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López, Denis Dochain, Ricardo Femat, On-line estimation of VFA
concentration in anaerobic digestion via methane outflow rate
measurements, <![CDATA[Computers and Chemical Engineering]]> (2016),
http://dx.doi.org/10.1016/j.compchemeng.2016.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.compchemeng.2016.07.005
http://dx.doi.org/10.1016/j.compchemeng.2016.07.005


Page 1 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

 
Highlights: 
 

1. Robust nonlinear observer for on-line estimation of VFA in continuous 

Anaerobic Digesters. 

2. Only the methane outflow rate is available for online measurement.  

3. The proposed observer is able to the estimation of VFA in different 

operation conditions. 

4. The observer convergence is analyzed by using Lyapunov stability 

techniques. 

 

Highlights
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On-line estimation of VFA concentration in anaerobic digestion
via methane outflow rate measurements
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aFacultad de Ciencias Quı́micas, Universidad Autónoma de San Luis Potosı́, Zona Universitaria, San Luis Potosı́,
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dDivisión de Matemáticas Aplicadas, IPICYT. Camino a la Presa San José 2055, C.P. 78216, San Luis Potosı́, Mexico.

Abstract

This paper deals with the design of a robust nonlinear observer as a software sensor to achieve
the on-line estimation of the concentration of Volatile Fatty Acids (VFA) in a class of continuous
Anaerobic Digesters (AD). Taking into account the limited availability of on-line sensors for AD
process, in this contribution is assumed that only the methane outflow rate is available for on-
line measurement. The estimation method isbased ona modified version for a two-dimensional
mathematical model of AD process. From the differential algebraic observability approach it is
shown that the VFA concentration is detectable from the methane outflow rate measurements.
The observer convergence is analyzed by using Lyapunov stability techniques. Numerical simu-
lations illustrate the effectiveness of the proposed estimation method for a four-dimensional AD
model with uncertainties associated with unmodeled dynamics and disturbances in the inflow
composition.

Key words: Anaerobic Digestion; State observer; VFA estimation; Uncertain reaction systems;
Software sensors.

1. Introduction

The Anaerobic Digestion (AD) has gained considerable importance lately as a wastewater
treatment technology to reduce organic matter in agro-foodindustrial wastes and municipal ef-
fluents. At the same time AD produces biogas, consisting firstly of methane (CH4) and carbon
dioxide (CO2) and provides a versatile source of renewable energy, sincethe methane from bio-
gas can be used for replacing the fossil fuels in both heat andpower generation and as vehicle
fuel (Weiland, 2010). From renewable power resource viewpoint, increasing the methane outflow
rate is one of the key issues in the optimal operation of anaerobic processes (Kravaris & Savog-
lidis, 2012; Lara-Cisneros et al., 2015; Stamatelatou et al., 1997). Nevertheless, its widespread
application has been limited because of the difficulties involved in achieving stable operation of
the AD process (Benyahia et al., 2012; Hess & Bernard, 2008; Schaum et al., 2015; Sbarciog et
al., 2010, 2011). So that, the optimal operation of AD process is complicated to reach, mainly

1Corresponding author. E-mail: rfemat@ipicyt.edu.mx
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because of their highly nonlinear and unstable nature, inhibition by substrates or products and
by the substantial unmodeled dynamics (Hess & Bernard, 2008; Sbarciog et al., 2010; Serhani
et al., 2011; Shen et al., 2007). In fact, it is well known thatthe inhibition of the methanogenic
bacteria growth by accumulation of Volatile Fatty Acids (VFA) induces the acidification of the
system and leads to the process failure (Hess & Bernard, 2008; Sbarciog et al., 2010; Shen et al.,
2007). Additionally, due to fluctuations in the inlet composition makes the optimal operation of
the AD process very hard to keep in an open-loop configuration(Méndez-Acosta et al., 2008).

