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Highlights

Highlights:

1. Robust nonlinear observer for on-line estimation of VFA in continuous
Anaerobic Digesters.

2. Only the methane outflow rate is available for online measurement.

3. The proposed observer is able to the estimation of VFA in different
operation conditions.

4. The observer convergence is analyzed by using Lyapunov stability
techniques.
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Abstract

This paper deals with the design of a robust nonlinear oles@w a software sensor to achieve
the on-line estimation of the concentration of Volatiletiz#tcids (VFA) in a class of continuous
Anaerobic Digesters (AD). Taking into account the limitediability of on-line sensors for AD
process, in this contribution is assumed that only the nmetlwautflow rate is available for on-
line measurement. The estimation metholdased ora modified version for a two-dimensional
mathematical model of AD process. From thé&etiential algebraic observability approach it is
shown that the VFA concentration is detectable from the aratoutflow rate measurements.
The observer convergence is analyzed by using Lyapunoilistaéchniques. Numerical simu-
lations illustrate the féectiveness of the proposed estimation method for a fouedgional AD
model with uncertainties associated with unmodeled dyosmand disturbances in the inflow
composition.

Key words: Anaerobic Digestion; State observer; VFA estimation; Utaia reaction systems;
Software sensors.

1. Introduction

The Anaerobic Digestion (AD) has gained considerable ingrme lately as a wastewater
treatment technology to reduce organic matter in agro-foddstrial wastes and municipal ef-
fluents. At the same time AD produces biogas, consistindyfiesstmethane CH,4) and carbon
dioxide (COy) and provides a versatile source of renewable energy, firecmethane from bio-
gas can be used for replacing the fossil fuels in both heapamer generation and as vehicle
fuel (Weiland, 2010). From renewable power resource viémtpimcreasing the methane outflow
rate is one of the key issues in the optimal operation of aieprocesses (Kravaris & Savog-
lidis, 2012; Lara-Cisneros et al., 2015; Stamatelatou.etl8B7). Nevertheless, its widespread
application has been limited because of thi&dlilties involved in achieving stable operation of
the AD process (Benyahia et al., 2012; Hess & Bernard, 206i8a&m et al., 2015; Sbarciog et
al., 2010, 2011). So that, the optimal operation of AD predesomplicated to reach, mainly
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because of their highly nonlinear and unstable naturebitibh by substrates or products and
by the substantial unmodeled dynamics (Hess & Bernard, ;2808rciog et al., 2010; Serhani
et al., 2011; Shen et al., 2007). In fact, it is well known tthegt inhibition of the methanogenic
bacteria growth by accumulation of Volatile Fatty Acids @JRnduces the acidification of the

system and leads to the process failure (Hess & Bernard,, lz8ciog et al., 2010; Shen et al.,
2007). Additionally, due to fluctuations in the inlet comjtio® makes the optimal operation of
the AD process very hard to keep in an open-loop configurdhitindez-Acosta et al., 2008).

