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ABSTRACT

New multi-dimensional discrimination diagrams hdween used to identify plate tectonic
setting of Precambrian terrains. For this work.engets of new discriminant-function based
multi-dimensional discrimination diagrams were &bl for thirteen case studies of
Precambrian basic, intermediate and acid magmas Afvica to highlight the application of
these diagrams and probability calculations. Thaiegtions of these diagrams indicated the
following results: For northern Africa: to Wadi Gha ophiolite, Egypt indicated an arc
setting for Neoproterozoic (74619 Ma). For Southiga: Zandspruit greenstone and Bulai
pluton showed a collision and a transitional cagrtbal arc to collision setting at about
Mesoarchaean and Neoarchaean (3114+2.3 Ma and Z5E7I0-Ma); Mesoproterozoic
(1109+0.6 Ma and 1100 Ma) ages for Espungaberaamkiondo sills were consistent with
an island arc setting. For eastern Africa, IramledeBike greenstone belt and Suguti area,
Tanzania showed an arc setting for Neoarchaean2£274Ma and 2755+1 Ma). Chila,
Bulbul-Kenticha domain, and Werri area indicatedcentinental arc setting at about
Neoproterozoic (800-789 Ma); For western Africapn@aelima region and Ebolowa area,
southern Cameroon indicated a collision and contalearc setting, respectively for
Neoarchaean (~2800-2900 Ma and 2687-2666 Ma); IiginBaleoproterozoic (2232-2169
Ma) for Birimian supergroup, southern Ghana a camtial arc setting; and Paleoproterozoic
(2123-2108 Ma) for Katiola-Marabadiassa, Cote dftvaa transitional continental arc to
collision setting. Although there were some incetesicies in the inferences, most cases
showed consistent results of tectonic settingss&heconsistencies may be related to mixed
ages, magma mixing, crustal contamination, degfemantle melting, and mantle versus

crustal origin.

Keywords: Africa continent, tectonic setting, Precambriagksy log-ratio transformation,

geochemistry, probability calculations
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1. Introduction

The origin of the Precambrian terranes is full o€ertainties, which is due to their geological
and geochronological complexity. In context of plégctonic setting, the Precambrian is one
of the most controversial era and questions sithain of what was Earth’s tectonic style
during the Precambrian. To answer the question asahkhether plate tectonic operates in the
Neoarchaean, several multidisciplinary studies ¢gemical, geophysical, geochrological and
petrological data as well as numerical modellingydhbeen published (e.g., Ernst 2009; Van
Kranendonk 2010; Korsch et al., 2011). Some rebkeasc(e.g., Stern 2008; Hamilton 2011)
believed that this may be possible for the PrommzDespite the large data base available,
researchers still disagree on plate tectonic getliring the Precambrian (e.g., Foley 2008;
Pease et al., 2008; Shirey et al., 2008; Furnak,e2009). The Precambrian terranes in Africa
are diverse, including a number of Archaean cratguch as west African Craton, Congo
Craton, Tanzania Craton, Kaapvaal Craton and nwmsePaleoproterozoic, Mesoproterozoic,
and Neoproterozoic mobile belts. The major pathefearth history about geological records
preserve in these cratonic bodies and related ntdrmmtal break-up and growth which have
been recognized worldwide and can be largely empthiin a complicated plate tectonic
context (Goodwin, 1996; Torsvik et al., 2009). Téfere, very first question of African
geology specially related to Precambrian tectoeitirgy is still unanswered and debatable.
This continuing debate encourages us to make ampttto apply new robust techniques, i.e.,
multi—-dimensional discrimination diagrams to exploplate tectonic setting for such

Precambrian terrane (e.g., igneous and meta-igrrecks) of the African continent.

For this work, nine sets (a total of forty-five)menutli-dimensional discrimination diagrams

have been used which is based on linear discrimhinaalysis (LDA) of log-transformed

ratios of all major elements and selected relatiu@imobile major and trace elements. These
diagrams are based on basic (Verma et al.,, 2006n&¥e@and Agrawal, 2011), intermediate
(Verma and Verma, 2013) and acid (Verma et al.,22@D13) magmas. The traditional

tectonomagmatic discrimination diagrams such aarlate and ternary proposed by several
researchers (e.g., Pearce and Cann, 1973; Peatcéae, 1977; Pearce and Norry, 1979;
Wood 1980; Pearce 1982; Shervais 1982; Mesched@; Ibanis and Lecolle, 1989), are
well known and highly used by the researchers\af the world. The principle advantage of
ternary diagrams indicates visualizing capacitywo dimension of the three variables in two

dimensions. Further, the relative proportions @f tirnary variables are clearly visible in the
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diagram, although this should be equally clear ftbmthree measured concentration values
themselves. The main disadvantage of using measuoeld compositions or those adjusted
to 100% in binary and ternary diagrams is that thvéylate the basic assumption of
randomness and normal distribution of the plottadables (Verma 2015a). Verma (2010)
evaluated all traditional diagrams and showed tiate of them are functioning better
because most of them provided unacceptably lowesscates and allowed the discrimination
of only a limited number of plate tectonic settingkeir major defects, viz., use of limited
databases, problem of closed or constant sum cotgpas variables, and eye-fitted tectonic
field boundaries, were prevalent in all of them (&gal and Verma, 2007). Therefore,
advance of new multi-dimensional diagrams coulé lixetter option for accuracy and correct

discrimination.

Out of nine sets (two sets for basic diagrams (\feetal., 2006; Verma and Agrawal 2011),
three sets of the five diagrams each for interntediagma (Verma and Verma, 2013) and
four sets of five each for acid magma (Verma et 2012, 2013) have also been recently
available for the discrimination of four tectoniettsngs (island arc, continental arc, within-
plate, and continental collision). These sets imgolcoherent statistical treatment of
compositional data consisting of log-ratio transfation, being a fundamental requirement
for such data handling (Aitchison 1986; Egozcueakt 2003; Pawlowsky-Glahn and
Egozcue, 2006; Buccianti 2013; Verma, 2015). Furtbasic, intermediate and acid diagrams
(Verma et al., 2006; Verma and Agrawal 2011; Veand Verma, 2013; Verma et al., 2012,
2013) are based on log-ratios of either all majements [(SiQ)adj (TiO2)adj, (Al203)adj,
(FeOl;, (F&O3)ady (MNO)gj, MYO)ad;, (CaOldj, (N&O3)ad) (K2O)adj (P2Os)aq] @ combination

of selected relatively immobile major and tracemeats [(TiQ)ad;, (MgO)adj (P.Os)aq, Nb,

Ni, V, Y, and Zr), or only selected relatively imbite trace elements (La, Ce, Sm, Yb, Nb,
Th, Y, and Zr).

