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Abstract The tangle model is a useful topological tool in the study of the mech-
anism of action of certain enzymes on DNA molecules. In particular, the model
proves helpful to determine the topological structure of the DNA molecules result-
ing from those reactions. Roughly speaking, the tangle model consists in solving
a system of three equations in which the unknowns on the left-hand-side of each
equation are tangles, whereas the known data on the right-hand sides are 2-bridge
knots in many cases. Initially [6], the model was successfully applied to study the
Tn3 enzyme acting on rational 2-tangles, for which a complete classification exists
[4]. By contrast, the Gin enzyme is known [8] to act on 3-tangles and, since no
complete classification is known for general 3-tangles, the tangle model was used to
study the mechanism of action of Gin under the assumption [2] that the 3-tangles
involved were in fact 3-braids, a particular class of 3-tangles. Some questions de-
rived from the application of the tangle model are of mathematical interest in
themselves, e.g., given a system of equations that admits a solution, what kinds
of 2-bridge knots may appear on the right-hand sides of the equations so that a
(nonempty) solution is guaranteed to exist? In this paper we address and solve
this question by showing that, while a system of two equations always admits a
solution for any selection of 2-bridge knots, adding a third equation reduces the
number of possible knots to only 6, 9 or 18, the exact value depending on the
relationships satisfied by the knots in the first two equations. If a fourth equation
is adjoined, however, exactly one 2-bridge knot may appear in its the right-hand
side for the system to admit a solution. Furthermore, a new simple method that
exploits an unexpected cyclic behavior of the solutions is presented and used to
construct the proofs. The method relies on the continued fractions associated with
2-bridge knots and their behavior under the concatenation of 3-braids.
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1 Introduction

In nature there exist enzymes, such as DNA recombinases, which act on specific
sites and manipulate the structure of a molecule after a recombination event.
Starting in the decade of the 1990s, the method now known as the tangle model has
been used to predict the structure of the substrate molecule after a certain number
of iterated recombinations. This prediction is usually referred to as studying the

mechanism of action of the given enzyme. In the application of the tangle model, an
intermediate step consists in solving systems of equations with left-hand-sides that
involve tangles as unknowns in the left-hand-side of each equation and 2-bridge
knots on the opposite sides, also known as “products.”

The model, introduced by Ernst and Sumners [6,12], was applied to model the
site-specific recombinase Tn3 resolvase which is an enzyme that acts on 2-tangles.
In [1], the tangle model is considered for a generic member of the Integrase family,
using the protein Flp which acts on 2-string tangles as an illustration. Using Dehn
Surgery techniques a class of solutions is found. Some enzymes, however, such as
Gin, Hin integrase recombinases and the bacteriophage Mu virus, act on 3-tangles
instead of 2-tangles. In [13], Vazquez and Sumners gave a solution to the action of
the Gin enzyme with inversely and directly repeated sites by assuming that one
of the strings involved remains completely fixed and hence that the presence of
this string can be neglected, thereby obtaining a 2-tangle. On the other hand, the
case of the Gin enzyme acting on 3-braids was solved in [2], where the family of
all of the 2-bridge knots than can be obtained as products is detailed as well. In
[5], the Mu protein-DNA complex is analyzed and, after a simplification by using
2-string tangle analysis, a system of four 3-tangle equations is obtained which is
then solved using wagon wheel graphs and tetrahedral graphs, ultimately reaching
the conclusion that there is only one biologically reasonable solution for the shape
of DNA bound by Mu transposase.

In each of the aforementioned analyses, the products involved come from exper-
imental data involving the action of enzymes on molecules. Hence it is natural to
expect the corresponding problems to admit solutions. An additional issue to deal
with, however, is the complexity of the methods applied to obtain such solutions
from a mathematical standpoint. Building on the theory and results developed
in [3] and [7], in the present work we exploit the properties of standard 3-braid
diagrams and apply the main ideas of the tangle model in order to solve arbi-
trary systems of equations. Among the contributions in this paper we show that,
whereas a system of two equations with 3-braids as unknowns and arbitrarily cho-
sen 2-bridge knots as products always admits a solution, when one considers a
third equation only a few 2-bridge knots exist which preserve the solvability of the
system. Moreover, if a fourth equation is considered, the choice of possible 2-bridge
knots as products reduces to exactly one. These conclusions are reached by apply-
ing a very simple method that uses information derived from the 2-bridge knots in
the first two equations and by taking advantage of the—rather surprising—cyclic
nature of the braid solutions of a single equation. At this point, it is important
to mention that all knots and tangles considered throughout are assumed to be
unoriented.

This paper is organized as follows. In Section 2 we recall some basic facts about
tangles and about 3-braids and their standard diagrams. Also recalled in the same
section is the existing connection between 3-braids and continued fractions via
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an invariant F . In Section 3 we point out the relationship between 3-braids and
2-bridge knots based on the notion of 2-bridge knot type and the way it relates
to the first component of the invariant F . In Section 4, systems of equations are
analyzed by, firstly, finding all of the 3-braid solutions to a single equation and,
secondly, extending the analysis to two or more equations. Finally, in Section 5 we
conclude with some remarks regarding the relevance of our method and results.

2 Preliminary notions

An n-tangle is a pair (B3, T ), where B3 denotes the 3-ball and T is a set of n
disjoint, piecewise linear curves that intersect nontrivially with B3 [10]. Examples
of n-tangles are shown in Figure 1 for n =2 and n = 3, respectively.

(a) (b)

Fig. 1 Examples of 2- and 3-tangles, respectively.

An n-braid is a set of n strings attached to vertical bars at their left and right
endpoints (cf. Figure 3), with the property that each string heads rightwards at
every point as it is traversed from left to right. It is easy to prove that n-braids
are particular cases of n-tangles.

As in the study of general knot theory, tangles are studied via their two dimen-
sional diagrams. Given two n-tangles A and B, their sum A+ B is defined as the
n-tangle obtained by concatenation of A to the left of B, as shown in Figure 2. The
restriction of the concatenation operation to the set of n-braids endows the latter
with the structure of a noncommutative group with identity given by . The
inverse of A under this operation is denoted by −A and, therefore, the meaning of
kA is clear for any k ∈ Z.

