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ABSTRACT
This work evaluates the experimental warming effects on phenology and grain

yield components of wheat in the Yaqui Valley, Sonora, México, using CIRNO

C2008 variety from Triticum durum L., as a model during the cropping cycle of

2016–2017 (December to April). Infrared radiators were deployed to induce

experimental warming by 2 �C above ambient crop canopy temperature, in a

temperature free-air controlled enhancement system. Temperature was controlled

by infrared temperature sensors placed in eight plots which covered a circle of

r = 1.5 m starting five days after germination until harvest. The warming treatment

caused a reduction of phenophases occurrence starting at the stem extension

phenophase. Such phenological responses generated a significant biological

cycle reduction of 14 days. Despite this delay, CIRNO C2008 completed its

biological cycle adequately. However, plant height under the warming treatment

was reduced significantly and differences were particularly observed at the final

phenophases of the vegetative cycle. Plant height correlated negatively with

spikes length, spikes mass, and number of filled grains. Warming also reduced

grain yield in 33%. The warming treatment caused a stress intensity (SI = 1-yield

warming/yield control) of 39.4% and 33.2% in biomass and grain yield,

respectively. The differences in stress intensities between biomass and grain yield

were based on plant height reduction. Grain mass was not affected, demonstrating

the crop capability for remobilization and adequate distribution of elaborated

substances for the spikes under warming conditions.
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INTRODUCTION
The biological cycle of plants is frequently affected by several climatic and edaphic factors

(Chuine & Beaubien, 2001; Ahmed et al., 2017). Reduction of phenophase time generally

produces irreversible effects and involves biochemical and physiological modifications
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directly correlated with yield decrease (Singh et al., 2017). It is common to find

considerable variability in phenophase time among species in response to warming

(Wang et al., 2017), but the magnitude of the effect is not always correlated with yield.

Photosynthetic activity, the most important process in plants, for example, does not

always contribute to yield increase by increasing its rate when stress intensity is higher

than the varietal tolerance (Blum, 2011).

Warming stress is a common abiotic factor generally overlooked by producers

(Siebert et al., 2017); however, high temperatures modify a plant’s hormonal and gene

expression, reducing the phenophase occurrence time with significant yield affectations.

Most phenophases require a certain time for a normal development (Valluru et al., 2017).

Wheat, for example, requires the accumulation of certain amount of heat units (cold

hours) to complete its normal phenology (Zadoks, Chang & Konzak, 1974; Argentel

Martı́nez et al., 2017). The completion of this accumulated heat (physiological time)

involves the appropriate combination of temperature degrees, that determines Tillering

capacity, and its relation with tiller growth (Solanki et al., 2017), which sometimes depletes

yield when its occurrence time is reduced (Asseng et al., 2017).

It is known, in high wheat producing regions, that temperature is a potential threat

for production (IPCC, 2014), as confirmed by parameterized models (Ahmed et al., 2017);

however, the effect of warming on plant physiology is not yet clearly explained in

highly wheat producing regions. Every year, thousands of hectares of crops are

abandoned because plants do not overcome warming stress and cannot, therefore,

express, completely, their genetic productive potential (Trnka et al., 2017;

Gouache et al., 2017).

Temperature increments of around 2 �C have been predicted for several latitudes over

the next 50 years. These areas include the semiarid region of Mexico where wheat is

produced (Garatuza-Payán et al., 1998). Monitoring the phenological and agronomical

variability response of wheat under field conditions, with the use of precise technologies

to verify the temperature increase effect, will allow to explain possible mechanisms

involved in phenological warming response and its relationship with biomass and grain

yield (Dettori, Cesaraccio & Duce, 2017). The present research, which constitutes the first

study in Mexico and Latin America, under field conditions, evaluated the temperature

increase effect, by about 2 �C on crop canopy, in the phenology and grain yield

components of wheat (Triticum durum L.) in the Yaqui Valley, Sonora, Mexico. This

region produces almost 40% of the national wheat production and will potentially be

affected by climate change (Cavazos & Arriaga-Ramı́rez, 2012).

MATERIAL AND METHODS
The experiment was carried out during the 2016–2017 cropping cycle (December to

April) in 16 plots (eight Warming and eight Control) under field conditions, at the

Experimental Technology Transfer Center (CETT-910) of the Instituto Tecnológico de

Sonora (ITSON), located in the Yaqui Valley at: 27�22′0.4″ N and 109�54′50.6″ W
(UTM: 607393.24 m E; 3027508.34 m N).
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Treatments and temperature control
In order to study the wheat response to increased temperature, two treatments of eight

replicated plots (n = 8) were established: T1: increased canopy temperature aimed at 2 �C
with respect to ambient canopy temperature of adjacent plots (Warming treatment);

and T2: at ambient canopy temperature (Control treatment).