These diagrams have successfully applied sevesal stadies world-wide. For Africa (south
Africa and northern Cameroon, e.g., Bailie et2010, 2012; Bouyo et al., 2016 confirmed an
arc setting by using these diagrams for ArchaeahNgoproterozoic basic and acid rocks);
For Brazil (Amazonian, Sao Francisco, Sédo Luisocraiand Borborema province, e.g.,
Verma and Oliveira 2013, 2015; Verma et al. 20184.5b; Cioffi et al., 2016 used these
multidimensional diagrams to infer tectonic settofgArchaean to Proterozoic basic to acid
rocks); For India (Dharwar and Bundelkhand cratemy., Verma et al. 2015a; Bora and

Kumar, 2015; Kaur et al., 2015 have successfulpliag these diagrams for Archaean basic
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to acid rocks); For China (North China Craton ardnd) complex in Leiwuqi area, e.g.,
Verma et al. 2015a; Hu et al., 2014 were used ttsseimination diagrams for Archaean and
Paleozoic basic to acid rocks); For Australia (lanhOrogen, southeast Australia, central
Australia, e.g., Medlin et al., 2015; Offler andrdigsson, 2016 used these diagrams for
Palaeozoic acid rocks); For Russia, Italy and &an, Grebennikov (2014) has suggested to
use these diagrams for granites and related rdtd&sj et al., 2015; Yildiz et al., 2015 and
Shahzeidi et al., 2006 also applied these diagfambleoproterozoic to Holocene basic to
acid rocks. For Mexico-Argentina (Mexican Volcarbelt, Oaxaca, Granjeno Schist, San
Nicolas and San Carlos and Gulf of Mexico), redeanrs (Verma 2009, 2013; 2015; Verma et
al., 2011, Armstrong-Altrin et al., 2014; Pandatin2014a, 2014b; Pandarinath and Verma
2013, Velasco-Tapia, 2014; Armstrong-Altrin, 20Imrres Sanchez et al., 2015; Verma et
al., 2016a) have applied these diagrams for CendpdNeoproterozoic basic to acid rocks).
Other researchers (Velikoslavinskii and Krylov, 80Zhou, 2015; Rossignol et al., 2016;
Janousek et al., 2016) have been also used theg@uwohs.

In this work, these multi-dimensional geochemidatdmination diagrams (two sets of basic
diagrams i.e., major and immobile trace elements Fgrma et al.,, 2006; Verma and
Agrawal, 2011; three sets of intermediate diagraemsmajor elements, major-trace elements
and immobile trace elements by Verma and Verma 2848 four sets of acid diagrams i.e.,
two sets of major elements, one major-trace elesn@md one immobile trace elements based
diagrams by Verma et al.,, 2012, 2013) were useddéntify plate tectonic setting of

Precambrian intermediate and acid rocks from Africa

2. Multidimensional tectonomagmatic diagrams and tkir application

These diagrams are based on the techniques lagtratisformation and linear discriminant
analysis (LDA) and canonical analysis. ProbabiMglues for individual samples were
calculated from the method outlined by Agrawal @Pand Verma and Agrawal (2011) and
used in this work to decide the discrimination ¢@at field in which a given sample will plot.

The discriminant functions (DF1-DF2) for these deags were calculated from equations.
Although a computer program which can be obtainedomf website

http://tlaloc.ier.unam.mx/index.html that faciléatthe use of these complex equations.

Nevertheless, these equations are also summarniZedpplementary Material file Tables S1—
S6. These diagrams are required to discriminate fectonic settings of Island arc (l1A),
continental arc (CA), continental rift (CR), oceiatand (Ol) and collision (Col). For each
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diagram, two functions must be calculated for eeampiled sample (Verma 2012; Verma
and Verma 2013, Verma et al., 2012, 2015, 2016).

3. Construction of data base

The data base was compiled from published liteeatirPrecambrian rocks (Table 1). This
include serval localitiedNorth Africa (Wadi Ghadir ophiolite, Egypt—Abd El-Rahman et al.
2009); South Africa (Zandspruit greenstone—Anhaeusser, 2015; Bulaophlaurent et al.,
2011; Espungabera — Moabi et al., 2015; Umkondo-BlRen et al., 2012)East Africa
(Iramba-Sekenke greenstone belt, central Tanzaraay® and Maboko, 2008; Suguti area,
northern Tanzania—Mtoro et al., 2009; Chila and NWVeworthern Ethiopia—Tadesse-Alemu,
1998; Bulbul-Kenticha domain, southern Ethiopia-tfite et al., 2006; and Sifeta et al.,
2005).West Africa (Sangmelima region and Ebolowa area, southern GamerSang et al.,
2004 and Tchameni et al., 2000; Birimian supergraquthern Ghana—Grenholm, 2011,
Anum et al., 2015; Katiola-Marabadiassa, Cote déx«Doumbia et al., 1998).

A synthesis of the relevant information (localigpproximate location, number of compiled
samples, age, original Author’s tectonic settinferred tectonic setting, and literature
references) is provided in Table 1. A schematic stapwving the location of the studied area
is provided in Figure 1. Detailed geology and lamad of samples can be consulted in the
papers from which the data were compiled.

IgRoCS (Verma and Rivera-Gomez, 2013) computerrpragvas used for the classification
of magma types according to the IUGS criteria, wherTecDIA (Verma et al., 2016b) was
used to deciphering plate tectonic setting and giities calculation of each plotted samples

for intermediate and acid magmas (Verma and Ve2®&a3; Verma et al., 2012, 2013).

4. Result and Discussion

The data from the above localities were plottedthe corresponding multidimensional
diagram (Figs. 2, S1-S6). The results are sumnthne&ables 2—4, S7-S32, with percentage
probabilities calculations. Each tectonic setting=(sland Arc; CA=Continental Arc
CR=Continental Rift; Ol=0Ocean Island; and Col=CGatin) were identified based on total
percentages probabilities (Tables 2—-4, S7-S32)rthéy Tables 2—-4, S7-S32 includes %
percentage probability estimates and synthesih@fnumber of samples plotting in each
diagram (Figs. 2, S1-S6) from the %probability esluThus these plots (Figs. 2, S1-S6) are
for reference purpose only because %probabilityeslestimates (Tables 2—-4, S7-S32) are

fully understandable without considering the plots.

6
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Northern Africa

1. Wadi Ghadir ophiolite, Eastern Desert, Egypt

The Neoproterozoic ophiolites of Wadi Ghadir aebbcated in the central part of the Eastern
Desert of Egypt (Abd EI-Rahman et al., 2009). Tiusk is mainly composed of gabbroic
(ophiolitic) in nature and containing pyroxene, gieclase, and pegmatitic minerals.
According to original authors (Abd El-Rahman et &009), the MORB normalized trace
element indicates subduction related environmem tunegative Nb and Ta anomalies.
Further, Abd EI-Rahman et al.,, 2009 concluded thath geochemical characteristics are
consistent with magma compositions generated inassgpbduction zone settings.

For better understanding, the first case study hall explored and expanding with detall
explanation. For this area of Wadi Ghadir ophlithirty-four, fifty and two samples of
Neoproterozoic basic, intermediate and acid roekpectively (protolith age of 746+19 Ma,;
Abd EI-Rahman et al., 2009) showed an arc setlimg sets of diagrams (m2 and t2, Verma
et. al., 2006; Verma and Agrawal, 2011, Table Beblaon log-ratios of major elements and
immobile trace elements indicated arc to mid-ocedge setting with total percentage
probability values of about 33% and 59%, respeltiyEable 2).

For intermediate volcanic rocks (fifty samples twitomplete major elements, immobile
major and trace elements and trace elements warkalsle; see values for M, MT, and T for
test study 1 in Table 1), all three sets of diagrderma and Verma, 2013) could be applied
for this case study, which clearly indicated an setting. The first set of diagrams which is
based on major elements showed a continental &} €tting with total percent probability
values of about 38%, while other two sets i.e.,edasn immobile major-trace and trace
elements indicated an island arc setting with tpéatent probability values of about 41% and
58% respectively (Table 3, Figs. 2 and S1-S2).