A pair of diagrams D and D′ are said to be related by Reidemeister moves
if D may be transformed into D′ using only a finite number of the Reidemeister
moves. The Reidemeister moves define an equivalence relation, hence one writes,
by mild abuse of notation, D = D′ when the two diagrams are related. One of the
key problems in tangle theory is their classification up to this equivalence.

Since the knot-theoretical objects of main interest in this paper are 3-braids,
let us now recall some basic notation taken from [2]. Given a 3-braid B, there
exists a finite sequence of integers a1, . . . , an, such that B admits a diagram of the
form T (a1, . . . , an), where T (a1, . . . , an) indicates |a1| crossings of the two upper-
most strands, followed by |a2| crossings of the two lowermost strands, and then |a3|
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A B A B

(a) (b)

Fig. 2 The concatenation of two 3-braid diagrams. (a) Two 3-braids A and B; and (b) The
diagram of concatenation A + B.

crossings of the two uppermost strands, and so on, with the following sign conven-
tion. For odd i, positive values of the ai indicate that the uppermost strand passes
over the middle strand, whereas for even i, a positive value of ai indicates that
the lowermost strand passes over the middle strand. This notation is illustrated in
Figure 3, where examples of 3-braid diagrams are given.

(a) (b) (c)

Fig. 3 Examples of 3-braid diagrams and the notation employed in this work: (a) T (2, 3,−4);
(b) T (1,−1, 1); and (c) T (−1, 1,−1).

In the sequel we define the diagrams E = T (1,−1, 1) and −E = T (−1, 1,−1), which
will play a role in the ensuing developments. Note that

E = T (1,−1, 1) = T (0,−1, 1,−1) and −E = T (−1, 1,−1) = T (0, 1,−1, 1),

which represent, respectively, the two braids on the right of Figure 3. It is clear
that a diagram T (a1, . . . , an) equals the sum of diagrams T (a1) + T (0, a2) + · · ·+
T (0, an), if n is even, or T (a1) + T (0, a2) + · · · + T (an), if n is odd. Conse-
quently, the inverse of a diagram T (a1, . . . , an) under concatenation is given by
T (0,−an,−an−1, . . . ,−a1), if n is even, and by T (−an,−an−1, ...,−a1), if n is odd.

An n-braid is said to be alternating if, and only if, it admits an alternating
diagram, that is, a diagram T (a1, ..., an) such that ai ≥ 0 for all i = 1, 2, ..., n or
ai ≤ 0 for all i = 1, 2, ..., n. As an example, the three braid diagrams in Figure 3 are
not alternating. Nonalternating diagrams can be rearranged to yield equivalent
diagrams having an alternating part and a nonalternating portion composed only
of a finite number of summands ±E, as illustrated by the following example.

Example 1

T (2, 2,−3) = T (2, 2) + E + T (0, 3)− E
= T (2, 2) + T (0,−1, 1,−1) + T (0, 3)− E
= T (2, 1, 1, 2)− E .

This example conveys the main idea behind the proof of the following result.
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Theorem 1 Consider T (a1, ..., ak, ..., an) where k, n ∈ N, k < n and k is odd (the

case for k even is dealt with similarly). If a1, ..., ak > 0 and ak+1, ..., an < 0, then

T (a1, ..., an) = T (a1, a2, ..., ak−1, ak − 1, 1,−ak+1 − 1,−ak+2, ...,−an) + E .

If, however, a1, ..., ak < 0 and ak+1, ..., an > 0, then

T (a1, ..., an) = T (a1, a2, ..., ak−1, ak + 1,−1,−ak+1 + 1,−ak+2, ...,−an)−E .

Proof. Suppose that a1, ..., ak > 0 and ak+1, ..., an < 0. Since k is assumed to be
odd, one has (cf. Figure 4):

T (a1, ..., an) = T (a1, ..., ak)− E + T (−ak+1, ...,−an) + E
= T (a1, ..., ak) + T (−1, 1,−1) + T (−ak+1, ...,−an) + E
= T (a1, a2, ..., ak−1, ak − 1, 1,−ak+1 − 1,−ak+2, ...,−an) + E .

The remaining cases are proven in an analogous way. ut
PSfrag replacements

a1

a1

ak

ak
ak+1

an

−ak+1

−an

E−E
T (a1, . . . , ak, ak+1, . . . , an)

T (a1, . . . , ak − 1, 1,−1 − ak+1, . . . ,−an) + E

Fig. 4 The rightmost portion of the diagram (boxes ak+1 to an) is twisted by keeping the
strand ends fixed, so these boxes swap their upper and lower positions and therefore change
their signs. While the braid remains unaltered, an effect of the twist (also called a “flype”) is
that −E and E summands are inserted at the indicated positions. Although the figure illustrates
the case n and k odd, the remaining three cases are analogous.

Using the above result along with an induction argument one readily proves
the following.

Lemma 1 [2] For every 3-braid T there exists a unique alternating diagram A and a

unique integer k such that T = A+ kE.

If T is a 3-braid, the unique diagram A+ kE for T , whose existence is guaranteed
by the previous result, is called the standard diagram of T .

Continued fractions are another key ingredient for the solution of equations
with 3-braids. Given elements a1, ..., an ∈ Z, the associated continued fraction is
the element [a1, . . . , an] ∈ Q with numerator N([a1, . . . , an]) and denominator

D([a1, . . . , an]) defined inductively by:

N([a1]) = a1, D([a1]) = 1, N([a1, a2]) = 1 + a1a2, D([a1, a2]) = a2,

and, for n > 2:

N([a1, . . . , an]) = anN([a1, . . . , an−1]) +N([a1, . . . , an−2])

D([a1, . . . , an]) = anD([a1, . . . , an−1]) +D([a1, . . . , an−2]).
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From the above definitions one easily proves that

[a1, a2, ..., an] = a1 +
1

a2 + 1

. . .+ 1
an

=
N([a1, ..., an])

D([a1, ..., an])
.

