 0.9920 Success  0.9890 Success  0.9930 Success 0.9910 ccesSu
i1 0.9930 Success  0.9870 Success  0.9870 Success  0.9910 cesSuc
k) 2 0.9860 Success  0.9900 Success  0.9930 Success  0.9910 cesSuc
)3 0.9860 Success  0.9900 Success  0.9920 Success  0.9880 cesSuc
m) 4 0.9900 Success  0.9840 Success  0.9950 Success  0.9910 cessSuc
n)5 0.9930 Success  0.9890 Success  0.9930 Success  0.9900 cessSuc
0)6 0.9950 Success  0.9870 Success  0.9910 Success  0.9900 cessSuc
p)7 0.9950 Success  0.9870 Success  0.9900 Success  0.9930 cessSuc
q)8 0.9950 Success 0.9870 Success  0.9870 Success  0.9920 cessuc
rno9 0.9950 Success  0.9870 Success  0.9950 Success  0.9950 cesSuc

Table 4 Part 2 of results from statistical suite of tests.

is to analyze th&,Z' € {0,1} sequences (step 4 of the pro- have the same initial conditions to genenge and small
posed algorithm) with nearby initial conditions througle th difference inxZ for Z’. When we applied the XOR Differ-
XOR Difference. Recall that for obtaining the sequece ence toZ andZ’' we obtain that approximately 50% of the
we needK initial conditions, for example ik = 3 we need elements in the sequences are different. Even if we have the
three initial conditionsy, Xo2, X3 t0 Obtain the sequence same initial condition; = Xoz the series<; # x2 because

Z, and three initial conditiongy,, Xy,, Xog to obtain the se-  the g (xq) is different in each case. We can conclude that
quenceZ’ and then apply the XOR Difference. In the worst there is no correlation between the binary sequecasd
case of nearby initial conditions we hax@ = x> =Xo3=  Z/, so the chaotic map is very sensitivednandZ.

X1 = Xg2: X3 = X3+ 9, with & # 0 which means that we
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5 Chaos based gray-scale image cryptosystem a double precision. According to the IEEE floating-point
standard [30] the computational precision of the 64-bitideu

In this section we show a stream cipher algorithm for ci-precision number is about ¥®thereby the total space de-

pher gray scale images and the impact of using multi-modalends on the number of initial conditions, for= 3 the key

maps, i. e., the quality of the cipher image depends on thepace is:

pseudo random bit generator employed. At the end of the ~ 1x107 ~ 2159

last section we can infer that a multi-modal map generates As the numbek increases so does the key space but

a sequence cryptographically secure, but in order to detefithout loss of generality wittk = 3 we assure that the key

mine which sequence is better, we need a statistical sgcurispace is enough to resist brute-force attacks.

analysis applied to cipher images instead of key stream.

We use the following algorithm for cipher the gray-scale
image: 5.2 Correlation Pixels

e First we consider an image bifx M pixels, secondly we
add a column of random valu&gi,1) € {0,1,...,255}
withi=1,...,N, so the size of the image increase\to
x (M 4+ 1). This image will called augmented ima¢e)
with a total of(N)(M + 1) pixels.

e Compute pixel by pixel as follows:

In general for any original image each pair of adjacent
pixels is highly correlated in horizontal, vertical or déagl
direction, however a cryptosystem should produce changes
in all pixels and low correlation in adjacent pixels. To quan
tify and compare the correlations of adjacent pixels in the
plain and cipher image we use the correlation coeffiaignt

