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Abstract

The role of the intrinsic properties of graphen@&exGO) and partially reduced graphene
oxide (rGO), and their use as redox mediator (RMjeiported, for the first time, on the
chemical transformation of iopromide (IOP), an mated X-ray contrast medium, under
anaerobic conditions. The structural and physicost@ properties of GO containing
different types of oxygenated groups, were analyagdoehm titrations, point of zero
charge (pHzc), pKa’s distribution, scanning electron microscd®EM), electrochemical
analysis, as well as by Raman, Fourier transforfraied and UV-Vis spectroscopy.
Complete characterization of GO-based materialealed the removal of different
oxygenated groups, such as epoxy and hydroxyl gro@md a transition from an
amorphous to a more crystalline structure on ghrtraduced GO. Moreover, when rGO
materials were tested as RM, they promoted a faatet greater extent of IOP
transformation up to 5.2-fold with sulfide as efteat donor. Results showed a correlation
between the reduction degree of GO and its aliditgct as RM, which was reflected in the
dehalogenation and transformation degree of |OP.ditkwhally, the chemical

transformation pathway of IOP is proposed basedPhC-MS analysis.
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1. Introduction

Graphene is a two-dimensional crystal structurehvetthickness of one atom, and is
composed of spbonded carbon atoms densely packed in two crgstatnetworks [1].
Such two-dimensional carbon sheet possesses umoygerties such as, mechanical
strength, high surface area (2608/gr{2]) and rapid electron transfer capacity [3high
promote its broad application in sensors, nanagleis, biomedicine, capacitors, among
other industrial uses [1]. Also, graphene-basedmeaterials possess distinct open edges
around their periphery, allowing to have high redist due to their nonbonding-electrons

[4] and therefore, extraordinary catalytic actest are observed [5,6]. In addition,
graphene-based materials, such as graphene oxi@, (fresent a wide array of
oxygenated groups in their chemical structure ligdroxyl, epoxy, carboxyl and carbonyl
groups [7]. In this sense, it has been reported tte use of chemical substances with
qguinone groups (two carbonyl groups [8]) in théfusture can mediate the transformation
of recalcitrant pollutants by enhancing electramsfer processes [9-11]. Such chemical
substances with the capacity to receive and yilldirens are known as redox mediators
(RM) and they have been applied to accelerateréimsfiormation of recalcitrant pollutants
[12]. On the other hand, it was reported that tih@plgene basal planes of GO-based
materials have very high electric conductivity [i8, which has been reported as another
mechanism to mediate the reductive transformatfarea@alcitrant pollutants by enhancing

electron transfer, due to the electric conductiypitgperties of the graphitic carbon surface

[5].

Carbon materials like activated carbon, activatatban fibers, carbon xerogel, graphite
and carbon nanotubes (CNT), have been used as Rkeimeductive transformation of
recalcitrant pollutants such as azo dyes [9,11,1#f,oaromatic compounds[16-21],
nitramine compounds [17,22-24], nitroglycerin [2Bitro herbicides [26], dibromophenol
[27], and tetrachloroethane [28], since they hawhvarsity of surface oxygenated groups
like quinone groups, which can mediate the reductibthese pollutants. Recently, it was
shown that graphene-based materials, such as G@édnded graphene oxide (rGO), can
facilitate the reduction of some recalcitrant ptahts by enhancing electron transfer [9,29].
For example, Colunga et al., [30] reported the afsEO as RM for the biotic and abiotic
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reduction of an azo dye (reactive red 2) and 3ronitrobenzene, showing that the
presence of GO increased up to 10-fold and 3.6-foldl abiotic and biotic reduction,
respectively. Similarly, Lu et al., [31] reportedemoval up to 90% for biotic and abiotic
reduction of acid yellow 36 using a quinone-rGO posite as RM. Fu and Zhu [5] and
Gao et al., [6] evaluated the abiotic reductiomitfobenzene using GO and rGO as RM,
respectively, concluding that the properties ofsthecarbon materials facilitated the
reduction of this pollutant. Also, Wang et al., [32ported an increase up to 2-fold in the
biotic transformation of nitrobenzene when a rG@eanbic sludge composite was used as
novel biocatalyst. Fu et al., [33] tested the cdpglof GO and CNT on the reductive
dechlorination of hexachloroethane, concluding ttiee mediation efficiency of these
materials is 10 times higher than humic acid malkeFinally, Oh et al., [21] investigated
the abiotic reduction of nitroaromatic compoundsshsas dinitrotoluene, pendimethalin
and trifluralin using rGO and CNT as RM, achieviagemoval for the tree pollutants of
around 50% and 88% for CNT and rGO, respectiveher&fore, it can be inferred that
graphene-based materials could mediate redox oeacinvolved in the transformation of
recalcitrant pollutants. However, the use of thasanomaterials on the abiotic

transformation of pharmaceutical compounds hadveeh reported yet.