In this way, the implementation of innovative control sclesnfor optimal and robust sta-
bilization of AD process requires advanced on-line measerdg systems for a more adequate
monitoring (Dochain, 2008; Lara-Cisneros et al., 2015)wkleer, the existing monitoring equip-
ment for critical variables of anaerobic processes suchrganic acid concentrations and the
main bacterial populations are too expensive and requiensive maintenance (Gaida et al.,
2012). Only few variables as pH, temperature and gaseotiswutte are available in a cost
effective manner for on-line measurement. An interestingradtive is to take advantage of a
mathematical model in conjunction with a limited set of ¢afalle measurements that provides
an estimate of the time evolution for the key process vaemid the use of the so-called state
observers (software sensors) (Luenberger, 1971; MohdAli.e2015). The design and appli-
cation of state observers in bioprocesses has been an anti@ever the last decades (Bastin
& Dochain , 1990; Dochain, 2003). Specifically for the AD pegs, in literature we can find
different state estimation schemes from classical Kalmansfited adaptive observers schemes
to asymptotic and interval observers (Bastin & Dochain ,@®ernard et al., 2000; Diop &
Simeonov, 2009; Dochain, 2003, 2008; Gaida et al., 2012gHawet al., 2014, Kalchev et al.,
2011; Rocha-Cobzatl et al., 2015). The aim of most statergbse proposed in literature is to
provide the estimation for the key AD variables from the melmeasurement of the organic
substrate concentration (expressed as chemical oxygearadbrar the total organic fatty acids
concentrations (or both) (Rodriguez et al.,, 2015). Hawen practice the biogas flow rate can
be more easily measured on-line thats the organic substtateentration or specific bacterial
populations (Kalchev et al., 2011). In fact, today the adeahmonitoring schemes are only
possible by mean of spectroscopy-based instrumentatigpmgnts (Madsen et al., 2011). The
on-line estimation of the key variables in AD processes whiely the biogas outflow rate is
available for on-line measurement is an open issue in ctliterature. Nevertheless, only a few
works can be found in open literature in regards to estima@hemes of AD from biogas out-
flow monitoring (Bernard et al., 2000; Carlos-Hernandealet2012; Diop & Simeonov, 2009;
Haugen et al., 2014, Kalchev et al., 2011). In Bernard et28l00) an asymptotic observer has
been proposed for estimation of COD and VFA from the on-lineepus measurement. This
kind of observers is based on a state transformation leadiagsubsystem independent of the
growth kinetics expressions. The main drawback of the asyticpobservers is that requires
perfect knowledge®f the yield codficients (or a ratio of them), and may be very sensitive to
unknown load disturbances (Diop & Simeonov, 2009). Morently, in Carlos-Hernandez et al.
(2012) is proposed a control strategy for bicarbonate eggud in AD process based in a fuzzy
controller with a Takagi-Sugeno observer composed by 4al loloservers. Also, in (Haugen et
al., 2014; Kalchev et al., 2011) Kalman-type observers lmen proposed for the estimation
of key variables in AD process with only methane gas flow meament. The main issue of
the local observers approaches is their poor performamagpferating condition far from of the
designed conditions, mainly for strongly nonlinear andimsically unstable systems (Dochain,
2003).

In this contribution we propose a robust estimation methaseld on a nonlinear observer
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composed by a linear plus sigmoid injection terms, with tine @ compute the time evolution
of the VFA concentration in a class of AD process which usdg orethane outflow rate mea-
surement. In our contribution, the modified version for a-imensional mathematical model
of AD process, that includes the dynamics for the methanooutate, is used to the observer
design purpose. The detectability for VFA concentratioshiswn by applying the éerential
algebraic approach. The observer convergence is analyzedibg Lyapunov stability tech-
nigues. Numerical simulations illustrate thieetiveness of the proposed estimation method for
a four-dimensional AD model with uncertainties associat@ti unmodeled dynamics and dis-
turbances in the inflow composition. The rest of the paperdamized as follows: In Section 2
the AD mathematical model used in the observer design i€pted, also the problem statement
is presented and some issues related with the VFA detdtyabi discussed. Section 3 contains
the design of the proposed observer scheme and its coneergesperties are analyzed. Numer-
ical experiments that illustrate the performance of theopsed estimation approach is shown in
Section 4. Some concluding remarks are discussed in Ségtion

2. Model description and problem statement

Let us consider a simple AD model proposed in Andrews (1968&) accounts for a single
degradation stage of the soluble organic subst@t&y the methanogenic biomaXs

u()x

kS & X+ knCHa

wherek; is the yield coéficient associated to substrate degradationdfdtands for methanogenic
bacterial growth rate. The corresponding mass-balanca fmntinuous anaerobic process it
reads:

S
X

u(Ss — S) — k()X (1)
u(-)X — auX (2)

whereu is the dilution rate and is the fraction of bacterial not attached onto a support, (i.e
being dfected by the dilution rate in the digester). Because of thebddy of methane in the
liquid phase is very low, the concentration of dissolvedhmaae is neglected, and the produced
methane is assumed to go directly out of the digester, witothflow rate of methane g&3y
proportional to the growth rate of the methanogenic bionises, Bernard et al. (2001))

Qu = k()X 3)

whereky, is the yield coéicient for the methane production. With respect to the spegifiwth
rate for the methanogenic populations, in Bernard et aD12@ is assumed to be described by
a nonmonotonic function of the substrate concentratioth thie following properties:
Property 1. u € C*(Sp), whereSp = {S € R|O < S < Sy} with Sy, < o0; and there exist a value
S* e Sp suchthaj < u(S*) =u e RV S € Sp, with iz < oo as the upper bound @f
Property 2. (Concavity property) The first derivative @f with respect toS, denoted by’
satisfies the follows: (g)’ > 0YS < S*; i/ = 0 atS = S* and; (b)u’ < 0¥S > S*, where
Se SD