{ CL= E_l@ Z1 31V @® defined by
CG=RoZoC_ i COV( ) 10
whereC; is the ith pixel of the cipher imageﬁ is the v v/D(x)y/D (10)
ith pixel of the augmented image, note that the value of
PL =R(1,1), Z is the key stream according to the pro- 10
posed algorithm given in section 3, I {0,255} isan  E(X) = —} X, (12)
initialization vector of 8 bits, it is used only once aasd i
is the operation XOR bit by bit. We generate different
key streams from multi-modal maps with= 1,2, 3,4.
21 (12)
For decrypt the image we need the same key stream for ’7
this we need the valuél; the initial conditiong1, Xo2, ..., Xok
and the initialization vector (IV) as follows: 10
_ cov(x,y) = — Zl(xi —E()(yi —E(y)), (13)
{&=C1€921€9|V ) n&
R=CozaC_1

wherex andy denote two adjacent pixels amdis the total

Note that the decrypted image is the augmented image thénimber of dupletgx, y) in this case) = 2,000. In table 5 we

has one extra column so when the process of decryptis corghow the results of three different images and it is possible

pleted we need to remove this column to get original size ofo see that the adjacent pixels of the original plain imdgje

the image(N)(M). In figure 9 are some examples of encryptare highly correlated in any direction unlike the cipher im-

and decryptimages. age(C), the adjacent pixels are low correlated. This demon-
Some statistical analysis have been performed on thétrate the performance of the stream cipher algorithm.

proposed image encryption scheme, including the correla-

tion of pixels, entropy and quality encryption, as demon-

strated in the following subsections. 5.3 Information Entropy

As it is known, the entropy is a statistical measure of ran-
domness that can be used to characterize the texture of the

i image and can be defined by [31]:
5.1 Key Space Analysis

2!1
A good encryption algorithm must have a large key spacé! (S) ZO Pr(s)logzPr(s), (14)
enough to render brute-force attacks unfeasible. For ie pr
posed image encryption algorithm, the key is given by thevhere n=8 is the number of bits to represent a synsbels
initial conditionsxgg, ..., Xok, Where each initial condition has andPr(s) represents the probability of the symispkthen
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Fig. 9 Different plain-images and encrypted-images with the psegl algorithm. (a) Lenna with its histogram for plain andrgpted image, (b)
Baboon with its histogram for plain and encrypted imageHiostein with its histogram for plain and encrypted image.

Image Plain k=1 k=2 k=3 k=4 Table 7 Encryption Quality for cipher images with= 1,2, 3 4.
image
Encryption Unimodal Bimodal  Trimodal Quamodal
Lenna Quality
Vertical 0.9852 -0.0280 -0.0051 0.0226  -0.0050
Horizontal 0.9658 0.0252 -0.0113 0.0022  -0.0041 Lenna 267.6016  268.2734  268.6094  269.1953

Diagonal 0.9506 0.0176 -0.0157 -0.0081 -0.0077 Baboon 116.2344 1175859 117.9062 128.9297

Einstein 309.7734  311.2969 312.2500 312.6406

Baboon

Vertical 0.9852 -0.0280 -0.0051 0.0226 -0.0050
Horizontal  0.9658 0.0252  -0.0113 0.0022  -0.0041
Diagonal 0.9506 0.0176 -0.0157 -0.0081 -0.0077
Einstein the value of pixels show more effectiveness of encryptien al
Vertical 0.9817 0.0091 -0.0245 -0.0164 -0.0001 gorithm and thus better quality. The encryption quality-rep
Horizontal ~ 0.9797  0.0165  -0.0095 0.0085  0.0050  resents the average number of changes to each gray level
Diagonal ~ 0.9647 0.0136 0.0124 0.0038  0.0035 according to [32] and can be expressed as:

Table 5 Correlation coefficients of two adjacent pixels.

_ 3% HL(C) - HL(P)| 15

Q= oeg , (15)

Table 6 Entropy for plain image and cipher image wkhb-=1,2,3 4. whereL is the gray levels of the imageld, (C) and H|_(|5)
Entropy Plain k=1 k=2 k=3 k=4 are the numbers of repetition from each gray value in the
image original and the encrypted image, respectively. The result

Lenna 78059 7.9988 7.9988 7.9989 7.9989 of this test are shown in table 7, where it is possible to see
that if thek number of a multi-modal map increases then the
encryption quality of the cipher image increases too.