In order to simplify some expressions occurring in the manipulation of continued

fractions, for any nonzero integer a we define
a

0
= ∞, ∞ + a = ∞ = ∞ · a,

a

∞ = 0. Note that [a1, a2, . . . , an] = [a1, a2, . . . , an − 1, 1] = [a1, a2, . . . , an + 1,−1].

In particular, if the entries of [a1, a2, . . . , an] do not alternate signs, that is, if ai ≥ 0
for i = 1, . . . , n, or ai ≤ 0 for i = 1, . . . , n, then exactly one from [a1, a2, . . . , an−1, 1]
or [a1, a2, . . . , an + 1,−1] satisfies the same property, namely, that all of its entries
do not alternate signs.

It was shown in [3] that the Kauffman bracket polynomial 〈T 〉 of a 3-tangle T
may be expressed as

〈T 〉 = α(a)
〈 〉

+ β(a)
〈 〉

+ δ(a)
〈 〉

+ χ(a)
〈 〉

+ ψ(a)
〈 〉

.

Recall that the Kauffman bracket (cf. e.g. [9, Chap. 3]) is a function from
unoriented link diagrams to Laurent polynomials with integer coefficients in an
indeterminate a. It maps a diagram D to 〈D〉 ∈ Z[a, a−1], a polynomial character-
ized by the following three conditions:

–
〈 〉

= 1

–
〈
TD t

〉
= −(a2 + a−2) 〈TD〉

–
〈 〉

= a
〈 〉

+ a−1
〈 〉

Note that if a =
√
i, where i is the complex number such that i2 = −1, then a2 +

a−2 = 0 and, therefore,
〈
TD t

〉
= 0, which simplifies certain computations.

An invariant F̂ (T ), defined in terms of the polynomial components of 〈T 〉, was
introduced in [3] by setting:

F̂ (T )(a) =

(
δ(a)

α(a) + χ(a)
,
α(a) + ψ(a)

β(a)

)
.

In the sequel, we let F (T ) = F̂ (T )(
√
i). In light of the above definitions we have

F (T (n)) =
(
1
i n,∞

)
and F (T (0, n)) =

(
0, 1i

1
n

)
. The following additional results in

terms of the invariant F will prove useful in the sequel.

Theorem 2 [3] Given a1, ..., an ∈ Z, one has

F (T (a1, ..., an)) =

{
(1
i [a1, . . . , an], 1i [a1, . . . , an−1]), for n odd;

(1
i [a1, . . . , an−1], 1i [a1, . . . , an]), for n even.

The following result states that an effect of concatenating a 3-braid with E is that
the components of F get swapped.

Theorem 3 [3] If F (T (a1, ..., an)) = (1
i
α
β ,

1
i
α′

β′ ) then F (T (a1, ..., an)+E) = (1
i
α′

β′ ,
1
i
α
β ).
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3 3-Braid closures and 2-bridge knots

The connection between 3-braids and knots becomes clear when one considers
braid closures. If T is a 3-braid, its A closure, denoted A(T ), is the knot or link
that results after the addition of strands external to T , as illustrated in Figure 5.

PSfrag replacements

a1

a2

a3

an−1

an

A(T (a1, . . . , an))

Fig. 5 The A closure of the 3-braid diagram T (a1, a2, ..., an) is the knot or link that results
from the addition of external strands (outside the dotted box) as indicated.

According to [10, Chap. 9], knots thus obtained are called 2-bridge knots.
The following theorem, derived from results in [3] and [10], shows that a close
relationship exists between 2-bridge knots and A closures of 3-braids.

Theorem 4 Every 2-bridge knot (or link) is the A closure of a 3-braid, and the A

closure of any 3-braid is a 2-bridge knot (or link).

Let T be a 2-bridge knot that admits a regular diagram A(T (a1, a2, . . . , an)),
as shown in Figure 5. Then T is said to be a 2-bridge knot of type b(α, β) if
α
−β = [a1, a2, . . . , an], where α, β ∈ Z are relatively prime and 0 < |β| < α. In
the remainder of this paper we write Kb(α,β) to denote a 2-bridge knot of type
b(α, β). As thoroughly described in [10, Chap. 9], given a knot type b(α, β), a
specific diagram of the knot Kb(α,β) may be constructed in a canonical way. Let
us also remark that, by symmetry of the A closure, the diagrams A(T (1, 2, 3)) and
A(T (3, 2, 1)) both represent the same 2-bridge knot, whereas their knot types are
b(10,−7) and b(10,−3), respectively. As a consequence, Kb(10,−7) = Kb(10,−3). This
simple example illustrates the fact that a single 2-bridge knot may be represented
by one or more knot types. What is more, the following strong result establishes
criteria to assess the equivalence of 2-bridge knots in terms of their knot types. In
the statement of the theorem, as well as in the ensuing exposition, one shall write
a ≡
α
b as a shorthand notation for a = b mod α, with a, b ∈ Z and α 6= 0.

Theorem 5 [11] Given knot types b(α, β) and b(α′, β′), one has Kb(α,β) = Kb(α′,β′)

if, and only if, any of the following two conditions hold: (1) α = α′ and β ≡
α
β′; or (2)

α = α′ and ββ′ ≡
α

1.

The following useful corollary speficies, in terms of α and β, the number of knot
types associated with a 2-bridge knot of the form Kb(α,β). Its proof, moreover,
explicitly singles out the corresponding knot types.