lodinated X-ray contrast media (ICM), such as iopide (IOP), are pharmaceuticals
widely used in intravascular administration witglabal consumption of approximately 3.5
x 10° Kg per year [34]. IOP is a priority pollutant, whiis beginning to be studied because
of its high recalcitrance through conventional wasiter treatment, as well as in
environment compartments. Moreover, IOP has be¢ectss in effluents from sewage
treatment plants, surface water systems, groundwatel even in drinking water ag/L
levels [35,36]. In addition, it has been reporteat tL5 % of people who have been exposed
to this pharmaceutical have suffered some advesaetions such as nauseas, vomiting,
headache, hives, etc. [37]. Recent reports indi¢chtd IOP is poorly removed in
conventional wastewater treatment facilities anagstit is released into receiving water
bodies [38—40]. Its recalcitrance is attributeddw biodegradability by aerobic bacteria
[41] and to the high hydrophilicity of the benzeamgy substituents (hydroxyl and carboxyl
groups) [36]. As a consequence, it is necessargropose strategies for the reductive

transformation of this recalcitrant pollutant.
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The aim of the present work was to evaluate thensit properties of both GO and

partially reduced GO and their effect on the abittansformation of IOP in basal medium,
conducted in batch systems, and to explain thectemumechanisms taking place under
non-oxidizing conditions. Additionally, the chemiicasurface and morphological

characterization was carried out by Fourier tramsfanfrared spectroscopy, Boehm
titrations, point of zero charge (pkt), pKa'’s distribution, scanning electron microscopy
(SEM), electrochemical analysis, Raman and UV-\iscsroscopy, in order to elucidate

the importance of these properties in the abibtadt as electron shuttle.

2. Experimental

2.1. Chemicals

All chemicals with 99% purity were used as receiviEdP (CAS No. 73334-07-3) was
obtained from Bayer Schering Pharma (Mexico CityexMo) with commercial name
Ultravist® 370; L-ascorbic acid (L-AA, ACS gradepi GOLDEN BELL (Mexico City,
Mexico) and sodium sulfide (N&-9H0) from Fisher-Scientific (New Jersey, USA). The
basal medium (pH = 7.6) used in abiotic reductissags was composed of (g/L);HPO,
(0.25), NaHCQ (5.0), MgSQ-7H,0 (0.1), NHCI (0.28), CaCGl}2H,0O (0.01), and trace
elements (1 mL/L), with a composition describedeetsere [10]. A phosphate buffer
(pH= 7.0) was used during electrochemical analysils a composition of (g/L): KHPO,
(3.32) and KHPQOy, (4.21). All chemicals used for basal medium andsphate buffer
elaboration were obtained from either Sigma-AldieciMerck. All solutions were prepared

with deionized water (18.1 - cm).

Graphene oxide used in the present study was medhtom Graphene Supermarket®
(New York, USA), with the following characteristicdhigh density and viscosity,
concentration of 6.2 g/L in aqueous solution, srglyer > 60 %, flake size between 0.5
and 5 pm, C/O ratio 3.95.

2.2. Chemical reduction of GO

GO was reduced with L-AA as follows: 10 mL of GAwmns (0.1 mg/mL) and 100 mg
of L-AA were placed in a 30 mL beaker. Immediatedgmples were vigorously stirred at

room temperature. In order to obtain materials wilifferent reduction degrees, reduction

4
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kinetics of GO were carried out for 0.5, 1, 1.532and 4 hours. After the reduction time,
samples were centrifuged at 13,300 rpm for 10 miarder to remove all L-AA remaining
by decantation. Recovered rGO was rinsed with degohwater three times and then

dispersed in the same medium (deionized water).

2.3. Physical and chemical characterization of GSeld materials

2.3.1. Zeta potential and oxidation reduction potentiaRE)

Zeta potential measurements of samples were pegfbrmaqueous solution at pH 7.0 in a
MICROTRAC Zetatrac NPA152-31A equipment. On theeothand, ORP of GO samples
and of IOP were assessed under experimental conslibf chemical reduction using a
Thermo Scientific electrode with a reference soluf Ag/AgCl Orion 900011 (+415 mV
at 30°C). All ORP measurements were performed ensid anaerobic chamber with a
N2:H2 (95:5% v/v) atmosphere.

2.3.2. Chemical characterization of GO samples

Fourier transform-infrared (FT-IR) spectra wereorgled on a Thermo-Scientific FTIR
(Nicolet 6700 model) spectrophotometer in transimissnode with a resolution of 4 ¢m
and 128 scans. For sample preparation, GO-basediaisitwere mixed with KBr at a ratio
of 1:99% (w/w) for subsequent drying at 60 °C f@ K, and then compressed into a

transparent pellet for measurement.