The experiment consisted in raising crop canopy temperature by 2 �C, using a

temperature free-air controlled enhancement system. A total of six thermal radiators per

plot (FTE-1000 model, 1,000 W, 240 V, 245 mm long� 60 mmwide, built by Mor Electric

Company Heating Association Inc. Comstock Park, MI, USA), (Kimball, 2015) were

installed on eight equilateral triangular structures of 5.2 m of side. A total of two radiators

were mounted on each side of the triangular structures (Fig. 1) forming a regular hexagon

which effectively raised the temperature by 2 �C on a 3 m diameter circular plot. To

control temperature, infrared temperature sensors (IRTS Apogee Instruments Inc., Logan,

UT, USA) were installed on each plot at an inclination of 45� from the horizontal surface,

to cover an ellipse of 3 m in the major axis at the center of the plot. The IRTS signal

was received in a datalogger (CR1000 Campbell Sci, Inc., Logan, UT, USA), which

sent a voltage signal to an interface (MAI-05V; Avatar Instruments, Lewes, DE, USA) that

translated the voltage signal to milliamps to control a regulator (Dimmer A1P-24-30-S05;

Avatar Instruments, Lewes, DE, USA). This regulator controls the current sent to the

heaters, so that the amount of emitted heat by them increases or decreases as a function of

the temperature difference between the Warming plot and the Control plot, through the

proportional, integrative, and derivative routine described in Kimball (2015). The

electronic system was programmed to keep a constant temperature of 2 �C in the

Warming treatments, above the reference plot temperature. However during the heading

phenophase the system struggled to reach 2 �C between 11:00 and 14:00 h local time,

particularly during windy days, inducing only 1.3–1.4 �C of warming over these periods,

Figure 1 (A) six radiators by structure, (B) eight triangular structures, and (C) infrared sensor.

Source: the authors. Full-size DOI: 10.7717/peerj.5064/fig-1
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thus simulating the temperature increase predicted for this region for the year 2050

according to the IPCC (2014).

Variety used as a model, seeding, and cultural practices
CIRNO C2008 wheat variety is classified as crystalline or hard wheat (T. durum L.). It was

originated from selection in segregating populations of SOOTY-9 / RASCON-37 // CAMAYO

crossbreed, carried out at the International Center for of Maize and Wheat Improvement.

This variety was released for cropping since 2008, being widely used in Mexico and,

particularly, in Sonora. It has a spring growth habit, ideal to be cropped during the autumn–

winter cycle. Under irrigation, the spike appears from 74 to 89 days and physiological

maturity is reached at 122 days. CIRNO C-2008 has an average height of 78 cm with erect

stems. Before maturing, the sheath of the flag leaf and the peduncle of the spike have strong

and visible levels of wax. Grain yield when the variety was released in Sonora reached

5.6 and 6.3 t ha-1 with two and three irrigations, respectively (Figueroa-López et al., 2010).

Seeding was done with a sowing machine (SUB-24) on December 8th, 2016 on a vertisol

soil (Wilding, Smeck & Hall, 1983), with three rows on the furrows and a seeding density

of 170 kg ha-1. Background fertilization was done to a standard of 250 kg ha-1 of urea

+ 100 kg ha-1 of monoammonium phosphate, 11-52-00. During the first irrigation

(January 25, 2017 Growth phenophase), nitrogen fertilizer was applied at a dose of

50 kg ha-1 of urea. In the second irrigation (February 20, 2017, Tillering phenophase)

nitrogen fertilizer was applied at a dose of 50 kg ha-1 of urea. In the third irrigation (March

15, 2017, Heading phenophase) there was no fertilizer application. All irrigations were

applied with an average water depth of 14 cm each (1,400 m3 ha-1) and at an interval of

about 25 days. All irrigations were applied when gravimetric water volume of the soil was at

about 70% measured with a theta probe (Delta-T Devices, Cambridge, UK) following the

recommendations of the local agricultural research service (Figueroa-López et al., 2010).