Corollary 1 Any 2-bridge knot admits exactly two or exactly four knot types. More

specifically, if K is of type b(α, β), then K admits exactly two knot types if β2 ≡
α

1 and

exactly four knot types if β2 6≡
α

1.
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Proof. Suppose that K is of knot type b(α, β), with α and β relatively prime and
0 < |β| < α. Using condition (1) of Theorem 5, we seek β′, with β′ 6= β, such that
β ≡
α
β′. If β > 0, then β′ = β − α and, in that case, two types of equivalent knots

are b(α, β) and b(α, β − α). If β < 0, then two types of equivalent knots are b(α, β)
and b(α, β +α). Thus, if Condition (1) of Theorem 5 holds, K admits at least two
associated knot types. Moreover, since α and β are relatively prime, there exists
a unique β′ such that ββ′ ≡

α
1, hence either β′ = β or β′ 6= β. If β′ = β we have

β2 ≡
α

1 and thus, in that case, condition (2) does not add any new knot type to

the two already mentioned. If, on the other hand, β′ 6= β, then β2 6≡
α

1 and, again

by condition (1), it follows that, besides the two types already singled out, b(α, β′)
is a knot type associated with K . Applying condition (1), the latter type yields
b(α, β′ − α) if β′ > 0 or b(α, β′ + α) if β′ < 0, so in this case one ends up with
exactly four knot types. ut

The following result, which extends Theorem 4, allows one to determine the
knot type corresponding to the closure of a 3-braid via the invariant F .

Theorem 6 [3] Let T be a 3-braid. If F (T )=
(

1
i
α1

β1
, 1i

α2

β2

)
, with |α1

β1
| > 1, then A(T )

=Kb(α1,−β1).

A direct consequence from this result and Theorem 2 is that, for n odd and a1 6= 0,

A(T (a1, a2, ..., an)) = Kb(N([a1,a2,...,an]),−D([a1,a2,...,an])).

Remark 1 One easily checks, by simple diagram inspection, the following equalities:

A(T (0, a2, . . . , an)) = A(T (a3, . . . , an))

A(T (a1, . . . , an) + 2E) = A(T (a1, . . . , an))

A(T (a1, . . . , an)) = A(T (a1, . . . , an−1)) if n is even,

and

A(T (a1, . . . , an)) =

{
A(T (an, . . . , a1)), if n is odd;
A(T (0, an, . . . , a1)), if n is even.

In order to simplify some expressions in the ensuing development, it is convenient
to define two functions on the set of 3-braids. First, we set

h(T (a1, . . . , an)) =

{
T (an, . . . , a1), if n is odd;
T (0, an, . . . , a1), if n is even,

which is readily shown to be a mapping from the set of 3-braids onto itself. Intu-
itively, h(T ) is the result of flipping the braid T horizontally (i.e., around a vertical
axis), and hence it is clear that, for any 3-braid T , A(h(T )) = A(T ). To define the
value of the second function on a 3-braid T , we consider its representation in
standard form as T (a1, . . . , an) + kE and set, for k even

c(T (a1, . . . , an) + kE) =

{
T (a1, . . . , an − 1, 1) + E , if ai ≥ 0 for all i;
T (a1, . . . , an + 1,−1) + E , if ai ≤ 0 for all i,
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and, for k odd:

c(T (a1, . . . , an) + kE) =

{
T (a1, . . . , an − 1, 1), if ai ≥ 0 for all i;
T (a1, . . . , an + 1,−1), if ai ≤ 0 for all i.

Similarly to h, c thus defined is a function from the set of 3-braids into itself,
although c is not surjective since, for instance, no braid of the form T (1) + kE,
with k > 1, is in the image of c.

Lemma 2 Let T be a 3-braid and let T (a1, . . . , an)+kE be its representation in stan-

dard form. If n is odd and k is even, or n is even and k is odd, then A(T ) = A(c(T )).

Proof. Let us assume that n is odd and k is even. (The remaining case is proven
in a similar manner.) In this case, Theorems 2 and 3 imply that

F (T ) =

(
1

i
[a1, . . . , an],

1

i
[a1, . . . , an−1]

)
.

On the other hand, by virtue of Theorem 2 one has

F (T (a1, ..., an − 1, 1)) =

(
1

i
[a1, . . . , an − 1],

1

i
[a1, . . . , an − 1, 1]

)
.

Hence, applying Theorem 3 yields

F (c(T )) =

(
1

i
[a1, . . . , an − 1, 1],

1

i
[a1, . . . , an − 1]

)
=

(
1

i
[a1, . . . , an],

1

i
[a1, . . . , an − 1]

)
.

In view of Theorem 6, the knot type of A(T ) is b(N([a1, . . . , an]),−D([a1, . . . , an])),
which in turn equals the knot type of A(c(T )). Therefore, the latter two knots are
equal, as was to be shown. ut

4 Solving a system of equations

4.1 Solving a single equation

Given a 2-bridge knot Kb(α,β), our first aim in this section will be to study the set
of solutions to the equation

A(X ) = Kb(α,β), (1)

that is, to explicitly determine the set of 3-braids X whose A closures equal the 2-
bridge knot Kb(α,β). Of course, Theorem 4 already states that the equation admits
a solution irrespective of the choice of knot type b(α, β), so the next step would
consist in finding those solutions. As a step in this direction, the following theorem
outlines a procedure to determine solutions to Equation 1 from the given of a
continued fraction expansion associated with the knot type b(α, β). According to
Lemma 2 only the cases with or without E are listed.
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Theorem 7 Given a 2-bridge knot Kb(α,β), the only 3-braids with −αβ = [a1, ..., an]

and n odd, which satisfy the equation A(X ) = Kb(α,β) are: (a) If ai > 0 for all i,

X1 = T (a1, ..., an)

X2 = T (a1, ..., an − 1, 1) + E
X3 = T (−1,−(an − 1), ...,−a2,−a1) + E
X4 = T (−1,−(an − 1), ...,−a2,−(a1 − 1),−1)

X5 = T (−1,−(a1 − 1),−a2, ...,−(an − 1),−1)

X6 = T (−1,−(a1 − 1),−a2, ...,−an) + E
X7 = T (an, ..., a1 − 1, 1) + E
X8 = T (an, ..., a1);

and (b) If ai < 0 for all i,

X1 = T (a1, ..., an)

X2 = T (a1, ..., an + 1,−1) + E
X3 = T (1,−(an + 1), ...,−a2,−a1) + E
X4 = T (1,−(an + 1), ...,−a2,−(a1 + 1), 1)

X5 = T (1,−(a1 + 1),−a2, ...,−(an + 1), 1)

X6 = T (1,−(a1 + 1),−a2, ...,−an) + E
X7 = T (an, ..., a1 + 1,−1) + E
X8 = T (an, ..., a1).

