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Abstract
In this work we present a design of a bistable system and its electronic circuit which is generated
by a switching system. The switching system is comprised by dissipative subsystems with
unstable dynamics based on the jerk equation. For this system with unstable dynamics, it
is necessary to use a switching control law in order to change the equilibrium point of the linear
part and get bounded trajectories. Also the dynamics of the piecewise linear (PWL) system is
illustrated by numerical simulations to depict the bistable states. We present an easy electronic
design of the proposed system by employing resistors, capacitors and comparators, to exhibit
the capability to generate bistable behavior.

Keywords: Multistability, piecewise linear systems, chaos, switching functions, switching
control.

1. INTRODUCTION

In the context of complex systems, the scientific com-
munity has had the task of studying the properties of
different dynamical systems. For example, the fact that
chaotic systems have a strong dependence on initial con-
ditions. In this sense, a complex system can exhibit various
possible (coexisting) final states with a sink which traps
the system trajectory depending on its initial state Feudel
(2008); Pisarchik and Feudel (2014); Sharma et al. (2013);
Blaejczyk-Okolewska and Kapitaniak (1998); Arecchi et al.
(1985); Gilardi-Velázquez et al. (2017). This phenomenon
is usually called multistability. The occurrence of mul-
tistability is very common in various fields of science,
such as chemistry Ganapathisubramanian and Showalter
(1984); Marmillot et al. (1991), optics Saucedo-Solorio
et al. (2003); Brambilla et al. (1991), physics Cai and
Feng (2014); Santer and Pellegrino (2011) and biological
systems Ozbudak et al. (2004); Zhusubaliyev et al. (2015).
Additionally, the importance of generating multistable
structures resides in the wide variety of applications that
exist: synchronization, complex networks, communication,
climate and mainly in what is called chaos computing
Sinha and Ditto (1998). In this sense many proposal
has been made in chaos-based logic gates as: Cafagna
and Grassi (2006) Who present a SR flip-flop based on
NOR gates implemented by a Chuas circuit, Munakata
et al. (2002) described how implement fundamental logical
gates with logistic map, Murali et al. (2005) implement
the fundamental NOR gate based on threshold control

of chaotic systems, also Murali et al. (2009) show how
to obtain logical functions via noisy nonlinear system by
changing the nonlinearity, Campos-Cantón et al. (2010)
present a circuit with dynamic logic architecture which
display NOR, NAND and XOR gates.

In dynamical systems, an attractor is defined as a subset of
the phase space toward the trajectories of the dynamical
systems converge to it (and attractors can be fixed points,
limit cycles or periodic, quasiperiodic, chaotic or hyper-
chaotic orbits). The basin of attraction is defined as the
set of all initial conditions in the phase space whose cor-
responding trajectories converge to an attractor Kengne
(2017); Giesl (2007). Concepts of convergent trajectories
and attractor stability are usually associated with an
energy-like term called Lyapunov function. Then, with the
above concepts it can be said that a multistable dynamical
system is a dynamical system that, depending on its initial
condition, its trajectories solution can alternate between
two or more mutually exclusive Lyapunov stable and con-
vergent states Haddad et al. (2011).

In this work, advantage is taken of the properties of the
hybrid dynamical systems, such as the Unstable Dissipa-
tive Systems (UDS) theory based on PWL systems whose
solution presents chaotic attractors Campos-Cantón et al.
(2012). The method proposed here consists in taken sys-
tems from the jerk equation, we consider a UDS Type II
and designing a switching control law, without changing
the linear operator, such the system presents the coexis-
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Email:hector.gilardi@ipicyt.edu.mx,
rodolfo.escalante@ipicyt.edu.mx,

eric.campos@ipicyt.edu.mx

Abstract
In this work we present a design of a bistable system and its electronic circuit which is generated
by a switching system. The switching system is comprised by dissipative subsystems with
unstable dynamics based on the jerk equation. For this system with unstable dynamics, it
is necessary to use a switching control law in order to change the equilibrium point of the linear
part and get bounded trajectories. Also the dynamics of the piecewise linear (PWL) system is
illustrated by numerical simulations to depict the bistable states. We present an easy electronic
design of the proposed system by employing resistors, capacitors and comparators, to exhibit
the capability to generate bistable behavior.