In this way, the implementation of innovative control schemes for optimal and robust sta-
bilization of AD process requires advanced on-line measurement systems for a more adequate
monitoring (Dochain, 2008; Lara-Cisneros et al., 2015). However, the existing monitoring equip-
ment for critical variables of anaerobic processes such as organic acid concentrations and the
main bacterial populations are too expensive and require extensive maintenance (Gaida et al.,
2012). Only few variables as pH, temperature and gaseous outflow rate are available in a cost
effective manner for on-line measurement. An interesting alternative is to take advantage of a
mathematical model in conjunction with a limited set of available measurements that provides
an estimate of the time evolution for the key process variables is the use of the so-called state
observers (software sensors) (Luenberger, 1971; MohdAli et al., 2015). The design and appli-
cation of state observers in bioprocesses has been an activearea over the last decades (Bastin
& Dochain , 1990; Dochain, 2003). Specifically for the AD process, in literature we can find
different state estimation schemes from classical Kalman filters and adaptive observers schemes
to asymptotic and interval observers (Bastin & Dochain , 1990; Bernard et al., 2000; Diop &
Simeonov, 2009; Dochain, 2003, 2008; Gaida et al., 2012; Haugen et al., 2014; Kalchev et al.,
2011; Rocha-Cózatl et al., 2015). The aim of most state observers proposed in literature is to
provide the estimation for the key AD variables from the on-line measurement of the organic
substrate concentration (expressed as chemical oxygen demand) or the total organic fatty acids
concentrations (or both) (Rodrı́guez et al.,, 2015). However, in practice the biogas flow rate can
be more easily measured on-line thats the organic substrates concentration or specific bacterial
populations (Kalchev et al., 2011). In fact, today the advanced monitoring schemes are only
possible by mean of spectroscopy-based instrumentation equipments (Madsen et al., 2011). The
on-line estimation of the key variables in AD processes whenonly the biogas outflow rate is
available for on-line measurement is an open issue in current literature. Nevertheless, only a few
works can be found in open literature in regards to estimation schemes of AD from biogas out-
flow monitoring (Bernard et al., 2000; Carlos-Hernández etal., 2012; Diop & Simeonov, 2009;
Haugen et al., 2014; Kalchev et al., 2011). In Bernard et al. (2000) an asymptotic observer has
been proposed for estimation of COD and VFA from the on-line gaseous measurement. This
kind of observers is based on a state transformation leadingto a subsystem independent of the
growth kinetics expressions. The main drawback of the asymptotic observers is that requires
perfect knowledgeof the yield coefficients (or a ratio of them), and may be very sensitive to
unknown load disturbances (Diop & Simeonov, 2009). More recently, in Carlos-Hernández et al.
(2012) is proposed a control strategy for bicarbonate regulation in AD process based in a fuzzy
controller with a Takagi-Sugeno observer composed by 45 local observers. Also, in (Haugen et
al., 2014; Kalchev et al., 2011) Kalman-type observers havebeen proposed for the estimation
of key variables in AD process with only methane gas flow measurement. The main issue of
the local observers approaches is their poor performance for operating condition far from of the
designed conditions, mainly for strongly nonlinear and intrinsically unstable systems (Dochain,
2003).

In this contribution we propose a robust estimation method based on a nonlinear observer
2
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composed by a linear plus sigmoid injection terms, with the aim of compute the time evolution
of the VFA concentration in a class of AD process which uses only methane outflow rate mea-
surement. In our contribution, the modified version for a two-dimensional mathematical model
of AD process, that includes the dynamics for the methane outflow rate, is used to the observer
design purpose. The detectability for VFA concentration isshown by applying the differential
algebraic approach. The observer convergence is analyzed by using Lyapunov stability tech-
niques. Numerical simulations illustrate the effectiveness of the proposed estimation method for
a four-dimensional AD model with uncertainties associatedwith unmodeled dynamics and dis-
turbances in the inflow composition. The rest of the paper is organized as follows: In Section 2
the AD mathematical model used in the observer design is presented, also the problem statement
is presented and some issues related with the VFA detectability are discussed. Section 3 contains
the design of the proposed observer scheme and its convergence properties are analyzed. Numer-
ical experiments that illustrate the performance of the proposed estimation approach is shown in
Section 4. Some concluding remarks are discussed in Section5.