Pest, diseases, and weed control
Pests, diseases, and weeds were controlled by appropriate chemical applications. During

the growing period the presence of foliage aphid (Schizaphis graminum) was found

and Muralla Max (a.i. Imidacloprid + Betaciflutrin) was applied at a rate of 0.20 L ha-1

on the periphery of the plot to 2–3 m from the border surface. The pesticide was applied,

at Tillering phenophase. Likewise, a slight presence of broadleaf weeds was observed

and they were controlled by manual weeding before applying irrigations.

Phenological response
Phenological response was studied using the Zadoks comparative decimal scale

(Zadoks, Chang & Konzak, 1974), considering a phenophase when more than 50% of

the population showed the related characteristics. The phenophases evaluated were:

Z0: Germination; Z1: Growth, Z2: Tillering, Z3: Stem elongation; Z4: Booting; Z5: Heading,

Z6: Flowering; Z7: Milk development; Z8: Dough development, and Z9: Maturity.

Phenophase occurrence time was evaluated between Warming and Control treatments

by comparing: days at growth (2–3 and 4–7 Leaves); days at tillering; days to the
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appearance of the first node; days to the appearance of the second node; days to booting,

days to the heading; days to flowering; days to grains filling (Milk and Dough grain), and

days to physiological maturity.

Photosynthetic activity
Instantaneous maximum photosynthetic rate (A, mmol CO2 m

-2s-1), was measured

during all evaluated phenophases in leaves well exposed to direct radiation between 11:00

and 13:00 h on sunny days. For this measurement, a portable photosynthesis system

(LI-6400XT; LI-COR, Inc., Lincoln, NE, USA) was used. The three leaves most exposed to

direct radiation (three repetitions per plant), were inserted, by its central part, into the

natural light gas exchange chamber of 3.0 � 2.0 cm, which is coupled to a portable

infrared gas exchange system. All measurements were done with a light intensity over 1,500

mmol m-2 s-1, and with a constant CO2 concentration of 400 mmol mol-1 in the reference

cell, at a constant flux rate of 500 mmol s-1.

Yield components
The agronomic behavior was evaluated according to the following variables:

Plants height (cm) was measured from the base of the stem to the apical end of the

flag leaf on each phenophase, but only the last one, just before harvesting, was used as

yield component. A 3.0-m millimeter tape was used for the measurement. In each

treatment 40 plants were sampled. This variable was evaluated from germination to

maturity and a developing dynamic was shaped as a function of time.

Spikes length (cm) was measured from the base to the terminal grain with a millimeter

ruler of 0.50 m just before harvesting. A total of 40 randomized spikes were taken by

treatment. Spike mass (g) was measured on 30 spikes by treatment, with a balance.

The number of full and vain grains by spike (#) was counted after each panicle was

carefully minced. A total of 25 panicles were used by treatment.

Grain mass (g) on individual grains was measured with a balance taking a total of

90 randomized grains in each repetition for both treatments. In the same way, thousand

grains mass (g) was determined in 10 groups of 1,000 grains by treatment. Total biomass

and grain yield (t ha-1) were determined in both treatments by harvesting three square

meters from each plot for a total of 24 repetitions by treatment.

Stress intensity was determined according to the methodology of Fernández (1993),

using the following formula:

SI ¼ 1� YW

YC

� �

Where YW and YC represent yield average in Warming and Control treatments,

respectively.

Statistical analysis
Theoretical assumptions of normality and homogeneity were verified in the collected data

(Kolmogorov, 1933) and the mean and its standard deviation were determined in both
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treatments. For most evaluated variables, due to the conformation of two single

treatments (Warming and Control), statistical processing was based on a hypothesis test

between two means for independent samples by variable, and differences were established

by means of a theoretical Student’s-t probability distribution for quantitative continuous

variables for significance levels of p < 0.005 and p < 0.001 (Gosset, 1917).

For photosynthesis, phenology (time of occurrence), and plant height variables,

analysis of variance of simple classification based on a linear model of fix effects (Fisher,

1937) were carried out and differences among phenophases were determined by Tukey

post hoc for p < 0.001 (Tukey, 1960). Vain grains at basal and distal part comparison

was done by means of a double classification analysis of variance, based on a linear model

of fix effects. When significant differences in the combination of treatment-spike part

source of variation were detected, they were compared by Tukey post hoc for p < 0.001.

Determination coefficient not adjusted, for treatment and spike part, were determined.

For statistical processing, the STATISTICA professional statistical package, version 8.4

for Windows, was used (StatSoft, Tulsa, OK, USA).

