This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Anharmonic contribution to the stabilization of Mg(OH)$_2$ from first principles

P. Treviño, a A. C. García-Castro, b,c S. López-Moreno, a,d A. Bautista-Hernández, e E. Bobocioiu, / B. Reynard, / R. Caracas, / and A. H. Romero, e,g

Geometrical and vibrational characterization of magnesium hydroxide was performed using Density Functional Theory. Four possible crystal symmetries were explored: $P\bar{3}$ (No. 147, point group -3), $C2/m$ (No. 12, point group 2), $P\bar{3}m1$ (No. 156, point group 3m) and $P\bar{3}m1$ (No. 164, point group $-3m$) which are the currently accepted geometries found in the literature. While a lot of work has been performed in Mg(OH)$_2$, in particular for the $P\bar{3}m1$ phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations in the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous works have assigned the $P\bar{3}m1$ polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in $P\bar{3}m1$ structure towards the $P\bar{3}$. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, the anharmonic vibrational analysis indicates that at room temperature, only the $C2/m$ phase is stabilized. Whereas at higher temperatures, other phases become thermally competitive.

1 Introduction

The magnesium hydroxide (Mg(OH)$_2$), also called brucite, is a mineral widely used as a medical and industrial product of many different reactions. For example, Mg(OH)$_2$ is commonly used as a flame retardant filler in composite materials because of its ability to undergo endothermic dehydration in fire conditions. 1,2 In recent research, it has been found that Mg(OH)$_2$ can be used as starting material for controlling the synthesis of nanoscale magnesium oxide (MgO), where the crystallite size and morphological features of Mg(OH)$_2$ can be well-retained. 3

The crystal structure is based on a structurally bound Mg-OH skeleton arranged in a hexagonal pattern. The resulting sheets of Mg(OH)$_6$ octahedra constitute the main building unit as in many other layered hydrous minerals. Its structure was first established by Zigan and Rothbauer (1967), 4 it crystallizes in the $P\bar{3}m1$ space group with Mg atom on 1a (0, 0, 0) Wyckoff position while O and H atoms are on the 2d ($\frac{1}{2}$, $\frac{3}{2}$, z). Each OH dipole faces three opposite symmetrical hydroxyl groups from the neighboring layer: the H-H interlayer distance is 1.97 Å, and the width of the layers of 3.15 Å.

This compound represents an exciting example of systems with different kinds of bonds: Mg-O is ionic, O-H has a strong covalent character, and the interlayer interaction is weak, mainly dispersive, with a small electrostatic contribution. 5,6

Mg(OH)$_2$ has been extensively investigated by experimental techniques such as neutron diffraction, Raman and infrared spectroscopies and NMR. $^{7-12}$ These studies suggest that the interlayer bonding is weak and mainly associated with dispersion-type forces. Since the latter is directly linked to electron correlation, modeling them with normal exchange-correlation functionals represents a difficult task. 5 Despite its simple structure, a full description of its physical properties remain unexplored; even its crystallographic symmetry has not yet been fully established. Although the question of its structure has been addressed several times in the past $^{8,13-16}$ the models proposed previously
deal with temporally and spatially averaged positions of the hydrogen subsystem and suggest that hydrogen atoms are in fact displaced from the high-symmetry points on the three-fold axis to form a new lattice with $P\bar{3}$ symmetry and an averaged $\frac{1}{3}$ occupancy of three equivalent $6i$ Wyckoff positions (x, $2x$, z) with either $x > \frac{1}{3}$ (the so-called XGT arrangement) or $x \leq \frac{1}{3}$ (the so-called XLT arrangement). The case for the XGT arrangement is further strengthened by the neutron diffraction experiments of Desgranges et al.7 indicating that protons are displaced into XGT positions even at ambient pressure.13

Neutron diffraction experiments show that the average hydrogen position does not coincide with the threefold axis at high pressures, but splits into three symmetrically equivalent off-axis positions. To capture these transitions, when hydrogen atoms are permitted to occupy 6i-like positions, the resulting space group is $P\bar{3}$ (a maximal subgroup of $P\bar{3}m1$), with the loss of the mirror planes as the protons are disordered spatially.16 The resulting $P\bar{3}$ structure has lower energy than the $P\bar{3}m1$ structure.

Jochym et al.12 observed that the positions of the hydrogen atoms around the three-fold axis were not well constrained in the system, i.e., they probably move in a very shallow potential well. This observation is in concordance with previous experimental evidence.11 It suggests that the structure of magnesium hydroxide crystal may be more complicated than is currently accepted. The examination of the MD trajectories shows large amplitude hydrogen movements even for runs performed at low temperature.13 They observed that the lattice lock-in still appeared to be present at 244 K, but hydrogen atoms do not spend most of their time in the vicinity of their high-symmetry positions.