2. Model description and problem statement

Let us consider a simple AD model proposed in Andrews (1968) that accounts for a single
degradation stage of the soluble organic substrate (S) by the methanogenic biomassX.

ktS
µ(·)x
# X + kmCH4

wherekt is the yield coefficient associated to substrate degradation andµ(·) stands for methanogenic
bacterial growth rate. The corresponding mass-balance fora continuous anaerobic process it
reads:

Ṡ = u(S f − S) − ktµ(·)X (1)

Ẋ = µ(·)X − αuX (2)

whereu is the dilution rate andα is the fraction of bacterial not attached onto a support (i.e.,
being affected by the dilution rate in the digester). Because of the solubility of methane in the
liquid phase is very low, the concentration of dissolved methane is neglected, and the produced
methane is assumed to go directly out of the digester, with the outflow rate of methane gasQM

proportional to the growth rate of the methanogenic biomass(see, Bernard et al. (2001))

QM = kmµ(·)X (3)

wherekm is the yield coefficient for the methane production. With respect to the specific growth
rate for the methanogenic populations, in Bernard et al. (2001) it is assumed to be described by
a nonmonotonic function of the substrate concentration, with the following properties:
Property 1. µ ∈ C∞(SD), whereSD =

{

S ∈ R
∣

∣

∣0 ≤ S ≤ Sm
}

with Sm < ∞; and there exist a value
S∗ ∈ SD such thatµ ≤ µ(S∗) , µ ∈ R ∀S ∈ SD, with µ < ∞ as the upper bound ofµ.
Property 2. (Concavity property) The first derivative ofµ with respect toS, denoted byµ′

satisfies the follows: (a)µ′ > 0 ∀S̃ < S∗; µ′ = 0 at S̃ = S∗ and; (b)µ′ < 0 ∀S̃ > S∗, where
S̃ ∈ SD

The aim of this work is to design a robust observer for the estimation of limiting substrate
S in anaerobic digestion based only on online measurements for methane outflow rateQM. For

3
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this purpose, we will take into account the dynamics for the methane outflow rate. From (3) we
can calculate the time derivative of Q as follows.

dQM

dt
= Q̇M = km(µ(S)Ẋ + Xµ̇(S)) = µ(S)QM − αuQM + kmXµ̇(S)

Now from the chain rule we have

µ̇(S) =
dµ
dt
=

dµ
dS

dS
dt
= µ′(S)(u(S f − S) − ktµ(S)X)

whereµ′(S) = dµ
dS . By replacing the above expression

Q̇M = (µ(S) − αu)QM + km(u(S f − S) − ktµ(S)X)Xµ′(S) (4)

Hence, the modified AD model is given by

Ṡ = u(S f − S) − ktµ(S)X (5)

Ẋ = µ(S)X − αuX (6)

Q̇M = (µ(S) − αu)QM + km(u(S f − S) − ktµ(S)X)Xµ′(S) (7)

Remark 1. The modified AD model (5-7) admits operational equilibria (different to washout)
given by

S̄ = S̄

X̄ = (αkt)−1(S f − S̄)

Q̄M = km(αkt)−1(S f − S̄)µ(S̄)

whereS̄ satisfiesµ(S̄) − αu = 0.

We can write (5-7) as a nonlinear single output system of the form

ẋ = f (x, u) (8)

y = Cx (9)

wherex = (S,X,QM)′ ∈ R3
+

is the vector of dynamic states; the vector fieldf : R3 × R → R
3 is

defined as

f (x, u) =





















u(S f − x1) − ktµ(x1)x2

µ(x1)x2 − αux2

(µ(x1) − αu)x3 + km(u(S f − x1) − ktµ(x1)x2)x2µ
′(x1)





















(10)

andC = [0, 0, 1] such thaty = Cx= x3 = QM.