Keywords: Multistability, piecewise linear systems, chaos, switching functions, switching
control.

1. INTRODUCTION

In the context of complex systems, the scientific com-
munity has had the task of studying the properties of
different dynamical systems. For example, the fact that
chaotic systems have a strong dependence on initial con-
ditions. In this sense, a complex system can exhibit various
possible (coexisting) final states with a sink which traps
the system trajectory depending on its initial state Feudel
(2008); Pisarchik and Feudel (2014); Sharma et al. (2013);
Blaejczyk-Okolewska and Kapitaniak (1998); Arecchi et al.
(1985); Gilardi-Velázquez et al. (2017). This phenomenon
is usually called multistability. The occurrence of mul-
tistability is very common in various fields of science,
such as chemistry Ganapathisubramanian and Showalter
(1984); Marmillot et al. (1991), optics Saucedo-Solorio
et al. (2003); Brambilla et al. (1991), physics Cai and
Feng (2014); Santer and Pellegrino (2011) and biological
systems Ozbudak et al. (2004); Zhusubaliyev et al. (2015).
Additionally, the importance of generating multistable
structures resides in the wide variety of applications that
exist: synchronization, complex networks, communication,
climate and mainly in what is called chaos computing
Sinha and Ditto (1998). In this sense many proposal
has been made in chaos-based logic gates as: Cafagna
and Grassi (2006) Who present a SR flip-flop based on
NOR gates implemented by a Chuas circuit, Munakata
et al. (2002) described how implement fundamental logical
gates with logistic map, Murali et al. (2005) implement
the fundamental NOR gate based on threshold control

of chaotic systems, also Murali et al. (2009) show how
to obtain logical functions via noisy nonlinear system by
changing the nonlinearity, Campos-Cantón et al. (2010)
present a circuit with dynamic logic architecture which
display NOR, NAND and XOR gates.

In dynamical systems, an attractor is defined as a subset of
the phase space toward the trajectories of the dynamical
systems converge to it (and attractors can be fixed points,
limit cycles or periodic, quasiperiodic, chaotic or hyper-
chaotic orbits). The basin of attraction is defined as the
set of all initial conditions in the phase space whose cor-
responding trajectories converge to an attractor Kengne
(2017); Giesl (2007). Concepts of convergent trajectories
and attractor stability are usually associated with an
energy-like term called Lyapunov function. Then, with the
above concepts it can be said that a multistable dynamical
system is a dynamical system that, depending on its initial
condition, its trajectories solution can alternate between
two or more mutually exclusive Lyapunov stable and con-
vergent states Haddad et al. (2011).

In this work, advantage is taken of the properties of the
hybrid dynamical systems, such as the Unstable Dissipa-
tive Systems (UDS) theory based on PWL systems whose
solution presents chaotic attractors Campos-Cantón et al.
(2012). The method proposed here consists in taken sys-
tems from the jerk equation, we consider a UDS Type II
and designing a switching control law, without changing
the linear operator, such the system presents the coexis-

Proceedings, 2nd IFAC Conference on
Modelling, Identification and Control of Nonlinear Systems
Guadalajara, Mexico, June 20-22, 2018

Proceedings, 2nd IFAC Conference on
Modelling, Identification and Control of Nonlinear
Systems
Guadalajara, Mexico, June 20-22, 2018

502

Bistable behavior via switching dissipative
systems with unstable dynamics and its

electronic design

H. E. Gilardi-Velázquez R.J. Escalante-González
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tence of two stable chaotic attractors. Additionally, the
analysis, design and circuit synthesis of a PWL system
is presented. As a result the system bistable behavior is
displayed by circuit simulation.