Baboon 7.7091 7.9970 7.9970 7.9971 7.9973
Einstein  7.4913 7.9989 7.9989 7.9989 7.9989

5.5 Chosen-plain text attack

the entropy is expressed in bits, for a cipher gray-scale im- ) _ .
age with 256 levels, the entropy should ideallyHbs) = 8. One common weakness in many ciphers is when the algo-

The entropies for plain images and cipher images usin .

chm encrypts an original image twice using the same set of
variousk-modal maps are calculated and listed in table 6. eys the cipher images are always the same, this provides

According to the Table 6 is possible to see that when théhe, opportunity to br.eal.< the algorithm using the chosen-
number of modals increase so does the entropy of each cRlain text attack. In this kind of attack.somewh_at the attack
cr ; has temporary access to the encryption algorithm and he can
ypted image. . . : )
choose the image to encrypt and obtain their corresponding
cipher image then try to find the equivalent key stream im-
5.4 Encryption Quality age.
Seeking to solve this problem we add one column of ran-
The encryption creates large changes in the value of pixelslom values (noise) in the original image, with this each time
these pixels should be completely different from the origi-we encrypt the image, these values will be different, even if
nal image, these changes are irregular and more changesvie use the same set of keys so we obtain a different cipher
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Table 8 NPCR and UACI from an image encryption twice. 6 Conclusion

Proposed scheme In this work we present a Cryptographically Secure Pseudo-

NPCR 99 random Bit Generator based on discrete dynamical system
UACI  34.8353 of 1-Dimension and multi-modal d-modal map, we con-
struct the key stream by the combinatiorkafequences and
evaluate it with the statistical suite of test from the NIST,

image each time. We encrypt an image twice using the samue obtained satisfactqry results Which.show that this se-
set of keys and the results are shown in Figure 10: a)PIainquenceS possess statistical properUesillke' ruly ra”?'*?m s
image of Lenna, b) encrypted image in the first tiie c) quences and show that tkemodal map is highly sensitive

the encrypted image second time with the same set of ke)}BQ_ |nG|t|aI cond|t||_okns. Fkurthermore wzushe the:sgudo—rm}do
C,, d) the pixel differencéC; — C;,| and the histogram for It Generator like a key stream and show the impact of us-

each image, respectively. This ensures that the proposed a9 mulu-modal maps which are reflected |_n the encryptlon
gorithm is able to resist the chosen-plaintext attack. quality. Finally GgRs e e =S RN NN age
with which the encryption process becomes probabilistic,

with this we achieve that encrypting an image twice under
the same set of keys we obtain different cipher images each
time while the process of decryption remains deterministic

In the differential attack the opponent typically may penio However if the encryption function is modified as follows:
a slight change modifying only one pixel of the original im- G = R ©Zi ©C-1©C-1 = R® Z, if we consider the as-
age to observe the changes on the corresponding cipher ifdmption that all values-d# are zero, is possible retrieve
age, trying to find a relationship between the plain imagéhe image with the exception of thi&i, 1) column, in addi-
and the cipher image. If one minor change in the plain imag&on this requires extra computation and the assumptian tha
produces a significant change in the cipher image then thi§ = O for all values ofi. We are currently working to build
attack becomes very inefficient and practically useless. A& Probabilistic scheme encryption in which this point would
we can see in the previous section each time we encrypt tH infeasible.

image the result is different then without modifying thegori
inal image the result between the cipher images is different
with this the differential attack is unfeasible but we aréeab Acknowledgments

to .measu_re how different are the |mag_es yvhen we encry . Garcia-Martinez is doctoral fellow of the CONACYT in
twice. This can be measured by two criteria, the number o

. o . the Graduate Program on control and dynamical systems at
pixel change rate (NPCR) and the unified average Ch"’mgmlgMAp—lPICYT. E.%:ampos—Cant()n acknigwledges t%e CONA-

intensity (UACI). . . .
The NPCR measures the number of different pixels bngT financial support through project No. 181002.

tween two cipher images.

5.6 Differential attack
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Fig. 10 (a)Plain-Image of Lenna, (b) Encrypted Image of Lenna fst fimeCy, (b) Encrypted Image of Lenna for second ti@g (d) the pixel

difference|C; — Cy| and its histogram for each image, respectively.
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