2.1. On the observability

In order to give a background to the algebraic differential observability used in this contribu-
tion the following definitions are considered (Aguilar-López, 2003; Diop & Fliess, 1991; Fliess,
1990).

A differential fieldK is a commutative field of characteristic zero, which is equipped with a
single derivationd

dt : K → K such that, for anya, b ∈ K, d
dt(a+ b) = ȧ+ ḃ and d

dt(ab) = ȧb+ aḃ.
A constant ofK is an elementc ∈ K such that ˙c = 0.

4
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A differentiable field extensionL/K is given by two differential fieldsK, L, such that the
derivation ofK ⊆ L is the restriction toK of the derivation ofL. An element ofL is said to be
differentially algebraic overK if, and only if, it satisfies an algebraic differential equation with
coefficients inK. The extensionL/K is said to be differentially algebraic if, and only if, any
element ofL is differentially algebraic overK.

Notation.We denoteK〈κ〉, whereκ is a subset of the differentiable subfield generated byK
andκ.

A ground field is a fieldk which is fixed in a given situation, such that everything takes
place ”over”k. Let k be a given differential ground field as a field of functions. A system is
a finitely generated differential extensionK/k. A dynamics is a system where a finite subset
u = (ui, ..., um) ⊂ K of control variables has been distinguished, such that the extensionK/k〈u〉
is differentially algebraic. An input-output systems is a dynamics where a finite subsety =
(y1, ..., yp) ⊂ K of output variables has been distinguished. This means thatany element of
K satisfies a differential-algebraic equation with coefficients, which are rational functions over
k〈u, y〉 in the components ofu, y and a finite number of their time derivatives.

Then an elementχ in K is said to be algebraically observable with respect to{u, y} if it is
algebraic over the differentiable fieldk〈y, u〉.

Definition 1. (Fliess, 1990) A system variableχ ∈ K is said to be algebraically observable if,
and only if, it is algebraic over k〈y, u〉, so thatχ satisfies a differential polynomial in terms of u,
y and some of its time derivatives, i.e.,

P(χ, u, u̇, ..., u(k), y, ẏ, ..., y(l)) = 0

with coefficients over k〈y, u〉.

The above definition is called the Algebraic Observability Condition (AOC) and means that
any state variable is algebraic overk〈y, u〉, i.e., is an algebraic function of the components ofu,
y and of a finite number of their derivatives. It is known that this definition is equivalent to the
classic observability rank condition for systems of the form (8-9)(see Fliess (1990)).

In order to analyze the AOC condition for the system (8-9) we should find a differential
polynomial in terms ofx, u, y and their time derivatives. From (1)-(3) and (9) it is easy tosee
that a differential equation of lowest order ofx1 is the following

ẋ1 − S f u+ x1u+
kt

km
y = 0 (11)

which shows that it is possible estimatex1 while its dynamics remains stable in terms ofu, y and
their time derivatives. In previous works (Lara-Cisneros et al., 2012) has been shown that the
nominal two-dimensional system (1-2) admits a locally stable nontrivial equilibrium forαu < µ̄
(with µ̄ defined in Property 1). Now, by exploiting the cascade structure of the modified version
for AD model (8) we can ensure that the system will be locally stable if αu < µ̄. Then the
following assumption is formulated.

Assumption 1. The dilution rate u remains at the bounded interval0 < u < α−1µ̄.

Hence, under Assumption 1, we can say that the concentrationx1 = S is detectable with respect
to the pairu, y defined in (8-9).