2. UDS

The system that is considered in this paper is an au-
tonomous nonhomogeneous first order lineal ordinary dif-
ferential equation system of the form:

ẋ = f(x) = Ax+ g(x), x(0) = xo, (1)

where x ∈ Rn is the state vector, A = {aij}ni,j=1 ∈ Rn×n

is a non-singular linear operator with aij ∈ R and; g :
Rn → Rn is a vector which commutes as follows:

g(x) =



B1, if x ∈ S1 = {x ∈ Rn : G1(x) < δ1};
B2, if x ∈ S2 = {x ∈ Rn : δ1 ≤ G2(x) < δ2};
...

...
Bm, if x ∈ Sm = {x ∈ Rn : δm−1 ≤ Gm(x)};

(2)

where Bi = (bi1, . . . , bin)
T ∈ Rn for i = 1, . . . ,m are con-

stant vectors with real entries; and S = {S1, S2, . . . , Sm} is
a finite partition of the phase space called the switching do-
mains, which satisfy Rn =

⋃
1≤i≤m Si. Each Si is defined

by hypersurfaces Σ in terms of δi (with 1 ≤ i ≤ m − 1) ,
particularly in R3, represents a plane as a boundary be-
tween two consecutive domains. Furthermore, we assume
that each set Si has at least a saddle equilibrium point
x∗ ∈ Si. If λj = αj + iβj is a complex eigenvalue of the
linear operator A and v̄j ∈ Rn its corresponding eigenvec-
tor, then the stable set is Es = Span{v̄j ∈ Rn : αj < 0}
and the unstable set Eu = Span{v̄j ∈ Rn : αj > 0}
Guzzo (2010). If the equilibrium point x∗ ∈ R3 of (1) is an
hyperbolic saddle-focus equilibrium and that the sum of its
eigenvalues is negative, then the system is called unstable
dissipative system.
Definition 1. Let Λ = {λ1, λ2, λ3} be the eigenspectra

of the lineal operator A ∈ R3×3, such that
∑3

i=1 λi < 0,
with λ1 a real number and λ2, λ3 two complex conjugate
numbers. A system given by the linear part of the system
(3) is said to be a UDS Type I if λ1 < 0 and Re{λ2,3} > 0;
and it is Type II if λ1 > 0 and Re{λ2,3} < 0.

In particular, it is considered the following family of affine
linear systems:

ẋ = Ax+B(x), (3)

where x = (x1, x2, x3)
� ∈ R3 is the state vector, the real

matrix A ∈ R3×3 is a non-singular linear operator; and
B : R3 → R3 is a constant vector Bi in each domain
Si which is determined by a switching control law (SCL).
We involve the step function in defining these constant
vectors Bi, i = 1, ...,m. A convenient approach to build
the matrix A and design the SLC is based on the linear
ordinary differential equation (ODE) given by the jerk
form:

...
x +a33ẍ+ ẋa32 + a31x+ β = 0.

The location where the attractors are positioned depend
from the following; the coefficient matrix A from the jerk
equation Campos-Cantón (2016) and the affine vector B
as is described by Campos-Cantón et al. (2012) with:

A =

(
0 1 0
0 0 1
−α −β −γ

)
, B(x) =

(
0
0

σ(x)

)
; (4)

where α, β, γ ∈ R and σ(x) : R3 → R is the following
step function that generates a switching law to control the
equilibria of the system:

σ(x) =



b1, if x ∈ S1 = {x ∈ R3 : v�x < δ1};
b2, if x ∈ S2 = {x ∈ R3 : δ1 ≤ v�x < δ2};
...