According to previous approximations, we performed an analysis over possible crystal structures that are related by symmetry and could mimic the proton displacement on top of the Mg sub-lattice: $C2/m$, $P\bar{3}m1$, $P\bar{3}m1$ and $P\bar{3}$.

The present work is organized as follows. In Sec. 2 we give a detailed description of the experimental and computational methods used in this paper. The results and discussion of the structural optimization and the simulated the XRD patterns are in Sec. 3.1. In Sec. 3.2 the harmonic thermal analysis is presented, while the anharmonic vibrational analysis is in Sec. 3.3. Finally, we discuss and summarize the primary results of this work in Sec. 4.

2 Computational and experimental details

In order to understand the real structure of brucite, four systems were compared: $P\bar{3}m1$, $P\bar{3}m1$, $P\bar{3}$ and $C2/m$, see Figure 1. The first-principles calculations have been performed within the Density Functional Theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP)17,18 with the Projector Augmented Wave (PAW) formulation.19 The valence electron configurations taken into account in the atomic pseudo-potential were: Mg ($3s^2\,3p^6$), O ($2s^2\,2p^4$) and H ($1s^1$). We used the General Gradient Approximation (GGA) to express the exchange-correlation functional with the Perdew-Burke-Ernzerhof for Solids (PBEsol) parametrization.20 The reciprocal space integration for the unit cell was carried out over the set of k-point mesh of $9\times9\times3$ generated according to the Monkhorst-Pack scheme.21 An energy cutoff of 550 eV have been used to get a residual error on the forces less than 1 meV/Å after full convergence test. The electronic structure was computed with a higher set of k-points. Vibrational properties were computed through the formalism of density functional perturbation theory (DFPT),22 and the post-processing analysis was carried out with the Phonopy code23 and PHONON.24 The last program has been used with success in the study of the vibrational properties of other AX_2 compounds such as MnF$_2$,25 FeF$_2$,26 and CoF$_2$.27 The interatomic constants were computed on a high-symmetry grid of k points, obtained from a $3\times3\times1$ supercell.

Theoretical Raman spectra were obtained by computing the Raman tensors, i.e., the change in dielectric tensor due to the atomic displacement occurring during a given vibration. The computations were realized using the DFPT22,28 as implemented in the ABINIT package29–31, with norm-conserving Trouiller-
Martins-type pseudopotentials in the Local Density Approximation. More details of the calculations, including the crystal structures, the normal modes and their atomic displacement patterns can be found on the WURM website.

High-temperature anharmonicity of Mg(OH)$_2$ was described using \textit{ab initio} molecular dynamics in combination with the temperature dependent effective potential technique (TDEP), where the effective interatomic force constants are fitted to a harmonic potential at finite temperature. The fitted model is used to obtain higher order terms in the energy with respect to the atomic displacements, which are then used to calculate the thermal conductivity (see Refs. 34 and 35 for details). The simulation cell was constructed from a repetition of the unit cell (80, \(a\) \times 80, \(b\) \times 80, \(c\) \times 80) mesh to perform any Brillouin zone integration and an energy cutoff of 550 eV for about 4000-time steps with a one fs time step. The temperature was controlled with a Nose-Hoover thermostat.

The Raman measurements were performed at liquid nitrogen temperature with a confocal LabRam HR DILOR microspectrometer equipped with 1800 g/mm gratings and using the 514.53 nm line of a Spectra-Physics Ar$^+$ laser for excitation.

Table 1 Lattice parameters of Mg(OH)$_2$, obtained in this work (results with PBEsol) and the experimental and theoretical reported from literature.