Only two samples of acid rocks had complete datarfajor elements, immobile major and
trace elements and immobile trace elements (Tablaldsets based on log-ratios of major
elements, immobile major and trace elements, andaipile trace elements (Verma et al.,
2012, 2013; Table 3) provided clear cut answemafkknd arc setting for this area, with high
total percent probability values of about 75%, 75%%, and 75%, respectively (Table 4, S3—
S6).

This finding is consistent with original authorsh@ EI-Rahman et al., 2009) interpretation of

subduction related environments.
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South Africa

2. Zandspruit greenstone, Johannesburg dome

The Johannesburg dome consists of granitic roaksisges and greenstones (komatiites) in
the central part of the Kaapvaal Craton, SouthcafriThe Zandspruit greenstone is situated in
the west-central part of this dome. This sectorcasered by porphyritic phase of the
granodiorites having zircon age of 3114 + 2.3 MaujBl and Anhaeusser, 2001). The rocks
from this area are medium- to coarse-grained withrtg, K-feldspar, plagioclase, and biotite,
also with accessory minerals, i.e., comprisingiafan, apatite, etc.

For Mesoarchaean (3114 = 2.3 Ma) Zandspruit greerst{Anhaeusser, 2015), only two sets
could be applied for basic rocks (Verma et al.,@00erma and Agrawal, 2011, Table 1),
these diagrams showed an island arc setting with percentage probability values of about
80% and 80%, respectively (Table S7).

Two sets of intermediate rock which is based aprhiios of major elements and immobile
major elements indicated a collision setting watal percent probability values of 74% and
61%, respectively, (Table S7, Figs. 2 and S1).eNiamples of acid rock indicated a collision
setting in the diagrams based on log-ratios of melements (total percent probability values
of 70% and 72%, (Table S8, Figs. S3-S4). The sewsmtsl major-trace elements based
diagrams also indicates collision setting with gtqiercent probability values of 80%, Table
S8, Figs. 2 and S1). In summary, all sets of diagr@/erma and Verma, 2013; Verma et al.,
2012, 2013) showed collision setting.

Although, Anhaeusser, 2015 did not comment on tecteetting. Nevertheless. New multi-

dimensional diagrams showed an arc-collision sttin

3. Bulai pluton, Central Limpopo Belt

The Bulai pluton is a magmatic body of the Cenmahe of the Limpopo Belt (Limpopo
Province, South Africa). This pluton is coveredgmyphyritic granodiorite having different
mineral assemblage like K-feldspar, plagioclasenblende and biotite. The zircon yield
pluton-emplacement ages ranging between 2.58 &id@a (Laurent et al., 2011).

For this application (Neoarchaean, about 2610-28&7Laurent et al., 2011), eleven samples

of intermediate rocks with major, major-trace araté¢ elements data were available (Table

8
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1). All three sets indicated collision setting withal percent probability values of 63%, 79%
and 83%, respectively (Table S9, Figs. 2, S1-Saurteen samples of acid rocks were
available for the application, two sets of diagramsed on log-ratios of major elements and
one set on immobile major-trace elements indicatecbllision setting with total percent
probability values of 79%, 75 and 74%, respecti@lgble S10, Figs. S3-S5), whereas the
third set based on log-ratios of immobile tracemmats was more consistent with a
continental arc setting (total percent probabitityp9%; Table S10, Fig. S6).

The results suggest that these rocks are more stensiwith a collision setting, or a
transitional continental arc to collision settirgy the Bulai pluton. According to (Holzer et
al., 1998; Roering et al., 1992), the Limpopo leltresponds to a complex Himalayan-type
orogenic belt but they did not explain about thetdeic setting. Laurent et al. (2013)

suggested a possible late orogenic setting fogémeration of the Bullai pluton.

4. Espungabera, Mozambique

The Espungabera volcanic formation is situatecemtral Mozambique which correlates with
the Umkondo sills in eastern Zimbabwe. The rocksmainly two types 1) volcanic outcrops
which are 15-20 m in height and 2) basaltic andesit3 m in diameter. The thin section
reveals euhedral plagioclase phenocrysts with satissalteration hosted in an aphanitic
matrix. Besides plagioclase, other mineral likeostiind clinopyroxene are present.
According to Moabi et al. (2015), The Umkondo thitie is coetaneous with tonalitic calc-
alkaline of the Nampula and Maud Terranes in Mozgo® which is also similar with the
Kalahari Craton. This finding indicates that the&sgabera volcanic formation is the part of
a back-arc setting, or volcanic arc/subductionteelaenvironment along with the eastern
margin of Kalahari Craton.

For this application to Mesoproterozoic (1109+0lédsaltic andesite rocks from the
Espungabera, Mozambique region (Moabi et al., 20t¢e sets of intermediate diagrams
were applied. The all sets of diagrams indicatedséand arc (IA) setting, with relatively
higher percentage of 70, 78% and 59%, respectiieple S1, Figs. 2, S1-S2. Thus, from
intermediate rocks, an island arc setting can berred for the Espungabera volcanic
formation. This result is also somehow consistetth wriginal author (Moabi et al., 2015)
finding. For tectonic discrimination they used Zb tectono-classification diagram of
Meschede (1986), and mostly samples were plottecombined filed of within-plate and
volcanic arc setting which is unclear answer ofcéxactonic setting. The application of new

multidimensional diagrams provide a clear cut amaaf@rc related environment.

9
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5. Umkondo sills (Waterberg, Middelburg)Kalahari craton

The Umkondo sills were emplaced into continentastof the Kalahari craton. Further, these
sills are most extensively developed in the Watgrkend Middelburg basins in northern
South Africa and south-eastern Botswana. The Weaitgrlbasin is further renamed as
Mesoproterozoic Post-Waterberg sills A (MPWA sjllshly small number of samples were
recognised as (MPWB sills) for Middelburg basifiie samples from the area (MPWA sills)
are dolerites, gabbros and noritic gabbros, hamirgeral composition of augite, labradorite,
and magnetite, whereas MPWB sills are doleritesgatibros, having augite, labradorite and
magnetite mineral. For this application, the daa@ebwas compiled from these areas i.e.,
MPWA, MPWB and Botswana. According to Bullen et @012), the samples for MPWA
sills were characteristically LREE enriched witHatevely unfractionated HREEs, and the
normalised incompatible element similar to modstarid arc andesites.

Two sets of diagrams based on log-ratios of mad@ments and immobile major and trace
elements indicated an island arc setting with tpeatentage probability values of about 44%
and 80% (Table S13), respectively. All three sdtsliagrams indicated an island arc (I1A)
setting for intermediate rocks from this area duitine Mesoproterozoic (1100 Ma; Bullen et
al., 2012; Table S14), the total percent probabilfalues were 72%, 66% and 57%,
respectively (Table S14, Figs. 2, S1-S2). Unfortelyano acid rock sample was available
for this application.

The authors (Bullen et al. 2012) explained thatngive mantle-normalised spider diagrams
for MPWA samples indicated modern type island asttisg or subduction related
environment which is also supported by petrogeakstudies. The application of new multi-
dimensional diagrams also showed an island arcg&ijng for MPWA, MPWB area which

is also consistent with interpretation of Bullerakt(2012).