5
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3. Observer design

Let us consider the uncertain AD model of the form

ẋ = f (x, u) + ∆ f (12)

y = Cx (13)

wherex ∈ R
3
+

is the state vector defined in (8-9) withu ∈ R andy ∈ R; f (x, u) is the nominal
vector field (10),∆ f represent an uncertain term related with unmodeled dynamics and load dis-
turbances. Now, we will consider a class of robust observer with a sigmoid-type output injection
(Aguilar-López et al., 2014; Gómez-Acata et al., 2015; L´opez-Pérez et al., 2013; Neria-González
et al., 2011). For this, we will consider the following assumptions:

Assumption 2. The uncertain term∆ f : R
3 × R → R

3 given by∆ f = [∆ f1,∆ f2,∆ f3]T is
bounded in the sense that‖∆ fi‖ ≤ Ξi with 0 < Ξi < ∞ for i = 1, 2, 3.

Assumption 3. The nominal vector field (10) is locally Lipschitz with respect to x, i.e.,‖ f (x, u)−
f (x̂, u)‖ ≤ L‖x− x̂‖ with L < ∞; and uniformly bounded with respect to u.

Proposition 1. The following dynamical system is an observer for the system(12-13)

˙̂x = f (x̂, u) + kl(y− ŷ) + kd tanh[γ(y− ŷ)] (14)

wherex̂ ∈ R3 is the estimation vector,̂y is the estimation value for the output signal,γ > 0 and
kl , kd ∈ R

3 are the vectors of observer gains.

Proof : In order to show the convergence of the observer (14) we definethe following estimation
error as

e= x− x̂

the dynamics for the estimation error is given by

ė= f (x, u) − f (x̂, u) + ∆ f − klCe− kd tanh(γCe) (15)

whereCe= y− ŷ. The following candidate Lyapunov function is proposed as

V(e) = eTQe (16)

with Q ∈ R3x3 is a symmetric positive definite matrix, i.e.,Q = QT > 0, and we denote by‖x‖Q
the norm (xTQx)1/2 such that‖x‖2Q = xTQx,⇒ ‖x‖Q = (xT Qx)1/2.
Now, the time derivative ofV(e) along the trajectories of (15) is

dV
dt
= V̇(e) = eTQė+ ėTQe

replacing (15) we have
V̇ = eTQ[ f (x, u) − f (x̂, u) + ∆ f − klCe− kd tanh(γCe)] + [ f (x, u) − f (x̂, u) + ∆ f − klCe−
kd tanh(γCe)]TQe
SinceQ is a symmetric matrix, it follows

V̇(e) = 2eTQ[ f (x, u) − f (x̂, u) + ∆ f ] − 2eTQ[klCe+ kd tanh(γCe)] (17)
6
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The symmetric matrixQ can be expressed asQ = MMT , then the norm
‖eT Q[ f (x, u) − f (x̂, u)]‖ = ‖eT MMT [ f (x, u) − f (x̂, u)]‖ = ‖ẽT f̃ ‖
whereẽT

= eT M and f̃ = MT [ f (x, u) − f (x̂, u)]. In this way, we can define the following norm

‖ẽT‖ = (ẽTẽ)1/2
= (eT MMTe)1/2

= (eTQe)1/2
= ‖e‖Q

In the same manner, the following norm is defined
‖ f̃ ‖ = ([ f (x, u)− f (x̂, u)]T MMT [ f (x, u)− f (x̂, u)])1/2

= ([ f (x, u)− f (x̂, u)]TQ[ f (x, u)− f (x̂, u)])1/2
=

‖ f ‖Q

By applying the Cauchy-Schwarz inequality it follows
‖eT Q[ f (x, u) − f (x̂, u)]‖ = ‖ẽT f̃ ‖ ≤ ‖ẽ‖‖ f ‖ = ‖e‖Q‖ f ‖Q

⇒ ‖eTQ[ f (x, u) − f (x̂, u)]‖ ≤ ‖e‖Q‖ f ‖Q (18)

And similarly,‖eT Q∆ f ‖ = ‖ẽT
∆̃ f ‖ ≤ ‖ẽ‖‖∆̃ f ‖ = ‖e‖Q‖∆ f |Q

⇒ ‖eTQ∆ f ‖ ≤ ‖e‖Q‖∆ f ‖Q (19)