Carbonyl, phenolic, lactonic and carboxylic groupsre quantified by potentiometric
titrations as described by Boehm [42] with an awbentitrator (Mettler-Toledo T70) as
follow: 0.05 g/L of GO-based materials were corgdctwith 25 mL of neutralizing
solutions. The solutions were continuously stired125 rpm for 5 days. After that,
samples were titrated with 0.1 N HCIl. The pointzefo charge (pkkc) of GO-based
materials was determined according to Bandosz 8] the automatic titrator mentioned
above. For this procedure, 0.005 mg/mL of GO-basatérials were contacted with 25 mL
of 0.01 N NaCl. The solutions were stirred at 1@ rfor 24 h. Finally, the samples were
titrated with 0.1 N NaOH. The surface charge and pistributions were determined by the
SAEIU-pK-Dist© (1994) program [44].
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2.3.3. Morphological and optical properties

Microscopic observations were carried out on a Helios Nanolab 600 Dual Beam
Scanning Electron Microscope (SEM) operated at %XU0and 86 pA. Samples were
suspended in isopropanol and then sonicated faniB0 Elemental analyses were carried
out by energy dispersive spectrometer (EDS) ors#ime equipment. Raman spectra were
recorded at room temperature with a RENISHAW MiBa@man Invia spectrometer with
laser frequency of 514 nm as excitation sourcegtnoa 50 X objective. UV-Vis
transmittance spectra of GO-based materials in aguelispersion were collected by a
Thermo Spectronic Aqua Mate UV-Vis spectrophotomatea wavelength of 550 nm. The

wavelength scan was performed from 400 to 600 ringwdeionized water as blank.
2.3.4. Electrochemical characterization

Electrochemical analysis of GO-based materials agsgessed by cyclic voltammetry (CV)
technique using a VSP SAS Biologic system contdobg the EC-Lab software V 10.23
with a three-electrode cell configuration contagnega Ag/AgCI/KCI (sat) as the reference
electrode, and a graphite rod and glassy carbatretk2 (GCE) as the counter and working
electrode, respectively. The electrolytic solutwwas a phosphate buffer at pH 7.0 (See
section 2.1) saturated with argon for 5 min. Allpexkments were carried out at room
temperature. The working electrode was preparddlasvs, GO or rGO was dispersed in
ethanol (spectrophotometric grade) and then 8 pteveeispended in the GCE surface.
Ethanol was volatilized and the material remainegasited on the GCE surface. Before

deposition, the GCE was polished in a nylon cloith\&@lumina suspension.
2.4.Adsorption isotherms

These experiments were conducted to evaluate tRedd@sorption capacity of the GO-
based materials at pH of basal medium (pH= 7.6 S&stion 2.1). Into plastic tubes of 15
mL of capacity, 5 mg/L of materials and IOP (frorf02to 800 pg/L) were added.
Afterwards, the tubes were filled with basal meditongive a total volume of 10 mL.

Samples were kept under stirring and constant teatyse (125 rpm and 25 °C) for 5 days.
The remaining concentration of IOP in solution wasasured by high-performance liquid

chromatography (HPLC) as described in Section 2.6.
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2.5. Chemical transformation of iopromide

The capacity of GO-based materials to serve asm®M¥a chemical transformation of IOP
was evaluated providing Ma as primary electron donor. Sulfide is an impdrtaducing
compound commonly found in several industrial effits, and their use as electron donor
for redox conversion of different pollutants haemeeported [12]. To assess this abiotic
reduction, batch incubations were prepared in 60serum flasks as follow: 5 mg/L of GO
or rGO were contacted with basal medium and thdyblea for 5 min with a gas mixture
of N2:CO, (80:20 %). The flasks were sealed and the gasspaad was flushed for 3 min
with the gas mixture mentioned above. Inside anewnac chamber (NH, (95:5%)
atmosphere), sulfide was added from gaNatock solution to obtain a final concentration
of 2.6 mM. Bottles were incubated for 24 h with stamt stirring and temperature (125 rpm
and 25 °C). After pre-incubation, IOP was addednfiam anaerobic stock solution in order
to obtain an initial concentration of 400 pg/L. Tiogal working volume was 50 mL in all
incubations. The experiments were carried out Bdays in the dark. Samples of 1 mL
were taken at selected times and the concentrafid®P was measured as described in
Section 2.6. Control experiments without GO-basadiennals and/or N& were performed
to evaluate the stability of IOP, the direct reduetby sulfide and the adsorption onto the

materials.
2.6. Analytical procedures

The concentration of IOP was measured by HPLC usiAgilent Technology 1260 series
chromatograph, equipped with a column synergi 4UWirBhRP 80R (250 x 4.60 mm, 4
micron) from Phenomenex. Forty microliters of saenplkere injected with an autosampler.
The mobile phase, composed of HPLC grade wateneaeatbnitrile (85:15 %), was pumped
at a flow rate of 0.5 mL/min. IOP was detected @t’@ and wavelengths of 238 nm with
an Agilent Technologies diode array detector. her quantification of IOP concentration
in solution during adsorption and chemical reductexperiments, a calibration line with
different concentrations of IOP (from 100 to 100§l in basal medium was performed.
The peak area according to each concentration veasumed in a retention time of 11.6
min. The detection limit was 100 pg/L.
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The transformation products of IOP were identifieg HPLC coupled to mass
spectroscopy (HPLC-MS) in a Varian ® 500-MS ionptrenass spectrometer, with
electrospray ionization of 90 V and mass-to-chdng&) range of 100 to 2000 m/z.