Eastern Africa

6. Iramba-Sekenke greenstone belt, central Tanzania

The Iramba—Sekenke greenstone belt is located ntratepart of the Tanzania Craton. the
oldest rocks in the area are the granite-gneissasdfin the north and northeast of the belt.
Manya and Maboko (2008) investigated about volcamoks which is also constitute of this

greenstone belt. The volcanic rocks consist of vaineral components like rare olivine,

pyroxenes, plagioclase, quartz, amphibole. On piminormalization diagram the large

10
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number of samples showed negative anomalies offBlland Ti, which reveals that formation
of these rocks are in back-arc setting.

The Neoarchaean (2742+27 Ma) basic and intermerbakes from this area showed an island
arc setting with total percent probability of 77%da80% for basic rocks and 51%, 40% and
58%, respectively for intermediate rocks (Table-215, Figs. 2, S1-S3)

Manya and Maboko (2008) used several discriminadiagrams of (Pearce and Cann, 1973;
Wood, 1980) to infer an island arc or back-ardsgttor their intermediate rock samples. The
result from new multi-dimensional showed an island setting for basic and intermediate
rock samples, this result somehow supports theiniinaf original authors (Manya and
Maboko, 2008)

7. Suguti area, northern Tanzania

The Suguti area is located in the north-easterh gfathe Neoarchaean granite-greenstone
terrane of the Tanzania Craton. The rocks from #nesa is mainly composed of tholeiitic
basalts, andesites and calc-alkaline rhyolitesaandunt of intermediate rocks.

For Neoarchaean volcanic rocks (basaltic andesiterhyolite) from Suguti area (27551
Ma; (Table 1) were compiled from the paper publisbg the Mtoro et al. (2009). 20 basic
rock samples were available (Table 1). One set ajorelement-based and one set of
immobile-element ratio- based diagrams showedlandsarc setting (Table S17).

For twelve samples of intermediate rocks the diagraased on log-ratios of major elements,
immobile major and trace elements, and trace ele&snedicated an island arc setting with
total percent probability of 66%, 61% and 69% retipely (Table S18, Figs. 2, S1-S2). The
second set of diagrams based on log-ratios of inieabajor and trace elements also
suggested an island arc setting but with less peedent probability of 45%. The third set of
diagrams was more consistent with a collision isgtti

For more numerous (twenty-five) acid rock sampiles, sets of diagrams (log-ratios of major
elements and of major and trace elements) indicatedllision setting with total percent
probability values of 63% and 39% (Table S19, F&3-S6). The second set based on major-
trace element ratios, was more consistent withthinvplate transitional setting (probability
values of 66%), whereas the one based on immobdee telement ratios indicated a
continental arc setting with relatively low totaérpent probability of 45% (Table S19, S6).
Therefore, discrimination diagrams based on aa#isalid not provide a clear cut answer for
tectonic setting of Suguti area, whereas intermtedi@cks were indicated an island arc setting

for this area.
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The original authors (Mtroro et al., 2009) usedZr+Y and Ti-V diagrams of Pearce and
Cann (1973) and Shervais (1982) to discriminat®tec setting. All diagrams showed an arc
setting the Suguti area, which is consistent watbult of new multidimensional diagrams for

intermediate rocks.

8. Chila, Axum area, northern Ethiopia

Chila is situated in the Axum area of northern &p. The Chila rocks are mainly granitoids
of Neoproterozoic age. The granitoids are ess@nttamposed of plagioclase, quartz, biotite,
hornblende, epidote, K-feldspar, sphene, and tratapatite and zircon. These granitoids are
enriched in incompatible elements. Further the etedl REE patterns of Nb and Ti indicate
arc/or island-arc environment for these granitoids.

For this area, ten and forty-one samples coulddmepded for intermediate and acid rocks,
respectively; Table 1. Only two sets of intermeglidiagrams were applied due to incomplete
elements for trace element based diagrams. Both dfeintermediate diagrams indicated
continental arc (CA) setting with percent probabilalues of 43% and 55%, respectively
(Table S20, Figs. 2 and S1. However, forty-one gam (Table 1) were available for
Neoproterozoic acid rocks (about 800 Ma; Tadesserfil 1998) from chila. These samples
also indicated continental arc (CA) setting (wititat percent probability values for CA
tectonic settings in three sets of diagrams wer#,680% and 76%; fourth set of trace
elements could not apply due to incomplete traemehts, Table S21, Figs. S3-S5).
Tadesse-Alemu (1998) postulated that the Chilaigrials constitute arc systems. He used
(Y+NDb)-Rb discrimination of Pearce et al. (1984pandicated a volcanic arc setting. The
results of new multidimensional discrimination d@gs are also consistent with a

continental arc (CA).

9. Bulbul-Kenticha domain, Negele area, northern Htiopia

The Bulbul domain is composed of greenschist toefommphibolite facies semi-pelitic and

carbonaceous sediments, marble, amphibolite, nuétfi@mafic schists and serpentinite,

whereas kenticha domain consist of amphibole samistabasalt, semi-pelitic, ultramafic and
epidotized mafic schists. Yihunie et al. (2006) lexped that the chemical characteristics of
Bulbul-Kenticha domains are similar to back-arcibhasnd island-arc environment.

One set of major elements based diagram (Vermh, 086, Table 1) showed an island arc
setting with percent probability of 42% (Table SZPhe diagrams for basic magmas (Verma

et al. 2006; Verma and Agrawal 2011) cannot disicrate the island arc from the continental
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arc setting. The two sets of intermediate diagravese applied for this application. The
diagrams based on log-ratio of major elements sboweantinental arc setting (the total
probability value of 47%, Table S23, Figs. 2, Sdjereas the immobile trace elements
diagrams indicated an island arc setting with tpicent probability of 39% (Table S23,
Figs. 2, S2).

The original authors have applied ternary diagrdniPearce and Cann, 1973), the most of
samples were plotted on the ocean floor basald firgth some plot on the island-arc and
within plate basalt fields. Further, they suggedtet suggesting that the Negele metabasic
rocks were formed at back-arc and island-arc téctenvironments. New multidimensional

diagrams showed an arc setting for this area.

10. Werri area, northern Ethiopia

Werri area consist of Neoproterozoic metavolcamd anetasedimentary rocks which are
wide spread in northern Ethiopia. The metavolcamicks were only complied for the
application. These rocks contain coarse phenocnofsidagioclase and altered mineral viz.
calcite, chlorite, sericite, epidote, and fine-geal plagioclase. The age of the Werri
metavolcanic rocks is not known. However, otherawelcanic rock sequences around the
Werri area are intruded by post-tectonic granitéth \@ Rb—Sr errorchron age of 550 Ma
(Tadesse et al., 2000). On the basis of trace elegeochemistry and chondrite-normalized
REE patterns, Sifeta et al. (2005) suggested theget metavolcanic rocks are tectonically
interpreted as volcanic arc setting.