...
bm, if x ∈ Sm = {x ∈ R3 : δm−1 ≤ v�x};

(5)

with bi ∈ R (for i = 1, . . . ,m;) are the switching domains,
v ∈ R3 ( v �= 0) a constant vector, and δ1 ≤ δ2 ≤
· · · ≤ δm−1 determine the switching surfaces Σ location.
Without loss of generality, it is assumed that switching
surfaces Σ are defined by Στ = {x ∈ R3|v�x = δτ}
(for τ = 1, 2, . . . ,m), with v = (1, 0, 0)� ∈ R3. The
role of the SCL σ is to specify which system is active
at a given switching domain Si, that is, if σ(x) = bi for
i ∈ I = {1, . . . ,m}, then the affine linear system that
governs the dynamics in the switching domain Sk is given
by ẋ = Ax+ (0, 0, bk)

�.

According with the aforementioned assumption, with the
SCL proposed, each switching domain contains a single
saddle equilibrium point located at x∗

i = A−1Bi, with
i ∈ I. Then, the mechanism of generation of chaotic
attractors based on this class of systems is due to the
stable and unstable manifolds related with the design of
A and B; this is, by considering two domains Si and Si+1,
and the commutation surface Στ between them. When
the trajectory φ(x0)t reaches to the commutation surface
Στ due to the unstable manifold and initial condition
x0 ∈ Si, and crosses the domain Si+1, and the trajectory
approaches the point of equilibrium due to the stable
manifold, but again scapes from this domain due to the
unstable manifold, being the trajectory φ(x0)t trapped
forming the chaotic attractor.

The above result is illustrated by Figure 1. Notice that the
trajectory of the system oscillating around the unstable
manifold Wu escapes from the domain Si. This occurs
near the unstable manifold Eu ⊂ Si where it crosses the
commutation surface and it is rejected by the unstable
manifold Wu ⊂ Si+1 towards the equilibrium point x∗

i
in the domain Si. The process is repeated in the inverse
way forming the attractor. For which, the set of all the
initial conditions, in the phase space, whose corresponding
trajectories converge to an attractor are defined as basin
of attraction, Ω.

The idea is to generate different sets Ωj such that for
any initial condition x0 ∈

⋃
1≤j≤k Ωj ⊂ R3, the orbit

φ(x0) of the system (3)-(4) is attracted in only one region
Ωj . The generalized multistability are considered, so the
trajectory needs to remain oscillating. We start consider-
ing only one basin of attraction of a chaotic multiscroll
attractor. Without lost of generality the following set of
parameters are considered, α = −0.6, β = 6 and γ = 0.6.
With this selection of parameters the eigenvalues of A
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Guzzo (2010). If the equilibrium point x∗ ∈ R3 of (1) is an
hyperbolic saddle-focus equilibrium and that the sum of its
eigenvalues is negative, then the system is called unstable
dissipative system.
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with λ1 a real number and λ2, λ3 two complex conjugate
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(3) is said to be a UDS Type I if λ1 < 0 and Re{λ2,3} > 0;
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� ∈ R3 is the state vector, the real

matrix A ∈ R3×3 is a non-singular linear operator; and
B : R3 → R3 is a constant vector Bi in each domain
Si which is determined by a switching control law (SCL).
We involve the step function in defining these constant
vectors Bi, i = 1, ...,m. A convenient approach to build
the matrix A and design the SLC is based on the linear
ordinary differential equation (ODE) given by the jerk
form:
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x +a33ẍ+ ẋa32 + a31x+ β = 0.

The location where the attractors are positioned depend
from the following; the coefficient matrix A from the jerk
equation Campos-Cantón (2016) and the affine vector B
as is described by Campos-Cantón et al. (2012) with:

A =

(
0 1 0
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According with the aforementioned assumption, with the
SCL proposed, each switching domain contains a single
saddle equilibrium point located at x∗

i = A−1Bi, with
i ∈ I. Then, the mechanism of generation of chaotic
attractors based on this class of systems is due to the
stable and unstable manifolds related with the design of
A and B; this is, by considering two domains Si and Si+1,
and the commutation surface Στ between them. When
the trajectory φ(x0)t reaches to the commutation surface
Στ due to the unstable manifold and initial condition
x0 ∈ Si, and crosses the domain Si+1, and the trajectory
approaches the point of equilibrium due to the stable
manifold, but again scapes from this domain due to the
unstable manifold, being the trajectory φ(x0)t trapped
forming the chaotic attractor.