3. Results and discussion

3.1.Characterization of GO and rGO materials

Seven samples of GO-based materials with differedtiction degrees were analyzed by
zeta potential and ORP. As known, zeta potentia physical property exhibited by any
material in dispersion and measures the poterniffarence between the dispersion medium
and the stationary layer of fluid attached to dispd particles [45,46]. Fig. 1 shows that
zeta potential values increased from -23.41 to@m¥ as GO (unreduced GO, urGO) was
farther reduced for up to 4 h (rGO-4). Negativeazaitential values are due to the presence
of negatively charged functional groups, like oxyaed groups, present at the graphitic
layers [47]. When the reduction degree of GO imgeda a greater concentration of
negatively charged functional groups are eliminate@O sheets, resulting in an increase
on zeta potential values [46]. For this reason, #kas the most positive zeta potential
value (25.26 mV).

ORP is an important parameter to assess the abflisychemical compound to accept or
donate electrons under particular conditions [48&refore, it is a fundamental parameter
related to the redox mediating activity. In thisise, carbon materials, like GO, exhibit
redox activity, which is related to the oxygenaftadctional groups in the material [49].

The results reported also in Fig. 1 show that OB#ceably increased from 60.8 mV for

urGO to 501.9 mV for rGO-4 as GO was less oxidizedich may be because aromatic
ring substituents, such as carbonyl groups, ten@cdmept electrons when oxygenated
groups are eliminated from the basal plane [8,90,Bl1s0, it has been reported that
quinone groups (a couple of carbonyl groups) canaacelectron acceptors [8]. In this
sense, the electron activity of quinone groups isbns that carbonyl groups can act in
concert to stabilize radicals via resonance. Resmnaconsiderations permit the

stabilization of radicals in equilibrium with quinoid structures. After that, these radicals
can accept electrons and become anions. Next,nibesacan transfer electrons back and

become radicals, or they can interact with proiarsolution. Finally, the reversible proton

8
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transfer leads to form of phenolic (hydroquinon&ss[8]. As will be discussed below, the
carbonyl groups remain after reduction of GO, whinight satisfactorily explain the

increase in ORP values due to their ability to ptedectrons as explained above.

According to these results, three samples weretgeldor further analysis: urGO, rGO for
2 h (rGO-2) and rGO-4 since they contain a lowenimediate and high ORP, which should

be a key factor on the electrons transfer duriegctiemical reduction of I0P.

Photographic images of urGO, rGO-2 and rGO-4 akevshin supplementary material
(SM, Fig. 1S). A color change from brownish yellgkig. 1S-a) to black (Fig. 1S-c) was
observed as the reduction degree of urGO was greslech is probably a result of an
increase in the hydrophobicity of rGO materialsysed by the removal of oxygenated
groups, that subsequently causes the agglomeratiagraphene-based nanosheets [13] as

can be seen in the micrographs reported in SM ().

Several studies have reported that transmittaneetrsp can be used to determine the
transparency of GO, which is intrinsically linkemlits morphology [52,53]. Nair et al., [54]
estimated that each graphene sheet reduces 2.8 #atismittance at 550 nm. Therefore,
the number of sheets in GO samples was measurest timese experimental conditions.
Transmittance percent at 550 nm was obtained flwencbrresponding spectra and it is
shown in SM (Fig. 3S). Insert of Fig. 3S, depidie estimated number of sheets in each
sample in agueous suspension according to Nail. §64. It can be observed that the
sheets number integrating the GO-based materialggeoximately 6, 22 and 27 for urGO,
rGO-2 and rGO-4, respectively. This can be attedub the removal of oxygenated groups
as a result of the chemical reduction, which consatly produces hydrophobic graphene
sheets that tend to restack due to strenginteractions [55]. Hence, graphitic layers are

attached to each other, forming materials congjsifra greater number of sheets.

Raman spectroscopy was employed to distinguishotickered and disordered crystal
structures of GO-based materials. Fig. 2 shows Raspactra of urGO and rGO samples.
The presence of G and D bands for urGO spectrum589 cnt and 1354 cni,

respectively, is evident. The D band correspondsefects in the graphite network, which