RESULTS
Temperature increase of the crop canopy did not affect the phenophases occurrence,

neither the occurrence time of the initial phenophases of CIRNO C2008 variety, until

the second node appearance during Stem elongation. Starting from Stem elongation,

over the rest of the cropping cycle, there were highly significant differences in

phenology between Warming and Control treatments. The time of occurrence in the

Warming treatment was significative lower than the Control. These reductions of

phenophase occurrence time were maintained until grain ripening. The greatest

differences in the phenophase occurrence time were found during anthesis (10 days)

and grain filling (12 days). Such variations generated a difference of 14 days for

harvesting. Nevertheless, the studied variety, in both treatments, complied with all

phenophases occurrence as describe Zadoks’s decimal comparison scale (Zadoks,

Chang & Konzak, 1974) (Fig. 2).

Yield components
The majority of yield components showed significant differences between Warming

and Control treatments, except for grain mass (Table 1). The spike length was one of

the most affected variables by warming effect, with a negative and significant

contribution to yield decrease (r = -0.74, p = 0.003). The decrease in the number of

full grains per panicle was significative, and its contribution to yield was negative and

highly significant (r = -0.92, p = 0.001). The reduction of full grains number per spike had

a great effect on spikes mass and on grain yield and this is attributed as the main cause of

yield decrease (r = -0.96, p = 0.001). On the other hand, vain grains increased in the

warming treatment but its contribution to yield decrease was not significant (r = -0.38,
p = 0.29).

Warming explained 43% of the variability observed in the number of vain grains

per spike part, in contrast spike part only contributed with 32% to the total variability of
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vain grains number (Fig. 3). These results show that warming causes an increase in the

number of vain grains at the distal spikelets in wheat.

In contrast to other yield components, grain mass (evaluated as 1,000 grains mass)

did not vary statistically between the treatments. It neither showed any correlation with

yield variation (Table 1. r = -0.01; p = 0.06).

Photosynthesis
The photosynthetic activity did not show significant differences between the Warming and

Control treatments in the initial growing phenophases although it was increasing during the

growth phenophases. From Tillering to Heading phenophases, a significant increase of

Table 1 Grain yield components comparison in established treatments.

Treatments Grain yield components

SL (cm) SM (g) FG/S VG/S MTG (g)

Warming 6.41 ± 0.01 4.43 ± 0.18 43.88 ± 0.5 2.87 ± 0.5 53.1 ± 1.4

Control 7.61 ± 0.02** 5.95 ± 0.07** 51 ± 0.3** 1.87 ± 0.3** 53.2 ± 0.7

p 0.003 0.0001 0.0002 0.001 0.132

Notes:
SL, spike length, (cm); SM, spike mass; FG/S, full grains per spike; VG/S, vain grains by spike; MTG, mass of 1,000 grains (g).
** Significance at p < 0.001.

Figure 2 Phenophases occurrence time in both Warming and Control Treatments. Bars for each

phenophase represent the standard deviation from the mean.

Full-size DOI: 10.7717/peerj.5064/fig-2
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photosynthetic activity was found under the Warming treatment (p < 0.0001) (Fig. 4). The

maximum photosynthesis value was obtained during Heading phenophase. The Control

treatment showed uniform values in all phenophases, from Tillering to Flowering, and a

significative reduction during grain filling (24.87 vs 22.11 mmol CO2 m
-2 s-1, respectively,

p = 0.0001). This is a normal process when leaves senescence is starting, and was observed in

both treatments. Mean photosynthetic activity was significantly higher in the Warming

treatment than in the Control one (25.49 vs 22.42 mmol CO2 m
-2 s-1, respectively,

p = 0.045) and, in contrast to the Control treatment, showed an increasing trend, reaching

the maximum value in the Heading phenophase. The observed differences demonstrate that

warming has a positive effect on photosynthetic activity over several phenophases.

Plant height, biomass, and yield
In the present study, plant height was the most disturbed variable by warming effects, with

reductions from the early stages of growth to maturity. During the Heading phenophase,

Figure 3 Vain grain number at the basal and distal part of the spikes under warming and control

treatments. Full-size DOI: 10.7717/peerj.5064/fig-3
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plant height experienced a minor increase due to physiological changes of the apical

meristem. Warming caused a reduction of 11.9% on plant height (Fig. 5). Plant height

variations correlated negatively with spike length (r = -0.89), spike mass (r = -0.86), filled
grain number (r = -0.835), and yield (r = -0.94), showing yield the major correlation.

Biomass and grain yield showed a strong significant decrease with the warming treatment

presenting a reduction of 33% and 34%, respectively (Fig. 6).