Proof. From Theorem 6 one has Kb(α,β) = A(T (a1, ..., an)) = A(X1), so the first
equality holds. Now, using Lemma 2 and Remark 1 repeatedly one deduces that

A(X1) = A(c(X1)) = A(X2) = A(h(X2)) = A(X3)

= A(c(X3)) = A(X4) = A(h(X4)) = A(X5)

and

A(X5) = A(c(X5)) = A(X6) = A(h(X6)) = A(X7)

= A(c(X7)) = A(X8) = A(h(X8)) = A(X1).

ut
The following example shows an application of Theorem 7 to solve a single

equation with one unknown.

Example 2 Consider the 2-bridge knot Kb(7,−3) and note that 7
3 = [2, 2, 1]. Then

the only 3-braids X that satisfy the equation A(X ) = Kb(7,−3) are the following:

X1 = T (2, 2, 1), X5 = T (−1,−1,−3),
X2 = T (2, 3) + E , X6 = T (−1,−1,−2,−1) + E ,
X3 = T (−3,−2) + E , X7 = T (1, 2, 1, 1) + E ,
X4 = T (−3,−1,−1), X8 = T (1, 2, 2).
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Remark 2 Computing the invariant F of the 3-braids involved in the statement of
Theorem 7 (in the case ai > 0 for all i) yields
F (X1) = (1

i [a1, ..., an], 1i [a1, ..., an−1])
F (X2) = (1

i [a1, ..., an − 1, 1], 1i [a1, ..., an − 1]) = (1
i [a1, ..., an], 1i [a1, ..., an − 1])

F (X3) = (1
i [−1,−(an − 1), ...,−a2,−a1], 1i [−1,−(an − 1), ...,−a2])

F (X4) = (1
i [−1,−(an−1), ...,−a2,−(a1−1),−1], 1i [−1,−(an−1), ...,−a2,−(a1−1)])

F (X5) = (1
i [−1,−(a1−1)−a2, , ...,−(an−1),−1)], 1i [−1,−(a1−1)−a2, , ...,−(an−1)])

F (X6) = (1
i [−1,−(a1 − 1),−a2, ...,−(an)], 1i [−1,−(a1 − 1),−a2, ...,−(an−1)])

F (X7) = (1
i [(an, ..., a1 − 1, 1], 1i [(an, ..., a1 − 1)])

F (X8) = (1
i [an, ..., a1], 1i [an, ..., a2]).

Recall that the A closures of the X1, . . . ,X8 are all equal to the same 2-bridge
knot K, so let us now show that K admits exactly 4 or exactly 2 knot types. Us-
ing the properties of continued fractions mentioned above, one sees that for each
i ∈ {1, . . . , 4}, the first component of F (X2i) coincides with the first component of
F (X2i−1). By Theorem 6, it follows that the knot types of the closures A(X2i) and
A(X2i−1) are equal as well, hence there are at most four different knot types in-
volved. Moreover, note that if (a1, . . . , an) 6= (an, . . . , a1) (i.e., if the finite sequence
of the ai is not palindromic), then the continued fraction defined by the first com-
ponent of F (X2i) differs from the continued fraction defined by the first component
of F (X2j) whenever i 6= j, so in this case one has exactly four different knot types.
By contrast, if (a1, . . . , an) = (an, . . . , a1) then X1 = X8, X2 = X7, X3 = X6 and
X4 = X5. Therefore, since the first components of F (X1), F (X2), F (X7) and F (X8)
are all equal, and the analogous situation holds for F (X3), F (X4), F (X5) and
F (X6), in this case the number of different knot types reduces to exactly two.

The 3-braid solutions to the equation in the statement of Theorem 7 were
found using a particular choice of α and β. Nevertheless, as mentioned in the
previous paragraphs, several knot types are associated to a given 2-bridge knot, so
one may naturally wonder whether the 3-braids obtained with a different choice
α′ and β′ are the same. Let us now show that this is indeed the case. According to
Theorem 5, if a 3-braid T satisfies A(T ) = Kb(α,β), then one has A(T ) = Kb(α′,β′)

whenever (1) α = α′ and β ≡
α
β′, or (2) α = α′ and ββ′ ≡

α
1. However, according to

Corollary 1, all these other knot types for the same 2-bridge knot may amount to at
most 4. Thus, the argument in remark 2 shows that there exists i ∈ {1, . . . , 8} such
that A(Xi) = Kb(α′,β′) or, in other words, if any 3-braid X is a solution of equation
(1), then its A closure must be equal to one of the knot types associated with the
A closures of X1, . . . ,X8. In light of these observations, in order to study solutions
to (1) one may focus exclusively on the eight 3-braids listed in Theorem 7.

As a simple byproduct of these results we obtain the following corollary, which is
of a more number-theoretic flavor.

Corollary 2 Let α, β ∈ Z be relatively prime and such that 0 < |β| < α. If β2 ≡
α

1,

then there exist integers b1, . . . , bn satisfying α
β = [b1, b2, . . . , bn, . . . , b2, b1].

Proof. In view of Lemma 1, there are exactly two knot types associated with the
2-bridge knot Kb(α,−β). On the other hand, if −αβ = [a1, ..., an] 6= [an, ..., a1], by

Remark 2, the 3-braids Xi, with i = 1, 2, . . . , 8, are all different, satisfy A(Xi) =
Kb(α,−β), and the first components of F (X2i) and F (X2j) are different whenever
i 6= j. Hence, in this case there are exactly four different knot types, a contradiction.
ut
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Note that, whenever β2 ≡
α

1, Corollary 2 implies that the expansion of α
β

is palindromic, i.e., α
β = [b1, b2, . . . , bn, . . . , b2, b1]. Substituting the latter in the

expressions for the X1, . . . ,X8 of Theorem 7, one immediately concludes that, re-
gardless of the sign of the b1, . . . , bn, X4 = X5, X3 = X6, X2 = X7 and X1 = X8,
hence in this case there are only 4 different 3-braid solutions. On the other hand,
if β2 6≡

α
1 then there are 8 different solutions.