<table>
<thead>
<tr>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3m1</td>
<td></td>
</tr>
<tr>
<td>3.146</td>
<td>4.769</td>
</tr>
<tr>
<td>3.149</td>
<td>4.749</td>
</tr>
<tr>
<td>3.147</td>
<td>4.770</td>
</tr>
<tr>
<td>3.140</td>
<td>4.760</td>
</tr>
<tr>
<td>3.138</td>
<td>4.713</td>
</tr>
<tr>
<td>3.150</td>
<td>4.770</td>
</tr>
<tr>
<td>3.142</td>
<td>4.766</td>
</tr>
<tr>
<td>3.148</td>
<td>4.779</td>
</tr>
<tr>
<td>3.161</td>
<td>4.696</td>
</tr>
<tr>
<td>3.152</td>
<td>5.185</td>
</tr>
<tr>
<td>3.148</td>
<td>5.263</td>
</tr>
<tr>
<td>3.167</td>
<td>4.854</td>
</tr>
<tr>
<td>3.172</td>
<td>4.892</td>
</tr>
<tr>
<td>3.087</td>
<td>4.470</td>
</tr>
<tr>
<td>3.000</td>
<td>4.570</td>
</tr>
<tr>
<td>3.099</td>
<td>4.413</td>
</tr>
<tr>
<td>3.175</td>
<td>4.662</td>
</tr>
<tr>
<td>3.142</td>
<td>4.766</td>
</tr>
<tr>
<td>3.179</td>
<td>4.717</td>
</tr>
<tr>
<td>3.180</td>
<td>4.762</td>
</tr>
<tr>
<td>3.116</td>
<td>4.823</td>
</tr>
<tr>
<td>3.189</td>
<td>4.773</td>
</tr>
<tr>
<td>3.182</td>
<td>4.801</td>
</tr>
<tr>
<td>3.126</td>
<td>4.730</td>
</tr>
<tr>
<td>3.188</td>
<td>4.786</td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>3.186</td>
<td>4.777</td>
</tr>
<tr>
<td>C2/m</td>
<td></td>
</tr>
<tr>
<td>3.188</td>
<td>4.780</td>
</tr>
</tbody>
</table>

3 Results and discussion

3.1 Structural optimization

The $C2/m$ corresponds to the lowest energy configuration, almost degenerate with $P3m1$ and $P3$ (with energy differences smaller than 0.005 eV/f.u.) but with an energy difference of 1.2 eV/f.u. with respect to $P3m1$. That indicates that $P3m1$ is not even energetically competitive with the other phases, and we will not consider it in our discussion below.

Table 1 compares our results with previous values published in the literature. Among these approaches, several codes had been used, e.g., CRYSTAL and VASP, with different Hamiltonians and different approximations; and all of them present good agreement with experimental cell parameters.

After the structural relaxation, we obtained the lattice parameters: \(a = 3.1877\) Å and \(c = 4.786\) Å for the $P3m1$ structure. Even when \(a\) and \(c\) are overestimated, our cell parameters are in good agreement with experimental results (\(a = 3.142\) Å and \(c = 4.766\) Å); \(a\) differs by 1.45% and \(c\) differs by 0.4% with respect to the experimental parameters of Zigan and Rothbauer.

The calculated...
equilibrium volume presents an overestimation of 3%.

Even when structures $P3m1$ and $P3$ are very similar (see Figure 1), their unit cells are different. So, it is necessary to establish equivalent parameters to compare results. Both structures have a hexagonal arrangement for the Mg cations surrounded by the hydroxyls, where three of them are oppositely oriented to the three hydroxyls of the next layer. For both structures, the interlayer distance is the same since Mg cations maintain their general positions, even when there is a slight up and down deviation from the original position. Therefore, in the case of c parameter, both values are the same, and they can be compared directly.

It is not the case of the a lattice parameter because the unit cell of $P3$ structure is larger than the $P3m1$ one. In $P3$ structure, the hydrogen ions begin to deviate from their initial position as if they were rotating. This rotation expands the unit cell and preserves the symmetry. To compare the a lattice parameter, we consider the distance between the first in-plane Mg-Mg neighbors as shown in Figure 1. This equivalent a parameter will be designed as a' and it can be calculated as follows: $a' = a_{P3}/(2\cos 30)$.

After the structural relaxation, the obtained lattice parameters of the $P3$ system were: $a = 5.518$ Å and $c = 4.777$ Å with $a' = 3.186$ Å. This a' parameter is shown in Table 1. Both values are overestimated, but they are in good agreement with the experimental parameters; a differs by 1.4% and c differs by 0.2%.

The difference between the a parameter for $P3m1$ structure and the a' parameter for $P3$ is just of 0.05%, and the difference for the c parameter is just of 0.19%. For the $C2/m$ system, we obtained the values $a = 3.188$ Å and $c = 4.780$ Å which are in good agreement with experimental values; a is overestimated by 1.4% and c is overestimated by 0.08%. The difference between the a parameter for $P3m1$ structure and the a' parameter for $C2/m$ is 0.003%, and the difference for c parameter is 0.3%. In the $C2/m$ Mg, O, and H atoms are located in the $2a$ (0, 0, 0), $4i$ (0.6667, 0, 0.2180), and $4i$ (0.6666, 0, 0.4212) Wyckoff positions, respectively.