The aim of this work is to design a robust observer for therestion of limiting substrate
S in anaerobic digestion based only on online measurementsdthane outflow rat®y. For

3
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this purpose, we will take into account the dynamics for tlethrane outflow rate. From (3) we
can calculate the time derivative of Q as follows.

d . . . .
21— Qu = k()X + Xi(S)) = H(S)Qu — ruQu + kXi(S)
Now from the chain rule we have

du dudS

#S) = 4 = gsgr = KOs = S) ~ku(S)X)

whereu’(S) = g—’é . By replacing the above expression

Qu = (1(S) ~ @) Qu + kn(U(S ~ S) ~ k(S)X)Xu( (S) 4)
Hence, the modified AD model is given by
S = uSr-S)-kuS)X (5)
X = p(S)X-auX (6)
Qv = (u(S) - au)Qum + kn(U(St — S) — k(S)X) X/ (S) (7)

Remark 1. The modified AD model (5-7) admits operational equilibrigfdent to washout)
given by

S
= (@)HS-S)
kn(ak) (S - S)u(S)

O
EJRNIN )

whereS satisfieg(S) — au = 0.
We can write (5-7) as a nonlinear single output system ofdne f

X f(x, u) 8)
y = Cx 9)

wherex = (S, X, Qu)’ € R2 is the vector of dynamic states; the vector fi€ldR3 x R — R3 is
defined as
u(Srt — x1) — kp(xa) %2
f(X, U) = ,u(X]_)Xz — auXp (10)
(u(%1) — au)xg + Km(U(St — X1) — kepe(Xa) X2) Xot' (Xa)

andC = [0, 0, 1] such thaty = Cx = X3 = Qu.

2.1. On the observability

In order to give a background to the algebraifeatiential observability used in this contribu-
tion the following definitions are considered (Aguilarfi€r, 2003; Diop & Fliess, 1991; Fliess,
1990).

A differential fieldK is a commutative field of characteristic zero, which is egeghwith a
single derivationg : K — K such that, for ang, b € K, 4(a+b) = a+band 2 (ab) = ab+ ab.

A constant oK is an element € K such that'= 0.
4
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A differentiable field extensiob/K is given by two dfferential fieldsK, L, such that the
derivation ofK C L is the restriction tK of the derivation ofL. An element ofL is said to be
differentially algebraic oveK if, and only if, it satisfies an algebraicftirential equation with
codficients inK. The extensiorL/K is said to be dterentially algebraic if, and only if, any
element ofL is differentially algebraic oveK.

Notation. We denoteK (), wherex is a subset of the fiierentiable subfield generated Ky
andx.

A ground field is a fieldk which is fixed in a given situation, such that everything take
place "over’k. Letk be a given dferential ground field as a field of functions. A system is
a finitely generated flierential extensionK/k. A dynamics is a system where a finite subset
u = (u, ..., uy) c K of control variables has been distinguished, such that;tensionK/k{u)
is differentially algebraic. An input-output systems is a dynamithere a finite subset =
(Y1, ... Yp) € K of output variables has been distinguished. This meansaitaielement of
K satisfies a dferential-algebraic equation with déieients, which are rational functions over
k(u,y) in the components af, y and a finite number of their time derivatives.

Then an elemeny in K is said to be algebraically observable with respedity} if it is
algebraic over the dierentiable field(y, u).

Definition 1. (Fliess, 1990) A system variabjee K is said to be algebraically observable if,
and only if, it is algebraic overdy, u), so thaty satisfies a dferential polynomial in terms of u,
y and some of its time derivatives, i.e.,

P, u, U, .., u®y,y, . yV) = 0
with cogficients over ky, u).

The above definition is called the Algebraic Observabilign@ition (AOC) and means that
any state variable is algebraic oV€y, uy, i.e., is an algebraic function of the componentsiof
y and of a finite number of their derivatives. It is known thastefinition is equivalent to the
classic observability rank condition for systems of therf¢B-9)(see Fliess (1990)).