4.2 Solving two or more equations

The main aim in this section is to explore the solutions of systems of equations
involving 3-braids and 2-bridge knots. More precisely, suppose one is now given
the system

A(X ) = Kb(α,β), A(Y) = Kb(α′,β′). (2)

As stated above, these systems arise in biological applications involving enzymes
that act repeatedly on a substrate, e.g. DNA molecule. Owing to the model chosen
to represent the enzymatic action, namely a model based on iterated recombina-
tions, the unknown braids in (2) are required to satisfy additional conditions.
Indeed, the original equations are stated in terms of unknown braids S and T :

A(S + T ) = Kb(α,β), A(S + 2T ) = Kb(α′,β′). (3)

Setting X = S + T and Y = S + 2T one retrieves (2), and by simple ma-
nipulations involving concatenation and inverses, one immediately checks that
S = X − Y + X and T = −X + Y. Following the sequence of equations suggested
by the recombination model, one may then consider, more generally, equations
in which the unknowns are S + nT for n ≥ 2, in which case one may always
rewrite them in terms of X and Y as long as one considers the additional equa-
tions S + nT = Y + (n− 2)(−X + Y) for n ≥ 2.

Clearly, any knot types b(α, β) and b(α′, β′) can be used in the above system and
the resulting equations are guaranteed to admit solutions in view of Theorem 4.
What is more, Theorem 7 implies that if β2 ≡

α
1 and β′2 ≡

α′
1, then there exist four

3-braids Xi and four 3-braids Yj satisfying Equation (2); in this case, by taking
all possible combinations of values for i and j, one ends up with 16 systems of
the form Xi = S + T and Yj = S + 2T , which implies in turn that the system of
equations in (3) admits 16 pairs of solutions (S, T ). On the other hand, if exactly
one of β2 6≡

α
1 or β′2 6≡

α′
1 holds, System (3) admits 32 pairs of solutions (S, T ),

whereas if both conditions hold, the number of pairs of solutions reaches 64.
Assuming that one has solved the equations in (3) for S and T , one may again

augment the system to

A(S + T ) = Kb(α,β), A(S + 2T ) = Kb(α′,β′) A(S + 3T ) = Kb(α′′,β′′). (4)

Here, a natural question would be what knot types b(α′′, β′′) may appear on the

right hand side of the third equation so that the resulting system still admits solutions?

The following result answers this question by singling out knot types which still
guarantee solutions of the augmented system in terms of known solutions X and Y,
i.e., without requiring the computation of S and T .
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Theorem 8 Suppose X and Y are solutions to (2). Then, depending on which of the

conditions (C1), (C2) or (C3) hold, there exist exactly 6, 9 or 18 different 2-bridge

knots, respectively, whose types b(α′′, β′′) guarantee that solutions exist for System (4):

(C1) β2 ≡
α

1 ≡
α′
β′2,

(C2) (β2 6≡
α

1 and β′2 ≡
α′

1) or (β2 ≡
α

1 and β′2 6≡
α′

1),

(C3) β2 6≡
α

1 6≡
α′
β′2.

Proof. Only the proof of condition (C1) will be given; the remaining cases are
treated in a similar way. From the knot types b(α, β) and b(α′, β′), and by Corol-
lary 2, one obtains the following continued fraction expansions

α

−β = [a1, a2, ..., an, ..., a2, a1] and
α′

−β′ = [b1, b2, ..., bm, ..., b2, b1].

By Theorem 7, a set of braids Xi and Yj satisfying A(Xi) = Kb(α,β) and A(Yj) =
Kb(α′,β′), for all i, j, may be computed explicitly:

X1 = T (a1, a2, ..., an, ..., a2, a1),
X2 = T (a1, a2, ..., an, ..., a2, a1 − 1, 1) + E ,
X3 = T (−1,−(a1 − 1), ...,−an, ...,−a2,−a1) + E ,
X4 = T (−1,−(a1 − 1), ...,−an, ...,−a2,−(a1 − 1),−1)

Y1 = T (b1, b2, ..., bm, ..., b2, b1),
Y2 = T (b1, b2, ..., bm, ..., b2, b1 − 1, 1) + E ,
Y3 = T (−1,−(b1 − 1), ...,−bm, ...,−b2,−b1) + E ,
Y4 = T (−1,−(b1 − 1), ...,−bm, ...,−b2,−(b1 − 1),−1).

In order to keep the notation compact, in the remainder of the proof we write
T (b1, B, b1 − a1,−A, a1) as shorthand notation for

T (b1, b2, ..., bm, . . . , b2, b1 − a1,−a2, ...,−an, . . . ,−a2,−a1).

From the above expression one gets

X1 = T (a1, A, a1) and Y3 = T (−1, 1− b1,−B,−b1) + E .

On the other hand, as suggested by the discussion in Remark 2, it suffices to con-
sider only these 3-braids in order to study the full set of solutions to each of the
two equations. The next step is the computation, using basic manipulations involv-
ing the operations in the group of 3-braid diagrams, of the sixteen corresponding
combinations of 3-braids related by the equations Zij = Yj −Xi +Yj = Sij + 3Tij ,
with i, j = 1, 2, 3, 4. As a first case, we have the 3-braids

Z11 = T (b1, B, b1 − a1,−A,−a1 + b1, B, b1),
Z22 = T (b1, B, b1 − a1,−A,−a1 + b1, B, b1 − 1, 1) + E ,
Z33 = T (−1, 1− b1,−B,−(b1 + a1), A, a1 − b1,−B,−b1) + E ,
Z44 = T (−1, 1− b1,−B,−b1 + a1, A, a1 − b1,−B, 1− b1,−1).

Now, since by Theorems 2 and 3 the first component of F (Z11) equals the first
component of F (Z22), by Theorem 6 it follows that A(Z11) = A(Z22). Moreover,
from the definition of h it follows that h(Z22) = Z33 and hence, by Remark 1,
one has A(Z22) = A(Z33). Finally, since the first component of F (Z33) is equal
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to the first component of F (Z44), by Theorem 6 it follows that A(Z33) = A(Z44).
Therefore

A(Z11) = A(Z22) = A(Z33) = A(Z44).