For this Neoproterozoic (Sifeta et al., 2005; Tabl&Verri area, basic and intermediate rocks
were available for application, the set of diagrapased on log-ratios of trace elements
(Verma et al., 2006) indicated an island arc sgtivhereas (Verma and Agrawal, 2011)
diagrams showed a transitional (arc to mid-ocealge)i tectonic setting with percent
probability of 70% and 80%, respectively (Table B2All three sets of diagrams for
intermediate rocks based on log-ratios of majomnohile major-trace and trace elements
indicated a continental arc setting, with totalgeet probability values of about 64%, 68%
and 69%, respectively (Table S25, Figs. 2, S1-S¥eta et al. (2005) used several
conventional bivariate and ternary diagrams (Shert882; Pearce and Cann, 1973; Wood.
1980) to infer the tectonic setting. They hypothedian arc or overlap of MORB setting for
their samples. The new multidimensional study iaths a continental arc tectonic setting,
which may be consistent with Sifeta et al. (200Bhis is an advantage of new multi-

dimensional diagrams to avoid overlap field.
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Western Africa

1la. Sangmelima region, Ntem complex, southern Camu®n

Sangmelima region (Ntem complex, Congo craton)asmosed of tonalite-trondhjemite-
granodiorite (TTG) and charnockitic suite. Thesekso have mineral composition of
plagioclase, bluish quartz, feldspars, amphibol lantite. According to Shang et al. (2004)
the primitive mantle normalised spidergrams showegative Nb—Ta anomalies, which
suggested a subduction related setting for this. are

For this application to Neoarchaean (~2687-2666 $t@ng et al., 2004) rocks, two sets of
intermediate diagrams were showed continental attng with total percent probability
value of 46% and 53% (Table 26, Figs. 2, S1) wietbad set based on immobile trace
elements indicated a collision setting with pergemtbability value of 43% (Table 26, Figs.
2, S2). For acid rock all sets of diagrams indidad continental arc setting except first set of
major-elements based diagrams more consistent igliéind arc setting with total percent
probability value of 60%, 52% and 62%, respectivi@gable 27, Figs. S3—-S6). In totality,
three sets of diagrams were consistent with contaierc.

Thus, all sets of diagrams showed an answer ohdskc to continental arc setting for
Sangmelima region, which is also consistent withdhginal author’s finding.

11b. Ebolowa area, Ntem complex, southern Cameroon

The Ebolowa area of (Ntem Complex, Congo Cratomsish of the Neoarchaean granitoids
which is situated in southern Cameroon and contaimliths of the tonalite-trondhjemite-
granodiorite (TTG) having principal mineral of plagase, amphibole, quartz and biotite.
Three sets of diagrams for eleven samples of Neaasn intermediate rocks (2687—2666)
Ma granitoids; Tchameni et al., 2000) indicatedoligion setting, with relatively high total
percent probability values of 69%, 69%, and 54%ee8vely (Table S28, Figs. 2, S1-S2).
The original authors (Tchameni et al., 2000) ditlcmmment on the tectonic setting for their

samples.

12. Birimian supergroup, southern Ghana
Birimian supergroup, southern Ghana comprises & gfathe West African craton which
consists of greenstone belts of volcanic and setiang rocks. In this belt, two generations of

granitoids were intruded and emplaced in a subducietting between 2232-2169 Ma
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(Grenholm, 2011; Anum et al., 2015). The granitdidse several mineral compositions of
biotite, hornblende, quartz, K-feldspar and plalgise.

Only one set of major elements based diagram (Vestma., 2006) showed an island arc
setting with total percent probability of 54% (Tab$29). One set of diagram indicated a
collision setting for intermediate rocks from tlaisea during the Paleoproterozoic (2232-2169
Ma; Grenholm, 2005; Anum et al., 2015; Table S3@)ereas the set based on log-ratios of
immobile major-trace elements showed a continerma setting (with total percent
probability value of 53% and 51 % respectively, [€aB30, Figs. 2, S1). A continental arc
setting was also indicated by all four sets of diatgs (log-ratios of major elements and
immobile major and trace elements; Verma et all22@013) for acid rocks (Table S31). The
all sets of diagrams provided coherent result;tét@ percent probability values were (43%-
65%) for three tectonic settings (Table S31, F&-S6).

The authors (Grenholm, 2011; Anum et al. 2015) wased (Rb-Y+Nb), (Nb-Y), (Rb-
Ta+Yb) and (Ta —Yb) discrimination diagrams of Reagt al. (1984) for acid rocks, most of
samples were plotted in the field of volcanic aranites. Thus, these authors suggested an arc
or subduction related setting for this area. Alsmatinental arc setting is indicated from the

application of new multi-dimensional diagrams.

13. Katiola- Marabadiassa, Cote d'lvoire

Kaliola Marabadiassa granitoids consist of two gatiens lithostratigraphic data: the first
generation intruding the greenstone formations fremd Tafolo, Kanangono, Fronan and
N'Guessankro) and the second generation intrudimg Bandama sedimentary basin
formations and/or the earlier granitoid intrusioRer this application, only first generation
geochemical data for granitoids were used, which Paleoproterozoic age of (2123-2108
Ma). According to Ledru et al. (1994) and Feybeasd Mildsi (1994), the modern plate
tectonics setting for this area is consistent wahision setting.

Forty-eight samples of acid rock samples (Kaliolar&dadiassa granitoids) of about 2123-
2108 Ma (Paleoproterozoic; Doumbia et al., 1998)l@4) were plotted in four sets of multi-
dimensional diagrams. Two sets of major-elemensedhaiagrams were indicated a collision
setting with total percent probability value of 3@#td 42% (Table S32, Figs. S3—S4) whereas
major-trace elements and trace elements diagrams wdicated an island and continental
arc setting, respectively, with total percent phulity value of 50% and 57% (Table S32,
Figs. S5-S6).
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Although the original authors (Doumbia et al., 188 not comments on tectonic setting.
The new multidimensional diagrams indicate an arcdllision transitional setting for this

area.

5. Limitation of multidimensional discrimination di agrams

Although, the limitation of these diagrams haverbakeady described in detail by Verma et
al. (2015a), nevertheless, a brief discussion cooéd seen here i.e. related to the
geochemically analyzed samples, data quality— gi@tiand, more importantly, accuracy — of
the analytical results, scarcity of large number dafta base, radiometric ages. Other
difficulties may be related to mixed ages, magmaimgi, crustal contamination, degree of
mantle melting, and mantle versus crustal origifhe crustal contamination and crustal
versus mantle origin were fully elaborated andsiflated in the papers on the Neogene-
Quaternary Mexican Volcanic Belt (MVB; for exampfer the eastern and central MVB by
Verma 2015b, 2015c, and for the western MVB by \V@ewenhal., 2016a). Further, MVB acid
rocks showed the tectonic setting of the crustat@®rocks that may have formed earlier in a
tectonic setting different from the actual tectosétting of the basic and intermediate rocks
which originated from deeper mantle sources. Ifithhermediate rocks were mainly mixtures
of basic and acid magmas, they will then indicateaasitional (or a more complex) tectonic
setting (Verma 2015b, 2015c; Verma et al., 2016a).

6. Conclusion

The new multi-dimensional discriminant-function edgliagrams are the robust geochemical
tools for deciphering tectonic setting of Precambrigneous and meta-igneous rocks. These
diagrams seem to work better once the several Ipgical explanations are taken into
account together, such as crustal contaminatiogregeof mantle melting, and mantle vs
crustal source characteristics.