are related to the presence of edges of graphiéinep, atomic vacancies, bond-angle
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disorders, bond-length disorders or oxygenated ggdb6,57]. On the other hand, the G
band is related to defect-free graphite networlg],[®orresponding to the first-order
scattering of E2g mode [59]. The reduction of G@ut result in structural changes,
therefore, it is expected that GO undergoes moqggickl changes after it has been
chemically reduced due to the removal of differexygenated groups at the basal plane
and also at the edges. Raman spectra for rGO-2@@d4 confirm this observation (see
Fig. 2). The G band is moved to a lower waveler(@®95 cn), which is closer to the
reported value for pristine graphite (1570 9mindicating that the chemical reduction of
GO was conducted [60]. Moreover, the relative isiignof the D band around 1350 ¢m
increases as the reduction degree is higher, wdpgarently contradicts the idea that the
reduction process should restore the graphiticroadeexpected by theory. This behavior
can be explained due to the holes formed by CO @@xl evolution from oxygenated
groups removal forming internal edge sites, whiclghh increase the D band upon
deoxygenation. On the other hand, Stankovich e{HE3] suggested that this behavior is
due to that reduction increases the number of aiordamains of smaller overall size in
graphene, which would lead to an increase of gik; Iratio as will be discussed later.
However, Paredes et al., [61] are at odds withaksimption based on the decrease of the
2D band at 2920 cthof GO spectrum. They suggest that this contramficttan be
explained by assuming that the carbon lattice in &3 certain degree of amorphous
character due to the oxidation process itself [@Hcause the GO sheets contain many
oxygenated groups in their chemical structuregaicant distortion of the aromatic rings
occurs, and hence, a certain amorphous characepiscted after the reduction process
due to the remaining oxygenated groups in this nat2]. Therefore, an increase in the
intensity of the D band after the GO chemical reidiccan be possible [13] as reported by
several studies [13,60-63].

On the other hand, it can be seen that the infersio I/l increased with the reduction
degree as follows: 0.56, 0.88 and 1.16 for urGOD+Zand rGO-4, respectively. This
change suggests a decrease in the average size sif domains after chemical reduction
of GO [59], due to the partially ordered graphitgstal structure of graphene sheets [13].
Many equations have been employed to estimate ‘heage crystallite size of the sp

domains (La) in GO samples using théd ratio [59,64]. Hence, the La values (in nm) of

10
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the GO-based materials under study were calculzdsdd on the Cancodo et al., modified
equation [65]. The calculated La values are 2919948 and 14.69 nm for urGO, rGO-2
and rGO-4, respectively. These results indicatettiemaverage crystallite size decreased as
the reduction degree of the samples is higher, lwiben be due to the breakdown of
crystallites with initial oxidation [46]. Also, thidecrease can be explained by the creation
of new graphitic shdomains, which are smaller in size than thoseemte urGO [13].
The La values showed the transition from amorph®Q0sto a more crystalline form as the

reduction grade advanced.

It is clear that the surface chemical propertie&6f changed as it was reduced, as shown
in Table 1. The total concentration of acidic grewgecreased from 4.39 to 1.65 milli-
equivalents (meq)/g when GO was chemically reddoed h, mainly due to the removal
of carboxylic, lactonic and phenolic groups. Moregvwe can observe a reduction
percentage (based on total concentration of oxygdrgroups) of 19.1 and 64.4 for rGO-2
and rGO-4, respectively. Also, a slight decreasecamonyl groups was observed, from
1.23 to 1.1 meqg/g. Chemical deoxygenation of G@asiplex and may be selective to
certain groups, depending on the reducing readenthis sense, the binding energy
between graphene sheets and different oxygenatagpgrcan be an important index to
evaluate the reduction of each group attached déoctltbon plane [66]. Kim et al., [67]
reported that epoxy groups are more stable thamkybgroups in GO. However, Gao et
al., [68] reported that oxygenated groups attadioethe inner aromatic domain are not
stable at room temperature and hence, they arevesimoore easily than those attached at
the edges of an aromatic domains. In addition atitbors suggested, based on theoretical
calculations, that carboxylic groups are slowlyueetl, while carbonyl groups are much
more stable. As can be seen in Table 1, carbowyipgr were less removed, which may be
due to their greater stability in comparison witte tother oxygenated groups. Moreover,
Gao et al., [63] proposed that the reduction of @&ihg L-AA is carried out by two-step
SN, nucleophilic reactions, where epoxy and hydroxgdups could be opened by the
oxygen anion of L-AA with a SNnucleophilic attack. On the other hand, accordmthe
literature, quinone (two carbonyl groups [8]) arfmlaamene groups, which are of particular

interest in the present study, have been propasadttas redox mediators [8,49].
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As known, the surface charge distribution andgtof carbon-based materials depend on
the type and concentration of oxygen-containingugso These results are included in
Table 1 and SM (Fig. 4S). The pkt of GO samples increased as their reduction degree
was higher, from 2.3 for urGO to 6.55 and 7.25fB80-2 and rGO-4, respectively. The
acidic surface and low piAc of urGO is due to high concentration of carboxylastonic

and phenolic groups [69]. Accordingly, Boehm tias (see Table 1) revealed that the
concentration of carboxylic and phenolic groupsreased about 85% in rGO-4 sample,
which was reflected in higher pkt [70]. This is in agreement with FT-IR spectra gsab

that provided additional evidence of a decreasgidic oxygenated groups, which will be

discussed later.