Figure 2 shows simulated XRD patterns with K$_{2}$Cu for the three structures. As the position of H is invisible to XRD due to its low scattering factor, all the computed XRD patterns yield similar results, omitting the order-disorder character. The only small differences between the various patterns come from different intralayer and interlayer dimensions. However, such measurements are not necessarily sensitive enough to distinguish between the three theoretical variants proposed here.

Regarding the electronic structure of magnesium hydroxide, it is well known that Mg(OH)$_2$ is a direct bandgap material, i.e., both the valence band (VB) maximum and the conduction band (CB) minimum is located at the Γ point. This feature can be observed in the electronic band structure of Figure 3 (a). Previous theoretical studies of the hexagonal $P3m1$ phase of Mg(OH)$_2$ reported different band-gap values depending on the exchange-correlation functional used. On one side, in Ref. 47 it was reported a gap value of 4.2 (7.7) eV obtained with the PBE (HSE06) exchange-correlation functional. In that work, it was determined that valence and conduction bands obtained with both functionals have a similar dispersion and curvatures. So, no matter if the calculations are performed at the level of GGA or hybrid functionals, the dispersion and the general features of the band structure, except for the band gap value, are well represented with both functionals. According to our results, the band gap value for the three polymorphs is around 4.18 eV, Fig. 3 (a) to (c). As can be seen, the total and partial density of states from the three phases...
are very similar, where the zone from -3 to Fermi level is mainly occupied by 2p\(_{x}\) and 2p\(_{y}\) states from O with fewer contributions from 2p\(_{z}\) states. In this zone, there are also states from s orbitals, mainly by Mg with minor contributions of O and H. While the zone from -3 to -7 eV is filled with 2p states from O (mostly 2p\(_{z}\)) and s states from H and Mg. Deeper states at -18 eV are due to s states, mainly from O with minor contributions from H and Mg. Whereas, the bands from 4 to 10 eV are filled mainly by O (2p\(_{x}\) and 2p\(_{y}\)) with minor contributions from s orbitals from Mg.

For P\(_{3}m1\) phase, the VB maximum is occupied mostly by O (2p\(_{x}\) and 2p\(_{y}\) states) with a small contribution from Mg (2s states). The CB minimum is filled almost by O 2s states with a small part of Mg 2s states and a minimal contribution from H 1s states. In general, the occupation of the VB maximum and CB minimum from the other two phases is similar to the P\(_{3}m1\) one. The most significant difference is that in the P\(_{3}\) and C\(_{2}/m\) phases appear small contributions to the VB maximum by 2p\(_{z}\) states from O. More significant changes are observed at deeper energy levels, mainly in those cases where a specific orbital has a small contribution in a range of energy.

3.2 Harmonic Thermal analysis (phonons)

Group theory predicts that brucite structure (space group P\(_{3}m1\) and five atoms in the unit cell) has the following phonon mode representation at the \(\Gamma\) point: \(\Gamma = 2A_{1g} + 3A_{2u} + 2E_{g} + 3E_{u}\)^{38}

Where the acoustic modes are one \(A_{2u}\) and one \(E_{u}\). The structure possesses a center of inversion, and the rule of mutual exclusion leads to there being four symmetric g-modes which are Raman active and four antisymmetric u-modes which are infrared active. Since the Mg ions are located at the centers of inversion, they do not take part in any of the Raman active g-modes whose normal coordinates are symmetric with respect to the inversion symmetry operation but they participate in the ‘u’ motions, in order to preserve the center of the mass structure.

According to Lutz,\(^{51}\) three kind of modes involving the H atoms can be distinguished when dealing with a system such as a brucite: OH translation, OH libration (commonly referred to as hydrogen bending in molecular context) and OH stretching. Translational modes that correspond to vibrations of the O-H units can be either parallel (\(A_{1g}(T)\) and \(A_{2u}(T)\)) or perpendicular (\(E_{g}(T)\) and \(E_{u}(T)\)) to the \(c\) axis. The rotational vibrations of the OH ions are: \(E_{g}(R)\) and \(E_{u}(R)\). The internal modes are symmetric and antisymmetric O-H stretching vibrations (\(A_{1g}(I)\) and \(A_{2u}(I)\)).\(^{9}\)