The above result is illustrated by Figure 1. Notice that the
trajectory of the system oscillating around the unstable
manifold Wu escapes from the domain Si. This occurs
near the unstable manifold Eu ⊂ Si where it crosses the
commutation surface and it is rejected by the unstable
manifold Wu ⊂ Si+1 towards the equilibrium point x∗

i
in the domain Si. The process is repeated in the inverse
way forming the attractor. For which, the set of all the
initial conditions, in the phase space, whose corresponding
trajectories converge to an attractor are defined as basin
of attraction, Ω.

The idea is to generate different sets Ωj such that for
any initial condition x0 ∈

⋃
1≤j≤k Ωj ⊂ R3, the orbit

φ(x0) of the system (3)-(4) is attracted in only one region
Ωj . The generalized multistability are considered, so the
trajectory needs to remain oscillating. We start consider-
ing only one basin of attraction of a chaotic multiscroll
attractor. Without lost of generality the following set of
parameters are considered, α = −0.6, β = 6 and γ = 0.6.
With this selection of parameters the eigenvalues of A
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Figure 1. System flow around SW

Figure 2. a) x1 time series. b) x2 time series. c) x3

time series. d)Projection of the attractor onto the
(x1, x2) plane based on UDS Type II The dashed
lines mark the division between the switching surfaces
and the red dot indicates the initial position at χ0 =
(−1.1, 0, 0)�.

are λ1 = 0.0988 and λ2,3 = −0.3494 ± 2.4386i, which
according to Definition 1, the system is an UDS Type II. In
particular, for this example the following SCL is designed
via bifurcation analysis as is reported in Campos-Cantón
et al. (2012) :

σ(x) =

{
0, if x ∈ S1 = {x ∈ R3 : −1 ≤ x1 ≤ 1};
7, if x ∈ S2 = {x ∈ R3 : x1 < −1}. (6)

Figure (2) shows the dynamics obtained by numerical
simulation of a switching system (4), (6) based on UDS
Type II for the initial conditions x0 = (−1.1, 0, 0)�. The
attractor is generated by using two UDS Type II, near the
switching surface x1 = −1.

3. BISTABLE CHAOTIC SYSTEM

Now, the interest is to generate bistability behavior via a
dynamical system based on UDS Type II, so the system
(3) is considered with:

A =

(
0 1 0
0 0 1
α −pα −α

)
, B(x) =

(
0
0

σ∗(x)

)
, (7)

where p is a scaling parameter which can be used to change
the size of the attractor and by modifying the SCL (6) in
order to get more attractors. The approach is illustrated
in the next subsection 3.1.

Figure 3. Projections of the attractors based on UDS
Type II onto the (x1, x2) plane, with the switching
law (8) and α = 0.6 and p = 10 . The black dots
indicate initial conditions at x01 = (−1.1, 0, 0)� and
x02 = (1.1, 0, 0)� for the left-hand side attractor AL

and right-hand side attractor AR, respectively.

3.1 Generalized Bistability

The starting point is the example which was given in
Section 3 where α = −0.6, β = 6 and γ = 0.6, and the
phase space is partitioned by S1 = {x ∈ R3|x1 ≥ −1}
and S2 = {x ∈ R3|x1 < −1}. Each domain has a stable
manifolf Es

1 ⊂ S1 and Es
2 ⊂ S2 given by planes such

that they are parallel Es
1 ‖ Es

2 . The basin of attraction
is located Ω between Es

1 and Es
2 . So, now the idea of

generalized multistability generation is by incresasing the
number of domains in the partition with a new SCL
and generate an attractor near the switching surface and
between two stable manifolds, i.e., Es