In the same manner
‖eTQ[kd tanh(γCe)]‖ = ‖ẽϕ̃‖

whereẽ= eT M andϕ̃ = MT [kd tanh(γCe)]. It follows that

‖eTQ[kd tanh(γCe)]‖ ≤ ‖e‖Q‖kd tanh(γCe)‖Q (20)

and similarly
‖eTQ[klCe]‖ ≤ ‖e‖Q‖klCe‖Q

with ‖klCe‖Q = ([klCe]TQ[klCe])1/2. By considering a matrix norm, it follows that

‖eT Q[klCe]‖ ≤ ‖klC‖∞‖e‖
2
Q (21)

where‖klC‖∞ is the matrix norm defined as the maxumum row sum of the matrizklC ∈ R3X3. In
this way, from (18)-(21)

V̇(e) ≤ 2[‖ f ‖Q‖e‖Q + ‖∆ f ‖Q‖e‖Q − ‖klC‖∞‖e‖
2
Q − ‖kd tanh(γCe)‖‖e‖Q]

From theAssumption 3, we have

‖ f ‖Q = ‖ f (x, u) − f (x̂, u)‖Q ≤ L‖x− x̂‖ = L‖e‖Q

‖ f ‖Q ≤ L‖e‖Q (22)

Now, fromAssumption 2,‖∆ fi‖ ≤ Ξi for i = 1, 2, 3, and since‖ tanh(γCe)‖ ≤ 1 we have

‖kd tanh(γCe)‖ ≤ ‖kd‖

Thus,
V̇(e) ≤ 2[(L − ‖klC‖∞)‖e‖2Q + ‖Ξ − kd‖‖e‖Q] (23)

whereΞ = (Ξ1,Ξ2,Ξ3). Now by applying the Lyapunov stability criteria, the vectors of observer
gainskl andkd should be chosen in order to keepV̇(e) ≤ 0. Furthermore, getting back to the

7
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estimation error dynamics (15), and taking into account theQ norm defined above, it follow that
V(e) = eT Qe= ‖e‖2Q. Then, if we calculate the derivative with respect to the time

dV(e)
dt
=

d‖e‖2Q
dt
= 2‖e‖Q

d‖e‖Q
dt

From (23) it follows

2‖e‖Q
d‖e‖Q

dt
≤ 2[(L − ‖klC‖∞)‖e‖2Q + ‖Ξ − kd‖‖e‖Q]

then
d‖e‖Q

dt
≤ (L − ‖klC‖∞)‖e‖Q + ‖Ξ − kd‖ (24)

The solution of the differential inequality (24) satisfies

‖e(t)‖Q ≤ ‖e0‖Q exp (L − ‖klC‖∞)t +
‖Ξ − kd‖

L − ‖klC‖∞

[

1− exp (L − ‖klC‖∞)t
]

(25)

wheree0 = e(0). Hence, whent → ∞ the norm of the estimation error‖e(t)‖Q→
‖Ξ−kd‖

L−‖klC‖∞
, or

limt→∞‖e(t)‖Q ≤ (L − ‖klC‖∞)−1‖Ξ − kd‖

Therefore, in order to provide a small enough estimation error the following must be ensured
(L − ‖klC‖∞) ≫ ‖Ξ − kd‖ or ‖e‖Q ∼ 0 if ‖Ξ − kd‖ ∼ 0,these can be ensured with an appropriate
choice ofkl andkd. �

4. Numerical verification

The aim of this section is to illustrate the performance of the robust observer (14) by numer-
ical simulations using a more realistic AD model with two degradation stages (acidogenic and
methanogenic degradation) for the soluble substrate and will be considered fluctuations in the in-
let composition. For this purpose the AD model developed in Bernard et al. (2001) is considered.
The underlying model assumes two main bacterial populations, the first one, called acidogenic
bacterialX1, consumes organic substrateS1 (total soluble Chemical Oxygen Demand COD ex-
cept Volatile Fatty Acids VFA) and produces VFA, that is considered as secondary substrate
S2 through an acidogenesis stage. The second population, known as methanogenic bacteriaX2,
uses VFA as substrate in a methanogenesis stage for growth and produces methane and carbon
dioxide. Thus, the global anaerobic process can be written as the reduced biochemical reaction
network