According to our results, all Raman and infrared active modes of brucite were detected (see Table 2) and they are in good agreement with previous experimental data.\(^{50}\) But it should be pointed out that there are some differences in the band positions of brucite reported in the literature. This occurs because brucite is characterized by weak infrared absorption and emission bands that are easily masked by the presence of impurities such as talc, calcite, and serpentine. Even when XRD does not observe some of these impurities, they easily affect the infrared emission spectra.\(^{52}\)

The calculated phonons correspond to \(E_{g}\) mode at 268 cm\(^{-1}\) (OH groups displacements in the (001) plane), \(E_{g}(R)\) mode at 786 cm\(^{-1}\) (rocking motion of H atom), \(A_{1g}\) mode at 435 cm\(^{-1}\) (breathing mode), high frequency \(A_{1g}\) mode at 3726 cm\(^{-1}\), \(E_{g}\) modes at 352 and 426 cm\(^{-1}\) (H atoms displacements parallel to the basal plane), \(A_{2u}\) mode at 471 cm\(^{-1}\) (vibration of Mg sub lattice), and the \(A_{2u}\) mode at 3769 cm\(^{-1}\) (OH stretching mode). A more clear description of the assignation mode in given in Ref. 38.

The computed frequency for the stretching mode of an isolated hydroxyl group is 3769 cm\(^{-1}\) that lies just 81 cm\(^{-1}\) above the experimental value,\(^{46}\) which corresponds to a crystal-induced substantial OH frequency shift. The \(A_{1g}-A_{2u}\) splitting is 36 cm\(^{-1}\), in agreement with experimental reports. If there is a transition involving rearrangements of the H atoms, it should be consistent with both the Raman and the diffraction data.\(^{9}\) Neutron diffraction of brucite was carried out by Cattel et al. and Parise et al.\(^{8,12}\) They obtained improved fits for models in which the H or D atoms that move away from the threefold axis are split over three sites corresponding to the positions of the O atoms. There is also evidence for long-range disordering of the H sublattice at ambient pressure in divalent metal hydroxides like Ca(OH)\(_{2}\).\(^{7}\) where the H atoms can be modeled as being dynamically disordered among three equivalent positions at 10\(^{-1}\) from the c axis at room temperature.

Brucite with P\(_{3}\) structure, with 15 atoms in the unit cell has 45 normal modes. According to group theory, acoustic modes are \(A_{1u}\), \(E_{1u}\) and \(E_{2u}\). Six modes are infrared active (2 \(A_{1u}\), 2 \(E_{1u}\) and 2 \(E_{2u}\)) and three modes are Raman active (\(A_{2u}\), \(E_{1u}\) and \(E_{2u}\)). Table 2 shows calculated frequencies. Some experimental frequencies can be located, but there are some additional frequencies not