In most cases, consistent results are obtainedthfertectonic settings. The results are
summarized as follows: (1) an arc setting for thadiWGhadir ophiolite, Egypt during the
Neoproterozoic; (2) a collision setting for Zandspgreenstone, Johannesburg dome, South
Africa during the Mesoarchaean; (3) an arc or asiteonal continental arc to collision
tectonic setting for the Bulai Pluton, Central Liogo Belt during the Neoarchaean; (4) an
island arc setting for the Espungabera, Mozambayweng the Mesoproterozoic; (5) an island
arc setting for the Umkondo sills (Waterberg, Milbdeg) Kalahari craton during the

Mesoproterozoic;
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(6) an island arc setting for the Iramba-Sekenleiggtone belt, central Tanzania during the
Neoarchaean; (7) an arc or a transitional contaleanic to collision tectonic setting for the
Suguti area, northern Tanzania during the Neoagesha@) a continental arc setting for the
Chila, Axum area, northern Ethiopia during the Nebgrozoic; (9) a continental arc setting
for the Bulbul-Kenticha domain, Negele area, narihthiopia during the Neoproterozoic;
(10) a continental arc setting for the Werri areathern Ethiopia during the Neoproterozoic;
(11a) a continental arc setting for the Sangmelieggon, Ntem complex, southern Cameroon
during the Neoarchaean; (11b) a collision setting the Ebolowa area, Ntem complex,
southern Cameroon during the Neoarchaean; (12naneatal arc setting for the Birimian
supergroup, southern Ghana during the Paleopratieroand (13) an arc or a transitional
continental arc to collision tectonic setting foe tKatiola- Marabadiassa, Cote d'lvoire during

the Neoarchaean.
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Figure legends

Figure 1. Simplified geologic map of the Africa (modifiedtaf Begg et al., 2009). Cratons:
West African Craton, Congo Craton, Tanzanian Cratoth Kaapvaal Craton. Numbers refer
to location of the studied basic, intermediate anil igneous and meta-igneous rocks (see
Table 1).

Figure 2. A set of major element based multidimensional diats (see the subscript “mint”
in all these diagrams) for intermediate rocks ofrrive@ and Verma (2013) for the
discrimination of island-arc (IA), continental-a(€CA), within-plate (CR+Ol), and collisional
(Col) tectonic settings. The tectonic field boundaoordinates are proving belowa)
IA+CA-CR+0OI-Col (1+2-3+4-5) diagram, the coordirsatef the field boundaries are
(0.42744, -8.0) and (-0.67554, 0.27663) for IA+CAR«DI, (8.0, 5.53331) and (-0.67554,
0.27663) for IA+CA—Col, and (-8.0, 4.73569) and.§4b54, 0.27663) for CR+OI-Cdb)
IA—-CA—CR+0I (1-2—-3+4) diagram, the coordinatesh#f tield boundaries are (8.0, 0.76690)
and (-0.63205, 0.08764) for IA-CA,; (-1.50230, -8a0d (-0.63205, 0.08764) for IA—-CR+Ol;
and (-2.73408, 8.0) and (-0.63205, 0.08764) for—CR+Ol (c) IA—CA-Col (1-2-5)
diagram, the coordinates of the field boundaries(8r0, -3.06676) and (-0.71170, 0.24138)
for IA—-CA; (-1.18110, 8.0) and (-0.71170, 0.2413®) IA—Col; and (-3.55140, -8.0) and (-
0.71170, 0.24138) for CA-Cgtl) IA-CR+0OI-Col (1-3+4-5) diagram, the coordinatés o
the field boundaries are (0.66776, -8.0) and (0024 0.17933) for IA—-CR+OI; (8.0,
6.27226) and (-0.44102, 0.17933) for IA—Col; ar&l{; 4.24657) and (-0.44102, 0.17933) for
CR+0OI-Col(e) CA—CR+0I-Col (2—-3+4-5) diagram, the coordinatesheffield boundaries
are (-3.42497, 8.0) and (-0.033967, -0.10997) f&&—CR+OI; (8.0, -0.16286) and (-
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845 0.033967, -0.10997) for CA-Col; and (-4.17272, }&0d (-0.033967, -0.10997) for CR+OI—
846  Col (for more detail, please see Verma and VerQa3p
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Table 1

Synthesis of the compilation of rock samples usettié present study for applying discriminationgdéans (-- Case studies)

Approximate

Number of Samples*

Test study : Original Inferred
location (Table no. for results) Age, Epoch Rock Author’s tectonic Reference
i ) B I A (Ma) type tectonic setting from
Region Sub-region Long. (°) Lat. (°) setting [B; I: AJ*
m2, tz m, mt, m, mt, z
North Africa
1. Wadi Ghadir ophiolite Neoproterozoic . island arcto  [(IA-MOR); Abd EI-Rahman et al.
Egypt 1. Eastern Desert 34.9 24.8 34,34 50, 50, 50 2,2,2 (746+19) ophiolite back-arc (IA-CA): I1A] (2009)
South Africa
. 2. Johannesburg Mesoarchaean komatiites [IA; Col; Col] Anhaeusser (2015)
2. Zandspruit greenstone Dome -26.0 27.9 11,10 13,9,0 9,8,0 (3114+2.3) granitoids
. 3. Central Limpopo B 11,11,11  14,14,14 Neoarchaean o [---; Col;
3. Bulai pluton Belt 23.2 29.4 (2610-2577) granitoids (CA-Col)] Laurent et al. ( 2011)
volcanic
. Mesoproterozoic rocks, volcanic AL .
4. Espungabera 4. Mozambique -20.5 32.7 27,27,27 (1109 + 0.6) basaliic  arc/subduction [ 1A; -] Moabi et al. (2015)
andesite
Mesoproterozoic igneous
5. Umkondo sills 5. Kalahari craton -24.0 28.0 55 14, 14,12 (5)100) and mafic  subduction [IA; 1A; --] Bullen et al. (2012)
rocks
East Africa
6. Iramba—Sekenke Neoarchaean volcanic Manya and Maboko
greenstone belt, central 6. Tanzania Craton 345 -4.30 14,5 10, 10, 10 volcanicarc  [IA; IA; -] Y '
) (2742+27) rocks (2008)
Tanzania
7. southern
7. Suguti area northern Musoma-Mara B Neoarchaean volcanic [IA; IA;
Tanzania greenstone belt, 34.2 2.10 20, 20 12,12,12  25,25,25 (2755+1) rocks arc to MORB CA-Col)] Mtoro et al. (2009)
Tanzania Craton
8. Chila, 8. Axum area 38.5 141 10, 10,0 41,41,0 Neoproterozoic ranitoids  volcanic arc  [---; CA; CA] Tadesse-Alemu (1998)
northern Ethiopia ’ ' ’ e T (800) 9 T
9. Bulbul-Kenticha domain, Neoproterozoic metabasic . ) Yihunie et al. (2006)
southern Ethiopia 9. Negele area 395 4.40 20,0 10, 3,0 (789) rocks island arc [1A, CA; -]
10. Werri area, northern  10. Tsaliet and Neoproterozoic metavolca volcanic arc or  [(IA-MOR); Sifeta et al. (2005)
Ethiopia Tembien Groups 39.0 135 4.4 18,18, 12 ?) nic rocks MORB CA; -]
(Continued)
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Table 1. (continued)