In order to analyze the AOC condition for the system (8-9) Wweutd find a dfferential
polynomial in terms ofk, u, y and their time derivatives. From (1)-(3) and (9) it is easgde
that a diferential equation of lowest order gf is the following

5<1—Sfu+x1u+%y=0 (12)

which shows that it is possible estima¢ewhile its dynamics remains stable in termsupf and
their time derivatives. In previous works (Lara-Cisnerbsalg 2012) has been shown that the
nominal two-dimensional system (1-2) admits a locally Etatontrivial equilibrium forau < u
(with u defined in Property 1). Now, by exploiting the cascade stmechf the modified version
for AD model (8) we can ensure that the system will be localgbke if au < p. Then the
following assumption is formulated.

Assumption 1. The dilution rate u remains at the bounded inter@at u < o~ 4.

Hence, under Assumption 1, we can say that the concentratierS is detectable with respect
to the pairy, y defined in (8-9).
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3. Observer design

Let us consider the uncertain AD model of the form

X f(x,u) + Af (12)
y = Cx (13)

wherex € R? is the state vector defined in (8-9) withe R andy € R; f(x, u) is the nominal
vector field (10) Af represent an uncertain term related with unmodeled dyrsaamd load dis-
turbances. Now, we will consider a class of robust obsenithrassigmoid-type output injection
(Aguilar-Lopez et al., 2014; Gomez-Acata et al., 2016pkz-Pérez et al., 2013; Neria-Gonzalez
et al., 2011). For this, we will consider the following asgtions:

Assumption 2. The uncertain term\f : R3 x R — R® given byAf = [Afy, Afp, Af3]T is
bounded in the sense thtfi|| < Zj with0< Ej < oo fori = 1,2, 3.

Assumption 3. The nominal vector field (10) is locally Lipschitz with respi X, i.e.||f(x, u)—
f(X, u)|| < L||x — X|| with L < co; and uniformly bounded with respect to u.

Proposition 1. The following dynamical system is an observer for the sy§t@qi 3)
= f(% u) +k(y - 9) + ks tanhb/(y - 9)] (14)

whereX € R is the estimation vectof, is the estimation value for the output signal> 0 and
ki, kg € R3 are the vectors of observer gains.

Proof : In order to show the convergence of the observer (14) we défenfollowing estimation
error as

e=Xx-X
the dynamics for the estimation error is given by
e= f(x,u)— f(Xu)+ Af —kCe-KkytanhfCe) (15)
whereCe =y - ¥. The following candidate Lyapunov function is proposed as
V(e) = e’ Qe (16)

with Q € R*3 is a symmetric positive definite matrix, i.€,= Q" > 0, and we denote byx|lo
the norm &"Qx)*/? such that|x||é = X"'Qx = |IXlg = (XTQX2.
Now, the time derivative o¥/(e) along the trajectories of (15) is
\VAR

Oclj—t =V(e) =e'Qe+&' Qe
replacing (15) we have
V = e'Q[f(x,u) - f(Ru) + Af — kCe - kgtanh@/Ce)] + [f(x,u) — f(X u) + Af — kCe -
kg tanh¢Ce)]" Qe

SinceQ is a symmetric matrix, it follows

V(e) = 2e" Q[ f(x, u) — f(% u) + Af] — 2e" Q[kCe+ kg tanh¢Cée)] (17)
6
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The symmetric matrixQ can be expressed &= MMT, then the norm
le" QL (x, u) — f(X W]ll = le"MMTf(x,u) - f(X u)lll = [I€" f]|
whereé’ = e"M andf = MT[f(x,u) — f(X, u)]. In this way, we can define the following norm

I87]l = (&"®)Y? = (e"MMTe)"2 = (e" Q)2 = leliq

In the same manner, the following norm is defined
Il = ([F(x, u)=F (R u]TMMTF(x u)= (& W)Y2 = ([F(x u)-f&WITQ[f(x, u)-f(R u))*? =
lIfllq

By applying the Cauchy-Schwarz inequality it follows
le" QL (x,u) — f(R W]ll = IE" fIl < 1Bl FIl = llelloll fllo

= [le" Q[ (x,u) — (X W]l < llellollfllo (18)
And similarly, €T QA || = [T ATl < [[BIIAT = llelloliAflg
= |le" QAf|l < llellollAfllo (19)