Table 2 Calculated and previous reported\(^{38,50}\) Raman (R) and infrared (IR) active modes from P\(_{3}m1\) phase, and the present results from the P\(_{3}\) and C\(_{2}/m\) phases.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Exp.(^{50})</th>
<th>Ref. 6</th>
<th>Ref. 38</th>
<th>P(_{3}m1)</th>
<th>P(_{3})</th>
<th>C(_{2}/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>280</td>
<td>278</td>
<td>268</td>
<td>267.6 (E(_{1g}))</td>
<td>267.0 (2A(_{1g}))</td>
<td>267.8 (B(_{1g}))</td>
</tr>
<tr>
<td>IR</td>
<td></td>
<td></td>
<td></td>
<td>275.1 (A(_{1g}))</td>
<td>268.0 (A(_{1g}))</td>
<td>268.0 (A(_{1g}))</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>280.0 (A(_{1g}))</td>
<td>332.6 (A(_{1g}))</td>
<td>332.6 (A(_{1g}))</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>333.5 (A(_{1g}))</td>
<td>338.1 (A(_{1g}))</td>
<td>352.1 (A(_{1g}))</td>
</tr>
<tr>
<td>IR(TO)</td>
<td>361</td>
<td>364</td>
<td>349</td>
<td>352.2 (E(_{1g}))</td>
<td>352.1 (A(_{1g}))</td>
<td>352.4 (B(_{1g}))</td>
</tr>
<tr>
<td>IR(LO)</td>
<td></td>
<td></td>
<td></td>
<td>411.2 (A(_{1g}))</td>
<td>413.1 (A(_{1g}))</td>
<td>425.9 (A(_{1g}))</td>
</tr>
<tr>
<td>IR(TO)</td>
<td>416</td>
<td>459</td>
<td>422</td>
<td>426.2 (E(_{1g}))</td>
<td>445.6 (A(_{1g}))</td>
<td>446.2 (B(_{1g}))</td>
</tr>
<tr>
<td>IR(LO)</td>
<td></td>
<td></td>
<td></td>
<td>416.1 (A(_{1g}))</td>
<td>470.4 (A(_{1g}))</td>
<td>471.0 (B(_{1g}))</td>
</tr>
<tr>
<td>R</td>
<td>443</td>
<td>454</td>
<td>449</td>
<td>435.2 (A(_{1g}))</td>
<td>445.6 (A(_{1g}))</td>
<td>435.5 (A(_{1g}))</td>
</tr>
<tr>
<td>IR(TO)</td>
<td>461</td>
<td>499</td>
<td>487</td>
<td>471.1 (A(_{1g}))</td>
<td>470.4 (A(_{1g}))</td>
<td>471.0 (B(_{1g}))</td>
</tr>
<tr>
<td>IR(LO)</td>
<td></td>
<td></td>
<td></td>
<td>693.5 (A(_{1g}))</td>
<td>722.3 (A(_{1g}))</td>
<td>728.8 (A(_{1g}))</td>
</tr>
<tr>
<td>R</td>
<td>725</td>
<td>803</td>
<td>767</td>
<td>786.3 (E(_{1g}))</td>
<td>812.5 (A(_{1g}))</td>
<td>788.4 (B(_{1g}))</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>725.6 (A(_{1g}))</td>
<td>956.6 (A(_{1g}))</td>
<td>788.4 (B(_{1g}))</td>
</tr>
<tr>
<td>IR</td>
<td>3652</td>
<td>3847</td>
<td>3686</td>
<td>3726.8 (A(_{1g}))</td>
<td>3722.0 (A(_{1g}))</td>
<td>3726.2 (A(_{1g}))</td>
</tr>
<tr>
<td>IR(LO)</td>
<td></td>
<td></td>
<td></td>
<td>3652.3 (A(_{1g}))</td>
<td>3733.2 (2A(_{1g}))</td>
<td>3733.2 (2A(_{1g}))</td>
</tr>
<tr>
<td>IR(TO)</td>
<td>3688</td>
<td>3873</td>
<td>3727</td>
<td>3769.3 (A(_{2u}))</td>
<td>3765.2 (A(_{2u}))</td>
<td>3768.9 (B(_{2u}))</td>
</tr>
<tr>
<td>IR(LO)</td>
<td></td>
<td></td>
<td></td>
<td>3688.1 (A(_{2u}))</td>
<td>3741.2 (A(_{2u}))</td>
<td>3741.2 (A(_{2u}))</td>
</tr>
</tbody>
</table>
not be assigned based on the perfect brucite structure. A similar new peak on the left-hand side of A disorder phase transition. On the other hand, it was observed a symmetric vibration. This peak should correspond to an order-ric break of A to an IR active anti-symmetric stretch mode. The antisymmetric structure and discussed in detail in Ref. 38. The Abettent shows the E section. Figure 5 summarizes our results. On one side, the experimental measurements as described in the methods section. Figure 4 shows calculated phonon dispersion curves for the three structures at 0 K. The $P\bar{3}m1$ and $P\bar{3}$ structures show the presence of unstable phonon modes: $P\bar{3}m1$ around the k point and $P\bar{3}$ along the $F-A$ direction. While in the $C2/m$ structure does not show any phonon instability. Which suggest that this structure could be considered as a better representation of brucite system, at least at room temperature, where the quantum nature of the hydrogen bond is also reduced.

To assess the existence of different phases in Mg(OH)$_2$, we have calculated the Raman intensity peaks and compare them directly to our experimental measurements as described in the methods section. Figure 5 summarizes our results. On one side, the experiment shows the E_g, A_{2u} and A_{1g} peaks that are assigned to the symmetric structure and discussed in detail in Ref. 38. The A_{1g} is a symmetric stretch. The appearance of the A_{2u} peak corresponds to an IR active anti-symmetric stretch mode. The antisymmetric break of A_{2u} can be seen in Raman because of a less anti-symmetric vibration. This peak should correspond to an order-disorder phase transition. On the other hand, it was observed a new peak on the left-hand side of A_{1g}. That is a peak that can not be assigned based on the perfect brucite structure. A similar peak is observed from our theoretical calculations, but the similarity between the different intensities does not allow to distinguish the corresponding structure responsible for such peak. What we can conclude is basically that the new peak should come from a distorted structure as one of the ones we are proposing here.