Approximate

Number of Samples*

Test study X Original Inferred
location (Table no. for results) Age, Epoch Rock Author’s tectonic
. . Reference
Regi Sub-regi L () Lat. (%) B ' A (Ma) type tectonic setting from
egion ub-region ong. (°) Lat. (° settin - aci
m2, t2 m, mt, t m, mt, t g Int.; acid
North Africa
West Africa
1la. Sangmelimaregion, 1la. Ntem complex, 11,11,4 24, 20,10 Neoarchaean . .
southern Cameroon Congo craton 115 24 (~2800-2900) TG subduction  [---; CA; CA] Shang etal. (2004)
11b. Ebolowa area, 11b. Ntem complex, 11,9,5 Neoarchaean o . .
southern Cameroon Congo craton 11.3 3.10 (2687-2666) granitoids [---; ---; Col] Tchameni et al. (2000)
12.Birimian supergroup, 12. west Africa 031 6.10 10,0 3,3,3 23,23,22 Paleoproterozoic Basalts, subduction [IA; CA; CA] Grenholm (2011);
southern Ghana craton ' ' (2232-2169) granitoids Anum et al. (2015)
13. Katiola- Marabadiassa, 13. west Africa ) 48,13, 12 Paleoproterozoic - . [--; - (CA- .
Cote d'lvoire craton 5.1 8.2 (2123-2108) granitoids  volcanic arc col)] Doumbia et al. ( 1998)

"B—two sets of basic magma based diagrams (Verma et al., 2006; Verma and Agrawal, 2011); “I-three sets of intermediate magma based diagraemsn@/and Verma, 2013)A-four sets of acid magma based diagrams (Verma et
al., 2012; Verma et al., 2013)2- second set of major element-based diagramsr@et al., 2006); t2— second set of trace eleibas¢d diagrams (Verma and Agrawal 2011); m— n&gments; mt—(immobile) major and
trace elements:-{immobile) trace elements, for each, sespectively; --- no sample; Inferred tectonittisg: I1A—-Island Arc, CA-Continental Arc, CR+Ol-withiplate; CotCollision.
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Table 2.
Application of multidimensional diagrar to Neoproterozoic (746+19 Ma) basic rocks of thediW@hadir, Egypt (Abd E-Rahman et al., 200!

Reference Discrimination diagram § Total no. of samples Predicted tectonic affinity and number of discriatied samples (%)
(%)
IAB CRB+0IB CRB (0]]2] MORB
Verma et al. (2006); log-ratios of IAB-CRB-0OIB-MORB 34 (100) 12 (35) 9(27) 3(9) 10 (29)
major elements (m2)
IAB-CRB-0IB 34 (100) 13 (38) 11 (33) 10 (29) ---
IAB-CRB+MORB 34 (100) 13 (38) 11 (33) 10 (29)
IAB-OIB-MORB 34 (100) 14 (41) 4(12) 16 (47)
CRB-OIB-MORB 34 (100) 11 (33) 3(9) 20 (58)
Synthesis of all five diagrams of Verma et al. (2@) 170 (100) 52 (31) --- 42 (25) 20 (11) 56 (33)
Verma and Agrawal (2011); log- IAB-CRB+0OIB-MORB 34 (100) 8 (23) 2 (6) 24 (71)
ratios of immobile major and trace
elements (t2) IAB-CRB-OIB 34 (100) 25 (73) 0(0) 9(27)
IAB-CRB+MORB 34 (100) 8 (23) 2 (6) 24 (71)
IAB-OIB-MORB 34 (100) 8 (23) 5 (15) 21 (62)
CRB-OIB-MORB 34 (100) 0(0) 3(9) 31(91)
Synthesis of all five diagrams of Verma and Agrawa(2011) 170 (100) 49 (29) 2 (--) 2(1) 19 (11.0) 100 (59.0)

Notes: §The groups discriminated in discriminamtefion-based multi-dimensional DF1-DF2 diagramsaaréollows (B in the tectonic names stands foidoexcks): island arc (IA), continental arc (CApntinental rift
(CR), ocean island (Ol), and mid-ocean ridge (MQRg; numbers in parentheses ()’ are the percestafyjsamples plotting in a given field: the corréisicrimination (also called % success or percextagn be seen in
the column with italic boldface numbers. The finalv gives a synthesis of results as the numbeamiptes plotting in all five diagrams are reportedhie column of total number of samples whereastime of samples
plotting in a given tectonic field are reportedtie respective tectonic field colur
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Table 3.

Application of multidimensional diagrams to Neopmizoic (746+19 Ma) intermediate rocks of the WaHadir, Egypt (Abd EI-Rahman et al.,

2009.
Number of discriminated samples
Magma type, Total Arc
Figure type number of
Figure name samples IA+CA [x £ 8] IA[x 5] CA[xts] CR+OI [X £ 5] Col [x £ 5]
[p_IA+CA] © [p_IA] © [p_CA] © CR+0l] ® Coll @
P p
(IA+CA- o 28 [0.889+0.139] 19[0.904%0.141]  3[0.787+0.181]
CR+0I-Col) (0.4686-0.9999) (0.5455-0.0988)  (0.6414-0.9893)
A 9[0.857+0.178]  24[0.766+0.145] 17 [0.901%0.101]
Intermediate; (A" CACR+OD 50 (0.5040-1.0000)  (0.4592-0.9768)  (0.6832-0.9982)
Verma and
, . 17[0.82240.145] 27 [0.737+0.126] 6 [0.650+0.198]
verma (2013), - (IA-CA-Col) 50 (0.5304-1.0000)  (0.5138-0.9484) (0.4661-0.9905)
log-ratios of all
major elements ) ) . 28 [0.885+0.130] 19 [0.921+0.113] 3[0.7350.271]
(IA-CR+OI-Col) 50 (0.5175-1.0000) (0.6223-0.9993)  (0.4506-0.9906)
(CA-CR+OI- 5 30[0.898+0.108]  18[0.896:0.126] 2 [0.7760.235]
Col) (0.5362-0.9994)  (0.6556-0.9992)  (0.6099, 0.9420)
Diagramsbased  {Zn} {Zprob} 28} {24.8793 54) {46.4785 81} {65.2412 73} {66.1291 14} {10.0204
on log-ratios of 250
eior dements [%prob] [-] [26.7%)] [37.5%] [31.1%] [4.6%]
(IA+CA- 25 [0.937+0.158] 24 [0.846+0.201]
CR+0I-Col) 50 (0.4773-1.0000) (0.4263-0.9997) 1(0.5714)
Intermediate; AL 35 [0.767+0.184] 7 [0.645+0.130] 8[0.855+0.168]
Vermaand ~ (ACACR+OD 50 (0.3768-0.9998)  (0.5297-0.8931)  (0.3768-0.9998)
Vlim_g t%gl;:); (IA-CA-Col o 29[0.672+0.137] 17 [0.648+0.152] 4 [0.9193+0.0066]
_log-ratios o (0.4150-0.8710)  (0.3898-0.8924) (0.9144-0.9288)
immobile major
and trace 251[0.930+0.171] 23[0.872+0.177] 2[0.57140.157]
elements  (IA-CR+OI-Col) 50 (0.4033-1.0000) (0.4745-0.9995)  (0.4601, 0.6819)
(CA-CR+OI- 5o 32[0.916+0.154] 18 [0.855+0.182] 00)
Col) (0.4850-1.0000)  (0.4807-0.9994)
[g;""lggg"?ast%asff {zn} {Zprob} 250 (25}{23.4157}  {89}{69.6001} {56} {44.8509} {73} {62.6004} (7} {5.3907}
— 0, 0, 0, 0,
o dements [5%prob] (-] [41.0%)] [26.4%] [30.0%] [2.6%]
(IA+CA- o 40 [0.930£0.113] 00) 10 [0.7630.162]
CR+0I-Col) (0.5299-1.0000) (0.5117-0.9890)
. 37[0.857+0.130]  6[0.640+0.150] 7 [0.7030.222]
Intermediate;  (IA-CA-CR+O) 50 (0.5384-0.9999)  (0.4673-0.8397)  (0.4140-0.9201)
Verma and
verma (2013 1\ o cop 50 37[0.829+0.146]  5[0.516+0.085] 8 [0.844+0.139]
log-ratios of (0.4906-0.9998)  (0.3790-0.5845) (0.6192-0.9586)
immobile trace
) ) 40 [0.939+0.119] 10 [0.792+0.134]
elements (IA-CR+0I-Col) 50 (0.4891-1.0000) 0 (0) (0.6043-0.9896)
(CA-CR+OI- 5 440.912+0.136] 00) 6 [0.783+0.107]
Col) (0.4438-1.0000) (0.6596-0.9363)
Diagramspased {Zn} {Zprob}
on log-ratios of 250 {40} (37.2126)  {114}{99.9457) {55} {46.5704} {7} {4.9199} (34} {27.0006}
immobile trace [%prob] [--] [58.1%] [27.1%] [2.3%] [12.5%)]