In the same manner
lle" Q[kq tanh¢.Ce)]|| = 18|

where€'= e"M andg = MT[kg tanh/Cé)]. It follows that

lle Q[kq tanh¢Ce)]ll < llellgllks tanheCe)lig (20)

and similarly

e’ QkCAll < lieflollkiCelo
with [[kCelo = ([kCeTQ[kCe)/2. By considering a matrix norm, it follows that

le" QI Cell < Ik Cllllelif (21)

where|lk Cll« is the matrix norm defined as the maxumum row sum of the mig@iz R3*3. In
this way, from (18)-(21)

V(e < 2[lIfllollello + 1A fligliellq — Ik Cll Il — lIks tanhgCe)llleflg]
From theAssumption 3we have
Ifllo = I (x, u) = f(X, U)lig < LIIX— X = Lllellg

Ifllo < Lllelo (22)
Now, from Assumption 2||Afi|| < & fori = 1,2, 3, and sincd|tanhf{Ce)|| < 1 we have

lIka tanh¢Ce)ll < [lkall

Thus, _

V(e) < 2[(L - IkCllx)lIElE + 1= — kllllelle] (23)
whereE = (Zy, Zp, Z3). Now by applying the Lyapunov stability criteria, the vexst of observer
gainsk; andky should be chosen in order to ke¥fe) < 0. Furthermore, getting back to the

7

Page 8 of 17



estimation error dynamics (15), and taking into accounQhrm defined above, it follow that
V(e) =e"Qe= ||e||é. Then, if we calculate the derivative with respect to theetim

dv(e) _dilely diellq
at - ar  AeleTg
From (23) it follows
dilel -
2llellq dtQ < 2[(L - [KCllw)llell% + I1E = Kdllllello]
then diel
g < (L= IKCll)lellg + 112 ~ kel (24)
The solution of the dferential inequality (24) satisfies
1= — kall
lle®llo < lleollg exp L — IkiClle)t + L IKClle [1-exp L - [IkCllw)t] (25)
whereey = €(0). Hence, whei — oo the norm of the estimation errge(t)|lo — Lﬁg"gl'l'm , or

iMeolle(®)llg < (L = IkCliw) IE - Kall

Therefore, in order to provide a small enough estimatiooretre following must be ensured
(L = lIkCllo) > |IE — kgll Or [lellg ~ O if |IE — kgl ~ O,these can be ensured with an appropriate
choice ofk andky. O

4. Numerical verification

The aim of this section is to illustrate the performance efribbust observer (14) by numer-
ical simulations using a more realistic AD model with two degation stages (acidogenic and
methanogenic degradation) for the soluble substrate alhden¢onsidered fluctuations in the in-
let composition. For this purpose the AD model developeddmird et al. (2001) is considered.
The underlying model assumes two main bacterial populstitive first one, called acidogenic
bacterialX;, consumes organic substr&g (total soluble Chemical Oxygen Demand COD ex-
cept Volatile Fatty Acids VFA) and produces VFA, that is cioiesed as secondary substrate
S, through an acidogenesis stage. The second populationkasymethanogenic bacteda,
uses VFA as substrate in a methanogenesis stage for grodtbraduces methane and carbon
dioxide. Thus, the global anaerobic process can be writghereduced biochemical reaction
network

()X
k1S1 qu—> ' X1 + koSo (26)
H2()X2
ksS; & Xo + kyCHy (27)

It is important to note that unlike to the one-stage degiadanodel (1-2), in Bernard et al.
(2001) it is considers two degradation stages for the selaljanic substrate as the two biore-
action (26-25). Hence, the corresponding mass-balanca é@ntinuous anaerobic process it

8
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reads:

S1 = D(Sir - S1) - kuua(S1)Xe (28)
X = p(S1)X1-aDXy (29)
S; = D(Sar — S2) + kopta(S1) X1 — kara(S2) X2 (30)
Xo = pa(S2)X2 - aDX, (31)

Similarly, in Bernard et al. (2001) the outflow rate of metagasQy proportional to the reaction
rate of the methanogenesis stage

Qm(é) = kap2(S2) X2 (32)

wherek, is the yield coéicient for the methane production. With respect to the spegifiwth
rates for the acidogenic and methanogenic populationseindd et al. (2001) are assumed to
be described by the Monod and Haldane expressions, resggctie.,

_ #1,maxsl
Ha(S1) = Ke1+ 51 (33)
/12(82) _ /lz,maxSZ (34)

Ks2 + So + Sg/K|2

where 1 max Ks1, tomax Ks2, and K2 are the maximum bacterial growth rate and the half-
saturation constant associated to the subsBateghe maximum bacterial growth rate in the
absence of inhibition, and the saturation and inhibitionstants associated to substr&te re-
spectively.