In the case of the 3-braids

Z12 = T (b1, B, b1 − 1, 1 + a1, A, a1 − b1,−B, 1− b1,−1) + 2E ,
Z13 = T (−1, 1− b1,−B,−b1 + a1, A, a1 + 1, b1 − 1, B, b1) + 2E ,
Z24 = T (−1, 1− b1,−B,−b1 + a1, A, a1 + 1, b1 − 1, B, b1 − 1, 1)− E .
Z34 = T (−1, 1− b1,−B, 1− b1,−1− a1,−A,−a1 + b1, B, b1 − 1, 1)− E ,

one has h(Z12) = Z13, so it follows, by Remark 1, that A(Z12) = A(Z13). Since, by
Theorems 2 and 3, the first components of F (Z13) and F (Z24) are the same, by
Theorem 6 it follows that A(Z13) = A(Z24). Finally, since h(Z24) = Z34 it follows
that A(Z24) = A(Z34). Hence

A(Z12) = A(Z13) = A(Z24) = A(Z34).

Now, for

Z21 = T (b1, B, b1 + 1, a1 − 1, A, a1 − b1,−B,−b1)− E ,
Z31 = T (b1, B, b1 − a1,−A, 1− a1,−1− b1,−B,−b1)− E ,
Z42 = T (b1, B, b1 − a1,−A, 1− a1,−1− b1,−B, 1− b1,−1) + 2E ,
Z43 = T (−1, 1− b1,−B,−b1 − 1, 1− a1,−A,−a1 + b1, B, b1) + 2E ,

one has h(Z21) = Z31, hence it follows that A(Z21) = A(Z31). Since, by Theo-
rems 2 and 3, the first components of F (Z31) and F (Z42) are equal, then it follows
readily, from Theorem 6, that A(Z31) = A(Z42). As before, we have h(Z42) = Z43,
therefore A(Z42) = A(Z43). Accordingly

A(Z21) = A(Z31) = A(Z42) = A(Z43).

On the other hand, since

Z23 = T (−1, 1− b1,−B, 1− b1, 1− a1,−A,−a1 − 1, 1− b1,−B,−b1) + E ,
Z32 = T (b1, B, b1 − 1, 1 + a1, A, a1 − 1, b1 − 1, B, b1 − 1, 1) + E ,

and given that h(Z23) = Z32, by Remark 1, it follows that

A(Z23) = A(Z32).

Finally, from

Z14 = T (−1, 1− b1,−B, 1− b1,−1− a1,−A,−a1 − 1, 1− b1,−B, 1− b1,−1).
Z41 = T (b1, B, b1 + 1, a1 − 1, A, a1 − 1, 1 + b1, B, b1),

the knots given by A(Z14) and A(Z41) are obtained.
Note that the knots defined by A(Z11), A(Z12), A(Z21), A(Z23), A(Z14) and

A(Z41) are all different, a fact that is easily deduced by analyzing their knot types
together with the first components of F (Z11), F (Z12), F (Z21), F (Z23), F (Z14)
and F (Z41). This analysis shows that the six knots above mentioned do not satisfy
Theorem 5. Hence, it is concluded that there are six different knots determined by
the closures of A(Zij) with i, j ∈ {1, 2, 3, 4}.

The corresponding proofs under the assumptions that Condition (C2) or (C3)

holds are similar and will be omitted for economy of space. In any case, however,
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we detail the sets of different knots in each case, as well as the way they arise
as A closures of the corresponding 3-braids Zij . For the first case of (C2), one
has eight and four 3-braids that solve the equations in (2), respectively: Xi with
i = 1, 2, . . . , 8 and Yj with j = i, 2, 3, 4. There are 32 combinations in this case, and
the respective relations are:

A(Z11) = A(Z22) = A(Z33) = A(Z44) = A(Z54) = A(Z63) = A(Z72) = A(Z81)
A(Z12) = A(Z34) = A(Z74) = A(Z83) A(Z13) = A(Z24) = A(Z64) = A(Z82)
A(Z21) = A(Z43) = A(Z52) = A(Z61) A(Z42) = A(Z31) = A(Z53) = A(Z71)
A(Z14) = A(Z84) A(Z23) = A(Z62)
A(Z41) = A(Z51) A(Z32) = A(Z73).
Again, one shows that the knots A(Zij), for

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (4, 2), (1, 4), (2, 3), (4, 1), (3, 2)},

are all different, so there exist exactly 9 distinct knots. For the second case of
(C2), the relations that arise are:

A(Z11) = A(Z18) = A(Z22) = A(Z27) = A(Z33) = A(Z36) = A(Z44) = A(Z45),
A(Z12) = A(Z16) = A(Z25) = A(Z34), A(Z13) = A(Z17) = A(Z24) = A(Z35),
A(Z21) = A(Z38) = A(Z43) = A(Z46), A(Z42) = A(Z46) = A(Z31) = A(Z28),
A(Z14) = A(Z15), A(Z23) = A(Z37),
A(Z26) = A(Z32), A(Z41) = A(Z48).

For (C3), one has eight solutions for each equation, from which one obtains,
after the required manipulations:

A(Z11) = A(Z22) = A(Z33) = A(Z44) = A(Z58) = A(Z67) = A(Z76) = A(Z85),
A(Z15) = A(Z26) = A(Z37) = A(Z48) = A(Z54) = A(Z63) = A(Z72) = A(Z81),
A(Z16) = A(Z38) = A(Z74) = A(Z83), A(Z17) = A(Z28) = A(Z64) =

A(Z82),
A(Z12) = A(Z34) = A(Z78) = A(Z87), A(Z13) = A(Z24) = A(Z68) =

A(Z86),
A(Z19) = A(Z43) = A(Z56) = A(Z65), A(Z21) = A(Z36) = A(Z61) =

A(Z73),
A(Z25) = A(Z47) = A(Z52) = A(Z59), A(Z31) = A(Z42) = A(Z57) =

A(Z75),
A(Z35) = A(Z46) = A(Z53) = A(Z71),

A(Z14) = A(Z88), A(Z18) = A(Z84), A(Z23) = A(Z66), A(Z27) = A(Z62),
A(Z32) = A(Z77), A(Z41) = A(Z55), A(Z45) = A(Z51).