Stress intensity
Warming produced stress intensities of about 39% and 33% in biomass and grain yield,

respectively (Fig. 7). These results confirm the negative impact of warming to yield

performance on wheat. The obtained values of stress intensity in the present study allowed

its classification as severe stress.

Figure 4 Photosynthetic activity in wheat phenology. Full-size DOI: 10.7717/peerj.5064/fig-4
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DISCUSSION
The reduction of phenophase occurrence time has been studied in several crops and the

effect of this reduction originates from biochemical processes alteration, mainly in the

synthesis of substances translocated to the spikes (Shirdelmoghanloo et al., 2016). This

reduction in phenophase occurrence time sometimes modifies the expression of structural

genes regulators of proteins synthesis, such as glutamine, and its mobilization to the

spikes (Royo et al., 2016).

Our results confirm the susceptibility of phenology to warming during reproductive

stages. In addition we observed a significant reduction in Stem elongation and Anthesis,

emphasizing the negative impact of warming on wheat phenology (Flohr et al., 2017).

Some studies have established that in wheat, warming susceptibility appears after the

Anthesis (Dias & Lidon, 2009; Prasad, Bheemanahalli & Jagadish, 2017) and it is

characterized by an early senescence and poorly filled grains, generating distal spikelets

abortion and reducing the individual grain mass, which reduces grain yield (Yang et al.,

2017). However, in the present study, this variable (measured in function of mass of

1,000 grains) did not show statistical differences by heat effect (Table 1), although the

number of full grains was significantly reduced.

While there is evidence for the change in crop phenology, it is more difficult to find

the mechanisms for these changes. Many studies suggest a close relationship between

changes in crop phenology and changes in temperature during the growing season.

Figure 5 Plant height during the biological cycle of wheat in warming and control treatments; bars

represent the standard deviation of the mean. Full-size DOI: 10.7717/peerj.5064/fig-5
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For example, simulation of wheat phenology under expected future climate change

suggested that the crop development rate would accelerate due to the effect of higher

temperatures, causing a two-week advancement in Anthesis for 2060 (Rezaei, Siebert &

Ewert, 2015). Such assumptions, based on mathematical models, provide a possible

response of wheat to temperature increase, agreeing with the present study, where a

reduction of 10 days at the time of Anthesis and 14 days at harvest, was observed at the

warmed plots with respect to the Control.

The spikes length, among different stress types, generally shows a significant variability,

result that confirms its polygenic character, which has been reported by some other

authors (Jamil et al., 2017; Arya et al., 2017;Mwadzingeni et al., 2017). The number of full

grains decrease when the crop experiences a temperature increase, above 1.5 �C, with
respect to ambient canopy temperature, particularly immediately before Anthesis (heat

wave) (Wheeler et al., 1996; Ferris et al., 1998). It has been also found that the vain grain

number of wheat can significantly increase when temperature during mid-anthesis vary

in 2 �C during 10 days (Mitchell et al., 1993).

Dwivedi et al. (2017a) pointed out that the higher effects of abiotic stress on grain

yield in wheat, are usually due to a reduction in the full grains number and also to an

increase of vain grains number (mainly in the distal spikelets) and not to their individual

grain mass decrease. Similarly, in the present study, the greater amount of vain grains was

found at the distal spikelets (Fig. 3).

The absence of difference on grain mass (evaluated as 1,000 grains mass), between the

treatments, agrees with results by Dwivedi et al. (2017a) who found no effect of drought

on grain mass. This aspect indicates the capability of CIRNO C2008 variety, used as

experimental model at the presently assay, to support seed filling even under an increase of

2 �C with respect to normal environmental canopy temperature. Recently, Argentel

Martinez et al. (2018) reported that since 2008 CIRNO C2008 is still the most extended

Figure 6 (A) Biomass and (B) grain yield in treatments, t-values, and probability.

Full-size DOI: 10.7717/peerj.5064/fig-6
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variety in the Yaqui Valley and maintain genetic stability for yield components although

climate condition has experience significative change (Lares-Orozco et al., 2016).

Photosynthetic activity contribution to yield is not always proportional (Yang et al.,

2017). For example, high temperatures can affect photosynthetic activity indirectly by

reducing phenophases duration due to an early senescence. Warming can accelerate

senescence in the photosynthetic organs. This is supported in this study by the much

stronger reduction in photosynthetic activity from flowering to grain filling, in the

Warming treatment in contrast to the pattern showed in the Control (7 vs 2 mmol

CO2 m
-2 s-1). There are evidences that chlorophyll pigments concentration can be

differentially reduced by warming and, although photosynthesis values can be high during

certain phenophases, yield may decrease (Yang et al., 2016).