3.3 Anharmonic vibrational analysis

The considerable freedom of the OH bonds in the Mg(OH)$_2$ interlayer allows for extensive explorations of the potential energy surface by the hydrogens, opening the door to substantial anharmonic effects. Figure 6 shows the relative displacement of the hydrogen atoms with respect to the closest magnesium atom projected on the layer plane at 300 K. These trajectories were used for the anharmonic thermal analysis discussed below. In this figure, the H atoms in the $P\bar{3}m1$ structure show very long excursions around their equilibrium positions as a result of thermal agitation, with $P\bar{3}$ coming next. For the case of $P\bar{3}$, the hydrogen displacement is more reduced parallel to the octahedral plane, but they explore more of the perpendicular space, which might be correlated to a higher stretching frequency. $C2/m$ and $P\bar{3}m1$ show very similar behavior and the hydrogens are very well localized in the plane parallel to the layers. The mean square displacement also provides us with some information about the present anharmonicity. The largest the atomic excursions from the equilibrium position the largest would deviate from a harmonic potential. $C2/m$ structure shows a more confined atomic displacement,
which is the closest to a harmonic behavior.

Figure 7 shows calculated phonons for the three low-symmetry structures obtained from potential parameters fitted from the MD runs at 300 and 600 K. The results show that at room temperature, the $P\bar{3}m1$ is still unstable, with imaginary phonons close to the Γ point. With temperature all phonons soften except for the unstable mode whose energy increases and by 600 K it shows only positive frequencies. A similar situation is also observed for $P\bar{3}$ but the negativity of the phonon branch is much smaller and it could be that at 300K the structure becomes stable. The $C2/m$ phase is different in that respect, it has phonons which are positive even at 300 K, which indicates that this phase is energetically and thermally stable at room temperature.

The flat dispersion along vertical lines in the Brillouin zone like \bar{x} or \bar{y} suggest weaker interactions between the layers. This weak dispersion is also seen in the thermal conductivity as in Figure 8. The values indicate that perpendicular to the layers (ZZ direction in this plot) the conductivity is very low, a typical behavior of layered materials (short scattering length). On the other hand, the thermal conductivity in plane is anisotropic with values larger than magnesium hydroxide in bulk, which explains why this material enhances the thermal conductivity in composites.\footnote{The power law dependence of the thermal conductivity can be also extracted from our calculations, with power law value of -2.2×10^{-3}, -2.1×10^{-3} and -2.0×10^{-3} along the a, b and c crystallographic axis, respectively.}

Our results indicate that at 300 K, there is a competition of different phases, which do not involve a change in the magnesium positions but involve changes in the hydrogen positions. This amorphization has been predicted before using constant pressure \textit{ab initio} molecular dynamics.\footnote{This amorphization is very similar to our analysis on the hydrogen delocalization from Figure 6.} As a far as we know, this is the first time that brucite structure is defined by considering the temperature dependence of phonon dispersion curves along the reciprocal space and not only at Γ point; and therefore taking into account the direct temperature effect on the atomic vibrations and the potential seen by the ions. Thus, our calculations indicate that the real stabilization of brucite $P\bar{3}$ structure occurs when temperature rises, even though this is a low temperature transition taking place at approximately 600 K. Our results confirm that at this temperature and even above this, all phonons have real values in the full reciprocal space. Even when phonons reveal an stable structure, it should be remembered that this structure does not reproduce exactly experimental IR and Raman spectra as mentioned in Table 2.

According to this, our calculations suggest $C2/m$ as a more accurate representation of brucite system when taking into account phonon stabilities, the resulting IR and Raman spectra, and XRD diffraction pattern. The structure is very similar to the $P\bar{3}m1$ but the symmetry is decreased from a space group 164 to a 12.

4 Conclusions

Four possible structures were explored: $C2/m$, $P\bar{3}$, $P\bar{3}m1$ and $P\bar{3}m1$, where the last one is the currently accepted geometry in literature. Energetics and the temperature dependence of phonons spectra allow us to discard the $P\bar{3}m1$ crystal phase. For the remaining three structures, it was shown that the structural distortions due to the different H ordering patterns are too small to be
visible in XRD patterns.

We analyzed in detail the vibrational properties of the three lower symmetry structures. At 0 K, \(P\tilde{3}m1\) and \(P\tilde{3}\) structures exhibit unstable phonon modes with imaginary frequencies. Calculations of the phonon spectra at finite temperature show that these instabilities persist up to at least 600 K for \(P\tilde{3}m1\) and up to at least 300 K for \(P\tilde{3}\). The \(C2/m\) structure is dynamically stable.