Which determine 18 different knots. ut

Let us now augment the system of equations (4) by adding a fourth equation

A(W) = Kb(α′′′,β′′′),

and then prove that in this scenario there exists only one 2-bridge knot type
b(α′′′, β′′′) for which the augmented system is solvable.

Theorem 9 Assume that the system A(X ) = Kb(α,β), A(Y) = Kb(α′,β′), A(Z) =
Kb(α′′,β′′) admits a nonempty set of solutions. Then there exists exactly one 2-bridge

knot which guarantees that the system augmented with the fourth equation A(W) =
Kb(α′′′,β′′′) admits a nonempty set of solutions.
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Proof. As mentioned above, the 3-braids W are completely determined by the
first and second equations, namely Wij = Yj + 2(−Xi + Yj). Then we have:

W11 = T (b1, B, b1-a1,-A, b1-a1, B, b1-a1,-A, b1-a1, B, b1),
W12 = T (b1, B, b1-1, 1 + a1, A, a1-b1,-B, 1-b1,-1-a1,-A, b1-a1, B, b1-1, 1) + 3E ,
W13 = T (-1, 1-b1,-B, a1-b1, A, a1 + 1, b1-1, B, b1-a1,-A,-a1-1, 1-b1,-B,-b1) + 3E ,
W14 = T (-1, 1-b1,-B, 1-b1,-1-a1,-A,-a1-1, 1-b1,-B, 1-b1,-1-a1,-A,-a1-1, 1-b1,-B, 1-b1,-1).
W21 = T (b1, B, b1 + 1, a1-1, A, a1-b1,-B,-b1-1, 1-a1,-A, b1-a1, B, b1),
W22 = T (b1, B, b1-a1,-A, b1-a1, B, b1-a1,-A, b1-a1, B, b1-1, 1) + 3E ,
W23 = T (-1, 1-b1,-B, 1-b1, 1-a1,-A,-a1-1, 1-b1,-B,-b1-1, 1-a1,-A,-a1-1, 1-b1,-B,-b1)+3E ,
W24 = T (-1, 1-b1,-B, a1-b1, A, a1 + 1, b1-1, B, b1-a1,-A,-a1-1, 1-b1,-B, 1-b1,-1).
W31 = T (b1, B, b1-a1,-A, 1-a1,-1-b1,-B, a1-b1, A, a1-1, 1 + b1, B, b1),
W32 = T (b1, B, b1-1, 1+a1, A, a1-1, 1+ b1, B, b1-1, 1+a1, A, a1-1, 1+ b1, B, b1-1, 1)+
3E ,
W33 = T (-1, 1-b1,-B, a1-b1, A, a1-b1,-B, a1-b1, A, a1-b1,-B,-b1) + 3E ,
W34 = T (-1, 1-b1,-B, 1-b1,-1-a1,-A, b1-a1, B, b1-1, 1+a1, A, a1-b1,-B, 1-b1,-1).
W41 = T (b1, B, b1 + 1, a1-1, A, a1-1, 1 + b1, B, b1 + 1, a1-1, A, a1-1, 1 + b1, B, b1),
W42 = T (b1, B, b1-a1,-A, 1-a1,-1-b1,-B,-b1 + a1, A, a1-1, 1 + b1, B, b1-1, 1) + 3E ,
W43 = T (-1, 1-b1,-B,-b1-1, 1-a1,-A, b1-a1, B, b1 + 1, a1-1, A, a1-b1,-B,-b1) + 3E ,
W44 = T (-1, 1-b1,-B, a1-b1, A, a1-b1,-B, a1-b1, A, a1-b1,-B, 1-b1,-1).

Surprisingly, in all these cases the exact same relations as those obtained in the
case with three equations hold. In other words, if β2 ≡

α
1 ≡
α′
β′2 then with the same

argument, just replacing Wij instead of Zij for i, j ∈ {1, 2, 3, 4}, it is proven that

A(W11) = A(W22) = A(W33) = A(W44), A(W12) = A(W13) = A(W24) =
A(W34),

A(W21) = A(W42) = A(W43) = A(W31), A(W23) = A(W32), A(W14),
A(W41),

describe six different 2-bridge knots. Therefore, if there is a third equation, it
means that for the third equation one of the six possible different 2-bridge knots
has been chosen, say A(Z11). Hence there are four pairs of solutions (Sii, Tii) for
i = 1, 2, 3, 4. Since for all i the knots A(Wii) are equivalent, the conclusion follows.
The remaining cases are treated similarly. ut

5 Conclusions

The tangle model emerged as a useful tool to explain the mechanism of action of
some enzymes on DNA molecules. From the biological assumptions it turns out
that, in order to explicitly determine such mechanism, some systems of equations
with tangles as unknowns and 2-bridge knots as products need to be solved. In this
case, the equations of the system are provided by experimental data. A natural,
related question is: May arbitrary systems of equations, of the class under consid-
eration but not necessarily arising from experimental data, be solved as well? In
this work, it is assumed that the tangles involved are 3-braids and, under this as-
sumption, it is shown that a system with two equations always admits a solution.
It is also shown that, when one attempts to solve a system of three equations, only
a few 2-bridge knots may appear on the right-hand side of the third equation for
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the system to admit a nonempty set of solutions. Finally, if a system of three equa-
tions admits a nonempty set of solutions, and of a fourth equation is added, then
only one 2-bridge knot may appear on the right-hand side of the fourth equation
for the system to be solvable. Another important contribution in this work is that
the method presented here to compute complete sets of solutions is both novel and
quite simple. In order to apply the method, it suffices to know the knot types of
the first two equations and then to calculate the invariant F of the braids involved.
It is expected that the method may easily be implemented as an algorithm in a
software implementation. Perhaps another fact worth mentioning, which is rather
surprising and certainly deserves further study, is the cyclic nature of the 3-braid
solutions to the one equation problem, a nature which suggests that the set of
solutions is the orbit of one solution under the action of some group on the set of
3-braids.
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