Plant height is an important yield component at the plant and the ecosystem levels. In

plant height and grain yield correlation studies, a negative contribution has been obtained

Figure 7 Stress intensity in biomass and grain yield, t-values, and probability. Study sites: SE,

standard error of the mean. Full-size DOI: 10.7717/peerj.5064/fig-7
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when plants height affectations exceeded 10% (Dwivedi et al., 2017a). The negative

correlation between plant height and spike length, spike mass, filled grains number, and

yield shows that reproductive organ formation is favored over height gain under warming

conditions.

The reduction of both biomass and grain yield confirms the negative effects of

warming on crop morphology and physiology, despite of high photosynthetic activity

in the Warming treatment. In the present study, the high photosynthetic activity

contributed to maintain the grain mass, although the number of full grains decreased

and the number of vain grains increased (these two variables were the main causes of

yield decrease) (Table 1). It is likely that during photosynthesis, under some stressing

condition, an important proportion of photoasimilates is used for the synthesis of

secondary metabolites, used for plant protection, (Shirdelmoghanloo et al., 2016).

Also, during plants exposure to adverse conditions, the macromolecules are

degraded to their monomeric bases for osmoregulation and starch remobilization

(Chandra et al., 2017).

Warming causes, in some plant species, the production of non-viable pollen (Siebers

et al., 2017) turning out difficult fertilization. Sometimes partially filled grains are present

which affect grain quality (Nuttall et al., 2017). In the more extreme cases of heat shock

during the floral development and the spike filling phenophase, a heterostyly

phenomenon is generated, where the development and maturity between stigma and

anthers is imbalanced causing fecundation problems (Ferrero, 2014). Although wheat has

an encapsulated or covered fecundation, heat can affect the final fertilization process,

generating a reduction in grains filled by spike, which is one of the grain yield components

of greater contribution to yield losses. Perhaps, in the present assay, warming caused

severe damage in pollen quality, generating pollen abortion affecting the final fertilization

or infertility (Dwivedi et al., 2017b).

Stress intensity is a response involving physiological and metabolic functions in plants.

The duration and intensity of stress during crop growth determines the extent of yield

losses (Rezaei, Siebert & Ewert, 2015).

Several studies have suggested a substantial increase in the frequency and magnitude of

heat stress, due to climate change, in wheat production of different latitudes. Some of

them explicitly investigated possible adaptation strategies against increasing heat stress.

However, most of these studies have been conducted by using statistical models, which did

not consider changes in crop phenology caused by global warming (Semenov et al., 2014;

Rezaei, Siebert & Ewert, 2015). In the present study, canopy temperature of the crop was

manipulated by 2 �C to evaluate and correlate physiological and agronomic variables with

biomass and grain yield as an integrated warming response of wheat to climate change

predicted for 2050 for several latitudes including the Yaqui Valley. These results could

serve as a basis for the introduction of tolerant varieties, or in the extreme case, the change

on land use, once crops have shown significant yield reductions in relation to their genetic

productive potential.

These components response vary according to the stress type, intensity and duration

and also depend to a great extent on the tolerance degree of the variety. For this reason,
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monitoring the response to warming of the available germplasm through phenological,

physiological, and agronomic indicators, although is a laborious process (Naik et al.,

2016), provide major information over final response of wheat to abiotic stress, and will

allow to recommend phenological, yield components characteristic and largely possible

progenitors for breading programs for warming climates (Trnka et al., 2017; Yang et al.,

2017).

CONCLUSION
Warming treatment caused a reduction of phenophases occurrence time starting from

stem extension. Such situation generated a significative reduction of the biological cycle of

CIRNO C2008 wheat variety of up to 14 days. Nevertheless, the studied variety completed

its biological cycle according to Zadoks Decimal Scale.

Plants height, due to warming effect, was reduced significantly and differences were

observed on the final phenophases of vegetative stages. Such variable correlated negatively

with spikes length, spikes mass, and filled grains number.

Imposed warming reduced biomass and grain yield in 33% and stress intensity

generated by the warming treatment were 39.4% and 33.2%, respectively. The differences

in stress intensities between biomass and grain yield were based on plant height reduction.

Grain mass (or thousand grains mass) did not suffer affectation demonstrating crop

capability for remobilization and adequate distribution of elaborated substances in spikes.

This result shows that warming would not affect this yield component in future global

change scenarios.
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