1 ⊂ S1, E
s
2 ⊂ S2, . . .,

Es
k ⊂ Sm, with 2 ≤ m ∈ Z, and Es

1 ‖ Es
2 , . . . , E

s
m−1 ‖ Es

m.
The PWL system given in Section 3 is used, but now
the phase space is partitioned in three domains given by
S1x1

= {x ∈ R3|x1 > 1}, S2x1
= {x ∈ R3| − 1 ≤ x1 ≤ 1}

and S3x1
= {x ∈ R3|x1 < −1} by introducing a new

switching domain on the SCL function (6) as follows:

σ∗(x) =




−7, if x ∈ S1x1
= {x ∈ R3 : x1 > 1};

0, if x ∈ S2x1
= {x ∈ R3 : −1 ≤ x1 ≤ 1};

7, if x ∈ S3x1
= {x ∈ R3 : x1 < −1}.

(8)

The system defined by (3) with equations (7) and (8) and
parameters α = 0.6, p = 10, has its equilibria at x∗

1 =
(0, 0, 0) and x∗

2,3 = (±11.66, 0, 0), this dynamical system
presents two attractors AL and AR, Figure (3) shows a
bistable behavior for the two coexisting attractors. The
left-hand side attractor AL and right-hand side attractor
AR were generated by considering the following initial
conditions: x01 = (−1.1, 0, 0)� and x02 = (1.1, 0, 0)�. Each
final stable state of the system is a single chaotic attractor
which depends on only of the initial condition selected.
In terms of generalized multistability we have a bistable
behavior then the basin of attraction of the system is given
by the union of two basin of attraction Ω1 ∪ Ω2.

4. CIRCUIT SYSTEM DESIGN

In this section an easy electronic realization of the system
(3) with A and B given by (7) which make use of
operational amplifier (Op-Amp), comparators, resistors
and capacitors is proposed. The circuit is energized by
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DC power sources of ±12V and ±15V. For simplicity,
its electronic diagram has been divided into four sub-
diagrams presented in Figures (4) and (5).

(a)

(b)

(c)

Figure 4. Sub-diagrams of the proposed electronic realiza-
tion of the system (3) with A and B given in (7) for
the sub-circuits that produce the output signals: (a)
x1 (b) x2 and (c) x3.

The sub-circuits which are shown in Figures (4a) and (4b)
are composed of an Op-Amp configured as an inverter
followed by another Op-Amp configured as an integrator
while the sub-circuit in Figure (4c) is composed of an Op-
Amp configured as an adder-subtractor whose gains are
determined in part by the characteristic polynomial of the
matrix A given in (7), one additional gain is chosen as −1
and is reserved to the input signal b. The equation of the
adder-subtractor is given as follows

−.6x1 + 6x2 + .6x3 − b = V3A, (9)

where V3A is the voltage output from U3A. These three
sub-circuits produce the output signals x1, x2 and x3.

The sub-circuit in Figure (5) is based on the SCL defined
in (8), it has as input the signal x1 and is responsible for
the commutation of the signal b. If x1 < 1V then b takes
the value of 7V, the value of 0V if −1V < x1 < 1V and
−7V if x1 > 1V. The output when x1 = 1V or x1 = −1V is
not defined for practical reasons. This sub-circuit consists
of a pair of comparators followed by Op-Amps configured

Figure 5. Sub-diagram of the proposed electronic realiza-
tion of the system (3) with A and B given in (7) for
the sub-circuit that produce the switching control law
given in (8).

as buffers and an Op-Amp configured as adder-subtractor
that implement the following equation:

V6A

(
12

3.5

)
+ V6B

(
12

3.5

)
= b, (10)

where V6A and V6B are the voltage outputs from U6A
and U6B, respectively and whose only possible values
has been assumed to be ±12V. It is worth mention
that in the diagrams, power sources appear connected to
only one of the internal devices of the integrated circuit,
however this implies the energized of all internal devices.
The devices considered for this circuit are the general
purpose JFET-input dual Operational amplifier TL082CP
and the quad differential comparator LM339AN. The
mathematical values for the resistors has been replaced
by an approximated value achievable by the combination
of two resistors from the E12 series either in parallel or
series.