elements

IA—island arc; CA—continental arc; IA+CA—combined island and continental arcs, i.e., attinge CR-continental rift; OI—ocean island; CR+OI —combined continental
rift and ocean island, i.e., within-plate (WP) seft Col-collision; ® the probability values for samples from a givenalidy are represented by (plA+CA) —
probability for the combined island and continemtal setting in the first diagram; [plA] — probatyilfor the island arc setting in the diagrams; {§G probability for
the continental arc setting in the diagrams; [pCR+Qprobability for the combined continental rihd ocean island setting in all diagrams; [pCajrebability for
the collision setting in the diagrams; — mean DXStandard deviation) of the probability estimatasall samples discriminated in a given tectosgtting; these are
reported in [], the values are rounded mostly feifm the indications put forth by Verma (2005); fireal rows give a synthesis of results an} { Zprob} [%prob],
where £n} is the total number of samples or data pointdtjplg in all five diagrams is reported in the aolu of total number of samples, whereas the suramfptes
plotting in a given tectonic field is reported hretrespective tectonic field columrgdrob} is the sum of probability values for all sadegplotting in a given tectonic
field is reported in the respective tectonic fielllumn; and [%prob] is the total probability of &en tectonic setting expressed in percent aftergasg the
probability of IA + CA to 1A and CA (using weighinfactors explained in Verma and Verma, 2013; Veetnal. 2012, 2013).

27



Table 4.

Application of multidimensional diagrams to Neomnaizoic (746+19 Ma) acid rocks of the Wadi GhaHugypt (Abd EI-Rahman et al., 2009).

Number of discriminated I
Magma type. n;lj-[?‘]t[a)‘(ler — umber of discriminated samples
Figure type
Figure name of IA+CA [x £ 5] IA[x %] CA[x+s] CR+OI [x £ 5] Col [x £ 5]
samples [y |A+CA] © [pIA] © [pCA] © [pPCR+OI] © [pCol] ®
2 [0.9999+0.0000
(IA+CA—CR—Col) 2 ([1.0000 1'0000)] 0(0) 0(0)
2 [0.9999:+0.0000]
Acid; Verma et (A-CACR) ’ (1.0000, 1.0000) 0O 0O
; . 2 [0.9999+0.0000]
al. (2012); log- (IA-CA—Col) 2 0 (0) 0 (0)
ratios of all (1.0000, 1.0000)
ior element 2[1.00000.0000]
major elements (IA—~CR—Col) 2 - (1,000, 1.0000) - 0 (0) 0(0)
2 [1.00000.0000]
(CA-CR-Col) 2 (1.0000, 1.0000) 0(0) 0(0)
Diagrams based {Zn} {Zprob}
. 2} {2.0000 6} {6.0000 2} {2.0000
on log-ratios of 10 { }{[___] } { }[{75%] } { }[{25%] } {0} {0} [0%] {0} {0} [0%]
major elements [Yoprob]
2 [0.9999+0.0000]
(IA+CA-CR+O0I-Col) 2 (10000, 1.0000) 0(0) 0(0)
2 [0.9999+0.0000
Acid; Vermaet  (ACACR+O) 2 s 0(0) 0(0)
al. (2013); log- i
ratios of all (IA-CA-Col) 2 2 Egggggiggggggﬂ 0 (0) 0 (0)
major elements ' L
2 [1.0000+0.0000
(IA-CR+OI-Col) 2 El.OOOO 1.000)] 0(0) 0(0)
2 [1.0000+0.00000]
(CA-CR+0I-Col) 2 (1.0000. 1.0000) 0(0) 0(0)
Diagrams based {Zn} {Zprob}
. 2} {2.0000 6} {5.9999 2} {2.0000
on log-ratios of 10 { }{[___] } { }[{75%] } { }[25%] } {0} {0} [0%] (0} {0} [0%]
major elements [Yoprob]
2 [0.9937+0.00401]
(IA+CA-CR+0I-Col) 2 (0.9909. 0.9965) 0 (0) 0(0)
Acid; Verma et 2[0.84410.116]
J IA-CA-CR+OI 2 0 (O 0(0
al. (2013) log- ) (0.7620, 0.9266) © ©
ratios of
immobile (IA-CA-Col) 2 ?0[3'883?5 *0 .915107(])) 0(0) 0(0)
major and i T
tracejelements 20.9953+0.0051]
(IA-CR+0I-Col) 2 (0.9917. 0.9989) 0 (0) 0(0)
2 [0.9945+0.00333]
(CA-CR+OI-Col) 2 (0.9922. 0.9969) 0(0) 0(0)
Diagrams based
on log-ratios of {Zn} {Zprob}
. . f 2} {1.9874 6} {5.4132 2} {1.9890
immobile major 10 { }{[___] } { }[{73%] } { }[{27%] } {0} {0} [0%] {0} {0} [0%]
and trace [%eprob]
elements
2 [0.9863+0.00270]
(IA+CA-CR+O0I-Col) 2 (0.9844. 0.9882) 0(0) 0(0)
Acid; Vermaet  (IA-CA-CR+Ol) 2 2 Eggg;é*g'ggg‘é?] 0(0) 0(0)
al. (2013); log- ) e
ratios of (IA-CA-Col) ) 2 [0.99803+0.0008] 0(0) 0(0)
immobile trace (0.9975, 0.9986)
elements 2 [09999100000]
(IA-CR+0I-Col) 2 (1,000, 1.0000) 0(0) 0(0)
2 [0.9990+0.00016]
(CA-CR+OI-Col) 2 (09989, 0.9991) 0(0) 0(0)
Diagrams based
h 2n rob
on log-ratios of {2n} {Zprob} 0 (2} {1.9726} (6} {5.9905} (2} {1.9980} 0} 0} (0% 0} (0} (0%
immobile trace [%prob] [--] [75%] [25%]

elements
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Nine sets of new multi-dimensional geochemical discrimination diagrams (two sets of
major elements, immobile trace elements by Verma et al., 2006; Verma and Agrawal,
2011 for basic rocks; three sets of major elements, major-trace elements and immobile
trace elements by Verma and Verma 2013 for intermediate rocks; two sets of major
elements, one major-trace elements and one immobile trace elements based diagrams by
Verma et al., 2012, 2013 for acid rocks) were used to identify plate tectonic setting of
Precambrian rocks from Africa.