The surface of carbon materials may contain sevfaraitional groups whose acid-basic
characteristics may or may not resemble those divishual compounds. Therefore, the
presence of ionizable functional groups in the migtean be given by their pKa (or pH)
values [8]. Distribution of pKa values of GO sangis shown in SM (Fig. 5S). It can be
observed that the most prevalent pKa value of omgtgel groups present in urGO is 2.31,
which corresponds to carboxylic groups giving acidnaracter to the material [8]. Also,
when the reduction degree of GO is higher, the muatked values are 8.25 and 10.28,
suggesting the increase in basicity. It is to beadhat GO is known to be unstable at high
pH OH can catalyze the conversion of epoxides grougsytivoxyls groups [71]. Hence,
the interpretation of pKa values at high pH mustdien with care. On the other hand, the
observed distributions of pKa values of ionizabkgygenated groups explain the increases
of the pHzcof samples when these are further reduced (see TabBimilar results have
been reported by Konkena and Vasudevan [72]. Thagluded that GO sheets have more
acidic groups, such as carboxylic groups (pKa 4r8omparison with rGO sheets (pKa

8.0), which was reflected in the increase of zet@mtial values.

In order to evidence the removal of different fumcal groups through the reduction
process of GO, FT-IR spectra were recorded as showiig. 3. It can be observed the
stretching vibration of O-H groups from 3000 to B87i*. The urGO spectrum (Fig. 3A)

shows bands at 1720 and 15707croorresponding to C=0 stretching vibrations from

carboxyl and carbonyl groups, respectively. Furtieee, stretching vibrations of C-OH
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(1390 crit), C-O from epoxy groups (1100 &nand ketone groups (600-630 thtan
be observed [3,8,21,22]. As shown in rGO-2 and #5Gpectra (Fig. 3B and 3C),
intensities of FT-IR bands associated to oxygengtedps, such as C-OH (1390 ¢rand
C=0 (1720 from carboxylic groups) slightly decrehsghich agrees with data obtained by
Boehm titrations (see Table 1). Also, the bandensity of C-O stretching vibration
(1100 cm') dramatically decreased and the spectral sighalee to ketone groups (600-
630 cm) disappeared. Furthermore, the appearance of &m@aC stretching vibration
at 1620 crit was also observed [73,75,76]. These results shaivthe bands intensities
associated to oxygenated groups strongly decreagbdrespect to urGO, indicating the
efficiency of L-AA as reducing agent. Some studies/e reported that L-AA mainly
remove epoxy and hydroxyl groups [73,74,77].

In addition, FT-IR spectra of urGO, rGO-2 and rG@xposed to N& for 1 day (GO-
based materials were in contact with 2.6 mol/L @®Nat 25 °C and 125 rpm, and dried
before analysis) showed that only rGO-based méseeahibit a band at 668 ¢h
associated to C-S stretching vibration (see Fig. B8is link can be formed due to the high
nucleophilicity of reactive HSspecies and to the charge deficiency on the cadbdhe
carbonyl groups on rGO materials under study [08].the other hand, the reduction of GO
by sulfur-containing compounds, such as®land NaS0O;, has been previously reported
[78]. However, FT-IR spectra of rGO materials didt show a significant decrease of
oxygenated groups, which suggest that sulfide, midd promote reduction of these

functional groups in GO materials.

Besides, oxygenated groups present in GO-basediaisiglay a fundamental role in their

electrochemical properties [79]. Accordingly, tHeatrochemical evaluation of GO-based
materials deposited on a GCE was carried out byCMdechnique as shown in Fig. 4. It

can be observed the reduction peak of urGO at 9.8% Ag/AgCI/KCI (saturated)) with

a peak current of -0.072 mA. Ramesha and Samp@ih¢ported that the reduction of GO

is an irreversible electrochemically process, whiglgan at -0.6 V (vs saturated calomel
electrode (SCE)) and reaches a maximum at -0.8WsVSCE). Moreover, an inherent

reduction peak of GO in the cathodic region arotthd and -0.8 V (vs Ag/AgCI) has been

reported, due to possible reduction of epoxy, permxd aldehyde groups [81]. As it was
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observed in the FT-IR spectrum of urGO, one of ithentified oxygenated groups is of
epoxy type at 1100 cf Therefore, this peak (at -0.82 V) may be relatethe reduction

process of these oxygenated groups present in urGO.

Furthermore, it can be seen (Fig. 4) that the Bitgrof the cathodic peak currenkd)
varies according to the reduction degree of sampléh values of -0.031 and -0.025 mA
for rGO-2 and rGO-4, respectively. It has been regabthat a greater C/O atomic ratio in
rGO materials is correlated with an improved elmtttransferring capacity, which is
reflected in the current intensity [82]. In order determine the amount of carbon and
oxygen on GO-based materials, an EDS analysis edsrmed. Results indicated that the
carbon content in urGO, rGO-2 and rGO-4 was 2289 &and 68.9 %, respectively.
Similarly, the content of oxygen in urGO, rGO-2 ai®O-4 was 77.2, 62.1 and 31.1 %,
respectively. As evidenced, rGO materials contaimrgor amount of oxygenated groups in
their chemical structure as observed also in bdthRFspectra and Boehm titrations, which
increases the C/O ratio as the reduction degreanagg. As a consequence, the removal of
these oxygenated groups favors the electrons gaas#bng the graphitic sheets, which is