For numerical simulations the nominal parameter valuesrteg in Bernard et al. (2001)
have been used (see Table 1). It is important to remark thenfilg: the observer (14) only
requires a nominal vector field as has been explained in@e2fii.e., the nominal vector field
(10) is described by a single degradation stage with congtéat composition (see Section
2). The parameter values used for the nominal vector fiel)l 41 set ak; = ks, kn = kq
andu() = uo(S2) with S = S,. The observer gain vectors are set to the following values:
k = (-2,0.1,0.1)" andky = (-1,0.1,0.1)" with y = 15.

The performance of the proposed estimation methodologyhasvs in the Fig. 2 with
disturbances in the inlet composition (see Fig. 1). A consparwith a local Luenberger-
type observer was done to show the robustness of the propdsedver despite of changes
in the operative conditionsThe tuning methodology for the Luenberger-like observéraised
on a local linearization at the nominal equilibriutn= 4.0, X = 0.5672 Qy = 2.2310 and
u = 1.0174, using the pole placement technique wpth= (-1, -1, -2), then the observer’s
gains arek = (8.72 —3.29,3.89)". In the Fig 2b, we can see that the local performance of the
Luenberger-type observer is more close to the actual VFA@uatnation. It is important to note
that the best performance of the Luenberger-type obsesanly locally around of the operat-
ing conditions where it was designed (see Fig. I18)s well known that the main drawback of
the local observers approaches is their poor performamagpferating condition far from of the
designed conditions, mainly for strong nonlinear andisidally unstable systems. As it can be
see the Luenberger-type observer exhibit large overstamatdonger setting times for fiierent
operating conditions. In contrast, the proposed robughatbn methodology is able to com-
pensate unmodeled dynamics and load disturbancedferetit operating conditions which lead
to more satisfactory performance for the estimation of VieAaentration With respect to the

9
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Table 1: Nominal parameter values used in the numericallatinos (Bernard et al., 2001).

Parameter Value Units
kq 4214 g/9
ko 1165 mmoJ g
ks 268 mmoJ g
K 453 mmoJ g
Mimax 0.05 h-t
H2max 0.031 h-1
Ks1 7.1 g/L
Kso 9.28 mmol/L
K2 16 mmol/L
a 0.5 ——
Sit 10 g/L
So¢ 80 mmol/L

estimation of the concentration for the methanogenic iagtea Fig. 4 is shown the performance
of the proposed observer for the estimatiorXef Also, it shown a better estimation with respect
to the Luenberger-type observer with changes in the opgratnditions for AD process. The
performance of the proposed observer for parametric vamist=5%) in the nominal values for
the simplified model using for the observer design (8-10h@ in Fig. 6Finally, in order to
illustrate the &ect of the measurement noise, numerical simulations aferpsed assuming that
the methane outflow ra@y is corrupted by additive noise. In Fig. 5 an acceptable perémce

of the proposed estimation method is shown in presence ofumement noise. In the context
of experimental implementation of the proposed estimati@thodology there is a need a more
exhaustive analysis of the observer convergence in orgeptdade atuning methodologfor the
observer gain vector&(ky).

5. Conclusion

In this paper we have designed a robust nonlinear observahé&online estimation of
Volatile Fatty Acids (VFA) concentration, as a key varialleAnaerobic Digestion process,
only from methane outflow rate measurements. The obserbasisd ora modified version for
a simple AD model by including the dynamics for the metharaglpction. It is shown that the
observer structure composed by a linear with a sigmoid figie¢erms is able to reject unmod-
eled dynamics and load disturbances in AD process. Unlikleetdocal observers, the proposed
observer is able to the VFA estimation irffiégrent operation conditions.

The study of atuning methodologyor the observer’'s gains based on an exhaustive con-
vergence analysis in the context of experimental impleatent, need to be looked into more
deeply.
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Figure 5: Observer performance with additive noise in thasneable signal = Q.
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Figure 6: Observer performance with parametric variati@%9o) in the nominal values for the simplified model using
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