k1S1
µ1(·)X1

# X1 + k2S2 (26)

k3S2
µ2(·)X2

# X2 + k4CH4 (27)

It is important to note that unlike to the one-stage degradation model (1-2), in Bernard et al.
(2001) it is considers two degradation stages for the soluble organic substrate as the two biore-
action (26-25). Hence, the corresponding mass-balance fora continuous anaerobic process it

8
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reads:

Ṡ1 = D(S1 f − S1) − k1µ1(S1)X1 (28)

Ẋ1 = µ1(S1)X1 − αDX1 (29)

Ṡ2 = D(S2 f − S2) + k2µ1(S1)X1 − k3µ2(S2)X2 (30)

Ẋ2 = µ2(S2)X2 − αDX2 (31)

Similarly, in Bernard et al. (2001) the outflow rate of methane gasQM proportional to the reaction
rate of the methanogenesis stage

QM(ξ) = k4µ2(S2)X2 (32)

wherek4 is the yield coefficient for the methane production. With respect to the specific growth
rates for the acidogenic and methanogenic populations, in Bernard et al. (2001) are assumed to
be described by the Monod and Haldane expressions, respectively, i.e.,

µ1(S1) =
µ1,maxS1

KS1 + S1
(33)

µ2(S2) =
µ2,maxS2

KS2 + S2 + S2
2/KI2

(34)

whereµ1,max,KS1, µ2,max,KS2, and KI2 are the maximum bacterial growth rate and the half-
saturation constant associated to the substrateS1, the maximum bacterial growth rate in the
absence of inhibition, and the saturation and inhibition constants associated to substrateS2, re-
spectively.

For numerical simulations the nominal parameter values reported in Bernard et al. (2001)
have been used (see Table 1). It is important to remark the following: the observer (14) only
requires a nominal vector field as has been explained in Section 2, i.e., the nominal vector field
(10) is described by a single degradation stage with constant inlet composition (see Section
2). The parameter values used for the nominal vector field (10) are set askt = k3, km = k4

andµ(·) = µ2(S2) with S = S2. The observer gain vectors are set to the following values:
kl = (−2, 0.1, 0.1)T andkd = (−1, 0.1, 0.1)T with γ = 15.

The performance of the proposed estimation methodology is shown in the Fig. 2 with
disturbances in the inlet composition (see Fig. 1). A comparison with a local Luenberger-
type observer was done to show the robustness of the proposedobserver despite of changes
in the operative conditions.The tuning methodology for the Luenberger-like observer isbased
on a local linearization at the nominal equilibrium̄S = 4.0, X̄ = 0.5672, Q̄M = 2.2310 and
ū = 1.0174, using the pole placement technique withp = (−1,−1,−2), then the observer’s
gains arek = (8.72,−3.29, 3.89)T. In the Fig 2b, we can see that the local performance of the
Luenberger-type observer is more close to the actual VFA concentration. It is important to note
that the best performance of the Luenberger-type observer is only locally around of the operat-
ing conditions where it was designed (see Fig. 3).It is well known that the main drawback of
the local observers approaches is their poor performance for operating condition far from of the
designed conditions, mainly for strong nonlinear and intrinsically unstable systems. As it can be
see the Luenberger-type observer exhibit large overshootsand longer setting times for different
operating conditions. In contrast, the proposed robust estimation methodology is able to com-
pensate unmodeled dynamics and load disturbances for different operating conditions which lead
to more satisfactory performance for the estimation of VFA concentration.With respect to the

9
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Table 1: Nominal parameter values used in the numerical simulations (Bernard et al., 2001).