reflected on the GO conductivity.
3.2. IOP Adsorption isotherms

Capacities of GO-based materials to adsorb I0Preperted in Fig. 5. The maximum
adsorption capacities for IOP at an equilibriumaznrtration of 600 pg/L follow this order:
GO> rGO-2 > rGO-4 with values of 436.37, 343.92 &0d.31 pg/g, respectively. This
decrease in the IOP adsorption capacity onto rGsadanaterials can be due to that the
active sites in rGO are less accessible since graplsheets tend to stack duernta
interactions, which significantly decrease the &ddsiot surface area available to IOP
molecules. As mentioned in section 3.1, the removalxygenated groups of GO sheets
increase the hydrophobicity of rGO materials fornirgraphene-based materials
agglomerates byr-n interactions [13], which decrease the active apéamaterials.
Furthermore, it is possible that the IOP adsorptiechanism involves hydrogen bonding
interactions between ionized functional groups @-kased materials and the hydroxyl

groups present in IOP molecules [83], as showndgn#S of SM.
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3.3. Chemical transformation of IOP

Chemical transformation of IOP by sulfide and tloeresponding control experiments are
shown in Fig. 6. The chemical reduction experiméNizS + GO-based materials + I0P)
exhibited a decrease in IOP concentration with rexhefficiencies of 54, 58 and 66 % for
incubations amended with urGO, rGO-2 and rGO-4 &% Respectively. In contrast,

control incubated in the absence of RM {8la IOP) achieved only 25% of IOP removal
after 13 days. Adsorption controls (GO-based malter IOP) showed a diminishment on
the concentration of IOP < 10% in all cases. Asoggligible removal (< 4%) occurred in
stability control during the same incubation periddoreover, the difference in IOP

removal between these experiments and the adsorptintrols can be attributed to the

conversion of IOP to transformation byproducts.

In addition, the maximum removal rates achieve@ssays amended with urGO, rGO-2
and rGO-4 were 35.84, 59.79 and 64p&4fL-d, respectively. Moreover, the maximum
removal rate achieved in the control incubatedhm absence of GO-based materials was
12.48ug/L-d. These results indicated a 1.6 and 1.8-folddase in the maximum removal
rate of IOP in the presence of rGO-2 and rGO-4peetvely, with respect to urGO.
Moreover, the maximum removal rate of IOP increagl 4.8 and 5.2-fold in the
presence of urGO, rGO-2 and rGO-4, respectivelth waspect to the control lacking GO-
based materials. These results demonstrate thabaS@d materials promoted a faster
removal of IOP. In the following section, it willebconfirmed that GO-based materials

serve as effective redox mediators achieving atgrextent of IOP transformation.
3.4. Transformation pathway of IOP

Samples derived from reduction experiments of I@Rhie presence of rGO-4 as redox
mediator were analyzed by HPLC-MS in order to pempthe transformation pathway of
IOP. Based on HPLC-MS analysis, six transformapooducts (TPs, see Fig. 8S in SM)
were identified and the suggested chemical transition pathway of IOP is shown in
Fig 7.

The structure of TP 788.70 (elemental compositiogHgIsN3Og) was proposed by

Eversloh et al., [84], which indicates that thisermediate could be obtained by a loss of
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two hydrogen atoms at either side chain A or B. $tnacture of this TP is exemplified in
Fig. 7 as the loss of hydrogen atoms taking placgde chain A. The structure of TP 774
(elemental composition 1gH2413N30;) implies the loss of a molecule ot® at side chain
B as reported by Pérez et al., [85] and Gros etf{&h]. Also, the structure of TP 722.5
(elemental composition 16H20l3N30s) suggests the loss of a molecule obOH
demethylation and decarboxylation in side chainnB &l-demethylation in side chain A.

Similar mechanisms and structure have also begyopeal by Gros et al. [86].

The cleavage of the amide bond in side chain Bramval of one iodine atom (HI) of TP
788.7 results in the formation of TP 574 (elemeatathposition GsHisl2N20g) as shown in
Fig. 7. This structure is similar to that reportedGros et al. [86]. Moreover, the structure
of TP 634.60 (elemental composition78,31:N30;) was proposed according to previous
studies [86], which indicate that this intermedistéormed by the loss of one iodine atom
(HI) and N-demethylation in side chain A of TP 7Hnally, the structure of TP 314.8
(elemental composition 1gH4INOs") suggests the removal of side chain A and onenédi
atom (HI) of TP 574. The removal of HI yielded aefimembered ring structure in side
chain C. Similar transformation pathways were regggbby Schulz et al., [87] under aerobic

conditions.