An electronic simulation of the proposed circuit has been
run for the initial conditions x0 = (1.1, 0, 0)� y x0 =
(−1.1, 0 0)�, as it can be seen in Figure (6) the circuit
proposed is capable of generating bistability in concor-
dance to the mathematical model of dynamical system.
The signal x1 and the control signal b for the attractor
generated by electronic simulation using the initial condi-
tion x01 = (−1.1, 0, 0)� are shown in Figure 7. The signals
for the initial condition x02 = (1.1, 0, 0)� are shown in
Figure 8. In which can be seen the bistable behavior on
the oscillation range for x1 variable and the taken values
for the SCL b in both cases.

5. CONCLUSION

In this paper, we have presented a mechanism of con-
structing a bistable system based on piece-wise linear
systems via SCL. Particularly, it deals with UDS Type II
that results in generating chaotic attractors. The attractor
arises from a switching system via control having at least
two UDS Type II. Two examples are shown by means of
considering a system in which the A matrix is the same in
both domains S1 and S2, and the difference lies only in the
B vectors which change the locations of the equilibrium
points. This result was extended to yield a system with
three domains to generate chaotic systems with multista-
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where V6A and V6B are the voltage outputs from U6A
and U6B, respectively and whose only possible values
has been assumed to be ±12V. It is worth mention
that in the diagrams, power sources appear connected to
only one of the internal devices of the integrated circuit,
however this implies the energized of all internal devices.
The devices considered for this circuit are the general
purpose JFET-input dual Operational amplifier TL082CP
and the quad differential comparator LM339AN. The
mathematical values for the resistors has been replaced
by an approximated value achievable by the combination
of two resistors from the E12 series either in parallel or
series.

An electronic simulation of the proposed circuit has been
run for the initial conditions x0 = (1.1, 0, 0)� y x0 =
(−1.1, 0 0)�, as it can be seen in Figure (6) the circuit
proposed is capable of generating bistability in concor-
dance to the mathematical model of dynamical system.
The signal x1 and the control signal b for the attractor
generated by electronic simulation using the initial condi-
tion x01 = (−1.1, 0, 0)� are shown in Figure 7. The signals
for the initial condition x02 = (1.1, 0, 0)� are shown in
Figure 8. In which can be seen the bistable behavior on
the oscillation range for x1 variable and the taken values
for the SCL b in both cases.

5. CONCLUSION

In this paper, we have presented a mechanism of con-
structing a bistable system based on piece-wise linear
systems via SCL. Particularly, it deals with UDS Type II
that results in generating chaotic attractors. The attractor
arises from a switching system via control having at least
two UDS Type II. Two examples are shown by means of
considering a system in which the A matrix is the same in
both domains S1 and S2, and the difference lies only in the
B vectors which change the locations of the equilibrium
points. This result was extended to yield a system with
three domains to generate chaotic systems with multista-
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(a)

(b)

Figure 6. Projection of plane x1 − x2 of the attractor
generated by simulation: (a) with initial conditions
x0 = (−1.1, 0, 0)� and (b) with initial conditions
x0 = (1.1, 0, 0)�. In both cases the simulation time
recorded is 550s from where the first 50s has been
omitted in the plot.

bility by the switching control law. An electronic circuit
for the controlled system was designed, which displays
the bistable behavior described in this work. This class of
systems can be implemented in a communication system
based on chaotic modulation, as proposed in Pecora et al.
(1997); Ontañón Garćıa et al. (2014). Based on synchro-
nize two identical attractors and considering each stable
state as a transmission channel.
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