Parameter Value Units
k1 42.14 g/g
k2 116.5 mmol/g
k3 268 mmol/g
k4 453 mmol/g
µ1max 0.05 h−1

µ2max 0.031 h−1

KS1 7.1 g/L
KS2 9.28 mmol/L
KI2 16 mmol/L
α 0.5 −−

S1 f 10 g/L
S2 f 80 mmol/L

estimation of the concentration for the methanogenic bacteria, in Fig. 4 is shown the performance
of the proposed observer for the estimation ofX2. Also, it shown a better estimation with respect
to the Luenberger-type observer with changes in the operating conditions for AD process. The
performance of the proposed observer for parametric variations (±5%) in the nominal values for
the simplified model using for the observer design (8-10) is shown in Fig. 6Finally, in order to
illustrate the effect of the measurement noise, numerical simulations are performed assuming that
the methane outflow rateQM is corrupted by additive noise. In Fig. 5 an acceptable performance
of the proposed estimation method is shown in presence of measurement noise. In the context
of experimental implementation of the proposed estimationmethodology there is a need a more
exhaustive analysis of the observer convergence in order toprovide atuning methodologyfor the
observer gain vectors (kl , kd).

5. Conclusion

In this paper we have designed a robust nonlinear observer for the online estimation of
Volatile Fatty Acids (VFA) concentration, as a key variablein Anaerobic Digestion process,
only from methane outflow rate measurements. The observer isbased ona modified version for
a simple AD model by including the dynamics for the methane production. It is shown that the
observer structure composed by a linear with a sigmoid injection terms is able to reject unmod-
eled dynamics and load disturbances in AD process. Unlike tothe local observers, the proposed
observer is able to the VFA estimation in different operation conditions.

The study of atuning methodologyfor the observer’s gains based on an exhaustive con-
vergence analysis in the context of experimental implementation, need to be looked into more
deeply.

6. Acknowledgements

This work was partially supported by the project: ”Bioprocess and Control Engineering for
Watewater Treatment”(BITA). G. Lara-Cisneros thanks to CONACyT by the postdoctoral re-
search grant.

10



Page 12 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

(a)

0 2 4 6 8 10 12 14 16 18 20
5

10

15

60

70

80

90

 

 
In

le
t c

om
po

si
tio

n

time [days]

 S
2f

 S
1f
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Schaum, A.,Álvarez, J., Garcia-Sandoval, J.P. & Gonzalez-Alvarez, V.(2015). On the dynamics and control of a class
of continuous digesters.Journal of Process Control, 34, 82-96.

Serhani, M., Gouze, J.L. & Raissi, N. (2011). Dynamical study and robustness for a nonlinear wastewater treatment
model.Nonlinear Analysis: Real World Applications, 12, 487-500.

Shen, S., Premier, G.C., Guwy, A. & Dinsdale, R. (2007). Bifurcation and stability analysis of an anaerobic digestion
model.Nonlinear Dynamics, 48(4), 391-408.

Stamatelatou, K., Lyberatos, G., Tsiligiannis, C., Pavlou, S., Pullammanappallil, P. & Svoronos, S.A. (1997). Optimal
and suboptimal control of anaerobic digesters,Enviromental Modelling and Assessment, 2, 355-363.

Utkin, V.I. (1992).Sliding Modes in Control and Optimization, Springer-Verlag, Berlin.
Walcott, B.L. & Zak, S.H. (1987). State observation of nonlinear uncertain dynamical systems.IEEE Transaction on

Automatic Control, 32(2), 166-170.
Weiland, P. (2010). Biogas production: current state and perspectives,Applied Microbiology and Biotechnology, 85,

849-860.

14



Page 16 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.2

1.4

1.6

1.8

2.0

 

 

Q

time [hours]

 Measured signal
 Real value

 

 

V
FA

 [m
m

ol
 L

-1
]

time [days]

 Actual 
 Observed

Figure 5: Observer performance with additive noise in the measurable signaly = QM .
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Figure 6: Observer performance with parametric variations(±5%) in the nominal values for the simplified model using
for the observer design (8-10).
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