The results obtained from batch experiments perdrmithout RM (IOP + Ng& control)
revealed that the main TPs produced were 646.9,77&68d 788.8 (See SM, Fig. 7S).
According to these results, it can be concluded tthea presence of GO-based materials as
RM promoted a higher extent of IOP transformationvdlving dehalogenation,
dehydration, demethylation and decarboxylation tieas), as compared to control
incubations performed in the absence of GO-basddrrals, which was evidenced by the
formation of TPs with low m/z, such as TP 634.6, 3R and TP 314.8. The reductive
transformation of IOP and distinct capacities of -G&3ed materials to act as redox

mediator can be explained by their surface cheynastrdiscussed in the next section.
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3.5. Mechanisms of IOP transformation mediated Bylased materials

The proposed transformation mechanism implies @B&-based materials promoted
dehalogenation, dehydration, demethylation and resglation reactions in IOP
molecule. Previous studies have reported that oadeous materials can mediate reductive
reactions of organic compounds by enhancing thetrele transfer involved in the reactions
[9,29]. In this sense, the reduction of recalcitrpollutants, such as nitroaromatics, azo
dyes and polyhalogenated compounds, promoted bya&Q®@edox mediator has been
reported [5,30,31,33]. In addition, it has beeroregr that the zigzag edges of reduced GO
can accelerate the reduction reaction of react&ptdn consequence, the increased IOP
transformation observed in the presence of rGO-naddecan be explained by enhanced
electron transfer and possibly by activation of I@Blecules. As mentioned above, the
basal plane of GO sheets has very high electridwdivity that depends on the presence
of epoxy and hydroxyl groups and is generally propoal to the C/O ratio. As mentioned
in section 3.1, as the C/O ratio increased in rG&enmls the electron transfer on basal
plane improved, which was reflected in an increasstiiction of IOP. Additionally, as
revealed by Boehm titration results (see Tableal) materials have a higher percentage of
qguinone groups (referring to two carbonyl groupg)ich could contribute to the reduction
of IOP since these functional groups serve as rewexliating moieties [8,49] and
improved the electric conductivity, i.e. electramrisfer of the materials, making best

mediators for electron transfer [5].

On the other hand, it has been reported that cadsmus materials with basic properties
exhibit a better performance to transfer electrimeugh quinone groups or delocalized
n-electrons [88]. As discussed in section 3.1, theidproperties of GO-based materials
increased with the reduction degree, which waecedd in a higher pkic (see Table 1).

This also explains why the reductive transformadriOP increased when the materials

used as redox mediator had a greater reductioreeegr

Additionally, it has also been stated that the caratoms at the zigzag edges of graphene
sheets have high chemical reactivity due to the-bmrdingn-electrons localized at the
zigzag site, and hence, are able to interact styamigh H, OH or halogen groups [89]. The

IOP molecule has hydroxyl and halogenated (iodaggdups in its chemical structure,
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which might well interact with the carbon atoms@zag edges, favoring the reduction of
this pollutant and improving the mediation effe€tr@0O-based materials as observed in
Fig. 6.

4. Summary

The results demonstrated the importance of the iatrand physical properties of GO-
based materials to serve as electron shuttle inctiemical transformation of 10P.
Moreover, the characterization of rGO-based mdteiiadicated a decrease on oxygen
content of 19.1 % and 64.4 % for rGO-2 and rGOe4pectively, which was related to the
reduction and transformation degree of IOP. Chelmicaduction experiments
demonstrated, for the first time, that GO-basedensls can act as redox mediators for the
abiotic transformation of IOP with sulfide as eftect donor, involving dehalogenation,
dehydration, demethylation and decarboxylation tteas. The catalytic activity of
materials decreases as follows: rGO-4> rGO-2> ur@@® to the partially removal of
oxygenated groups, which enhanced the electromduwagiivity of the basal plane of the
GO sheets towards the model pollutant. Moreover,pitesence of oxygenated functional
groups at the edge of GO-based materials sheets,asuquinone groups, can also act as
electron shuttles that are capable of electronstemn which was reflected in a better
catalytic input in IOP transformation. This is soped by the stability and high
concentration of quinone groups after chemical cedo of GO. Moreover, the reduction
of IOP could be enhanced by strong interaction betwits hydroxyl and halogenated
(iodides) and the carbon atoms on zigzag edges raphgne sheets. Chemical
transformation products with a simpler structuranthOP were identified by HPLC-MS,
which is the first step towards their mineralizatipossibly by aerobic processes in a
second stage. Also, the chemical transformatiohvpey of IOP was proposed. Finally, the
properties of GO-based materials, such as zetanfateORP, pHzc and conductivity,

played an important role in the electron transéeréductive transformation of IOP.
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Tables

Table 1. Surface chemical properties of GO-based materias with different reduction
degrees

Acid-base functional groups, (meg/L) Point of Zero
Samples  Carboxylic Lactonic Phenolic Carbonyl Total Charge (pHpzc)
GO 1.30 1.26 0.59 1.23 4.39 2.30
rGO-2 0.34 0.84 0.21 1.29 3.55 6.55

rGO-4 0.20 021 0.14 1.10 1.65 7.25
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Fig. 1- Zeta potential (square symbols) and oxidation redaocpotential (ORP, circle
symbols) of GO-based materials with different reducdegrees at pH 7
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Fig. 2- Raman spectra of GO-based materials.
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Fig. 3- FT-IR spectra of GO-based materials: (A) urGO,BP-2 h and (C) rGO-4 h.
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