The analysis of the Raman spectra, and the comparison between experiment and calculations suggest that the several extra peaks in the experimental spectra recorded at liquid nitrogen temperature are the result of ordering of hydrogen on a lower-symmetry lattice, like the one found in the \(C2/m\) structure.

The analysis of the trajectories of the H atoms during vibrations at 300 K and 600 K shows that H explore a wide space region extending both parallel to the octahedral planes, but also in the interlayer space.

But the actual structure of brucite at low temperature can be a mixture of several low-symmetry phases, from which the \(C2/m\) is a promising example. Moreover, the final answer concerning the behavior of H atoms will be obtained only when simulations take into account the complete quantum nature of hydrogen.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

P. Treviño thanks CONACYT for the financial support that was provided for her Ph.D studies. Support from Conacyt project 152153 is also recognized. A. H. R. acknowledge the support of NSF under grants 1434897, 1740111 and DOE under grant DOE DE-SC0016176. S. L.-M. thanks CONACYT of Mexico for financial support through the program “Cátedras para Jóvenes Inves-
tigadores”. The authors gratefully acknowledge the computing
time granted by LANCAD and CONACYT on the supercomputer
Miztli at LSV DGTIC UNAM. Also, some of the computing for
this project was performed with the resources of the IPCYT Su-
percomputing National Center for Education & Research, grant
TKII-R2018-SLM1. We acknowledge the support from the Ex-
treme Science and Engineering Discovery Environment (XSEDE),
an organization that is supported by the National Science Foun-
dation Grant No. ACI-1053575, the supercomputer Stampede at
an organization that is supported by the National Science Foun-
ture Science and Engineering Discovery Environment (XSEDE),
TKII-R2018-SLM1. We acknowledge the support from the Ex-
Miztli at LSVP DGTIC UNAM. Also, some of the computing for

References
3 W. Fan, S. Sun, L. You, G. Cao, X. Song, W. Zhang and H. Yu,
1967, 137, 4–5.
6 F. Pascale, S. Tosoni, C. Zicovich-Wilson, P. Ugliengo, R.
7 L. Desgranges, G. Calvarin and G. Chevrier, Acta Cryst. B,
1996, 52, 82–86.
8 J. B. Parise, K. Leinenweber and D. J. Weidner, Amer. Miner.,
9 T. S. Duffy, C. Meade and Y. Fei, Amer. Miner., 1995, 80, 222–
230.
13 P. T. Jochym, A. M. Oles, K. Parlinski, J. Lazewski, P. Piekarz
47, 3522–3529.
11186.
5192.
25 S. López-Moreno, A. H. Romero, J. Mejía-López and
26 S. López-Moreno, A. H. Romero, J. Mejía-López, A. Muñoz
27 J. A. Barreda-Arqués, S. López-Moreno, M. N. Sanz-Ortiz,
F. Aguado, R. Valiente, J. González, F. Rodríguez, A. H.
2013, 88, 214108.
28 X. Gonze, G.-M. Rignanese and R. Caracas, Z. Kristallogr.
125107.
30 X. Gonze, F. Jollet, F. A. Araujo, D. Adams, B. Amadon, T. Appendolcourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk,
E. Bousquet, F. Bruneval, D. Caliste, M. Cote, F. Dahm,
F. D. piese, M. Delaveau, M. D. Gennar, B. Dorado, C. Espejo,
G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi,
Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. L. Janssen, S. L.
Roux, A. Levit, A. Lherbier, F. Liu, I. Lukacivec, A. Martin,
C. Martins, M. J. T. Oliveira, S. Ponce, Y. Pouillon, T. Rangel,
G.-M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A.
Shukri, M. Stankovski, M. Torrent, M. J. V. Setten, B. V. Tro-
eye, M. J. Verstraeete, D. Waroquier, J. Wiktor, B. Xue, A. Zhou
and J. W. Zwanziger, Comp. Phys. Commun., 2016, 205,
106.
31 X. Gonze, G. Rignanese, M. Verstraeete, J. Betiken, Y. Pouillo-
lon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami,
P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval,
L. Reininger, R. Godby, G. Onida, D. Hamann and D. Allan, Z.
119, 67–98.
33 R. Caracas and E. Bobociciou, Amer. Miner., 2011, 96, 437–
443.
34 O. Hellman, P. Steneteg, I. A. Abrikosov and S. I. Simak, Phys.
35 O. Hellman and I. A. Abrikosov, Phys. Rev. B, 2013, 88,
144301.
11875–11884.
1129.
42 X. Xia, D. J. Weidner and H. Zhao, Amer. Miner., 1998, 83,
68–74.
25, 4080–4088.

