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1. INTRODUCTION

Wang and Chen (2012) presented the first chaotic dynam-
ical system with a unique stable equilibrium point derived
from a perturbation of the Sprott system, case E. The
dynamical system equations are:

dx

dt
= ẋ = yz + a

dy

dt
= ẏ = x2 − y (1)

dz

dt
= ż = 1− 4x

When a = 0.006, system (1) exhibits a chaotic behaviour
despite the existence of a unique stable equilibrium point,
E = [1/4, 1/16, − 16a], with associated eigenvalues:
λ1 = −0.96069, λ2,3 = −0.01966± 0.50975 i.

The counterintuitive dynamical result reported by Wang
and Chen (2012) was confirmed and extended by other
researchers. For example, Molaile et al. (2013) derived 23
minimal chaotic three dimensional dynamical systems with
a unique and stable equilibrium point. Later, Wei and
Zhang (2014) reported hidden hyperchaotic attractors in
a four-dimensional modified Lorenz–Stenflo system with
three quadratic nonlinearities and only one stable equi-
librium. The work of Kingni et al. (2014) went further:
authors proposed a three-dimensional chaotic autonomous

Fig. 1. Chaotic attractor of dynamical system (1) with
a = 0.006. Black dot stands for the unique and stable
equilibrium point, E = [1/4, 1/16, − 0.096]. Initial
conditions: [1, 1, 1].
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México. (lquezada@correo.cua.uam.mx)
∗∗∗ Departmento de F́ısica y Matemáticas, Universidad Iberoamericana,
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= ż = 1− 4x

When a = 0.006, system (1) exhibits a chaotic behaviour
despite the existence of a unique stable equilibrium point,
E = [1/4, 1/16, − 16a], with associated eigenvalues:
λ1 = −0.96069, λ2,3 = −0.01966± 0.50975 i.

The counterintuitive dynamical result reported by Wang
and Chen (2012) was confirmed and extended by other
researchers. For example, Molaile et al. (2013) derived 23
minimal chaotic three dimensional dynamical systems with
a unique and stable equilibrium point. Later, Wei and
Zhang (2014) reported hidden hyperchaotic attractors in
a four-dimensional modified Lorenz–Stenflo system with
three quadratic nonlinearities and only one stable equi-
librium. The work of Kingni et al. (2014) went further:
authors proposed a three-dimensional chaotic autonomous

Fig. 1. Chaotic attractor of dynamical system (1) with
a = 0.006. Black dot stands for the unique and stable
equilibrium point, E = [1/4, 1/16, − 0.096]. Initial
conditions: [1, 1, 1].

Proceedings, 2nd IFAC Conference on
Modelling, Identification and Control of Nonlinear Systems
Guadalajara, Mexico, June 20-22, 2018

Proceedings, 2nd IFAC Conference on
Modelling, Identification and Control of Nonlinear
Systems
Guadalajara, Mexico, June 20-22, 2018

103

A chemical representation of a chaotic
system with a unique stable equilibrium

point
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Fig. 2. Time series of dynamical system (1) with a = 0.006.

system with only one stable equilibrium whose physical
existence was verified using the Orcard-PSpice software
along with Routh-Hurwitz conditions that allow to choose
linear controllers for chaotic synchronization. Moreover,
Kingni et al. (2014) obtained necessary conditions for the
commensurate fractional order version of the proposed
system to remain chaotic; they also found that chaos is
present in an order less than three. More recently, Moreno
et al. (2015) used Monte-Carlo methods to find the sim-
plest chaotic three dimensional system with quadratic
nonlinearities and one stable equilibrium point.

However, none of the chaotic systems with one stable
equilibrium point can be interpreted as a chemical derived
dynamical system. This issue motivates the following ques-
tion: is it possible to transform the system by Wang and
Chen (2012) into a chemical representation such that the
induced (possibly mass action kinetic) polynomial ODEs
model a real chemical system? The mere existence of a
possible reacting system (organic or inorganic) with a
unique and stable equilibrium point with a hidden chaotic
attractor seems paradigmatic for the (bio)chemical scien-
tific community as it happened when the first nonlinear
oscillations were reported by Zhabotinsky (Epstein and
Pojman, 1998).

Some mathematical efforts focused in the transforma-
tion of chaotic systems into chemical ones have been
reported. Toth and Hars (1986) shown for the Lorenz
and Rossler chaotic systems that none of the proper or
improper orthogonal transformations transform them into
a (mass action) kinetic equation representing a possible
chemistry. On the other hand, the approach proposed
by Poland (1993) uses cooperative catalysis and slow reac-
tions followed by rapid ones where the former type of re-
actions controls the contribution to the polynomial ODEs.
With this approach, the negative cross–effect that pre-
vents the chemical interpretation of most chaotic systems
appears to be explained naturally. Therefore, as a first
step towards the finding of a mass action kinetic system
with one stable equilibrium point and chaotic dynamics,

we use the approach by Poland (1993) to obtain a chemical
representation of the chaotic system founded by Wang and
Chen (2012).

This contribution is organised as follows: In section 2 we
briefly present the necessary mathematical background to
derive a chemical system from a chaotic dynamical one
in accordance with the work of Poland (1993). Section 3
shows the chemical based chaotic dynamical system ob-
tained from (Wang and Chen, 2012) using the approach
of Poland (1993). A discussion is given in section 4. Finally,
some conclusions are drawn in section 5.

2. MATERIALS AND METHODS

In this section we present the ideas discussed by Poland
(1993) that allow to obtain an equivalent set of multivari-
ate polynomial ODEs (not necessarily mass action type)
from a chaotic polynomial ODEs so that the obtained
ODEs have a direct interpretation in terms of chemical
reactions.

The “theoretical reaction building blocks” that may be
used to derive the chemical version of the Wang &Chen
system chaotic dynamical system are:

• Constant sources, that is, reactions of the type,

S
k→ X, (2)

where S is a chemical species present in excess, hence
a source. Thus, to account for the production of X,
the term “k”(which encodes the constant concentra-
tion of S) need to appear at the right hand side of
the ODEs.

• Cooperative catalysis:

C +X + Y
k→ X + Y + Z (3)

Let us note that the net reaction is C
k→ Z; chemical

species X and Y collide each other along with C, act-
ing as catalyst because there is not a net production
of X and Y , only production of Z. In mathematical
terms, the production of Z is expressed with the
term“kxy”at the right hand side of the corresponding
ODEs.

• Slow/Fast couples. In order to account for the net
reaction Y → R, where R stands for an external
reservoir and Y must decrease at a rate that is
independent of Y concentration, we need to invoke
a two reaction scheme as follows:

D +X + Z
k→D∗ +X + Z (slow) (4)

D∗ + Y →D +R (fast) (5)

Because the first reaction is slow, it will dominate
the dynamics of the consumption of Y . Thus, the
concentration of Y will decrease at a rate of “−kxz”.

• Sinks. It refers to reactions where a chemical species
degrades itself. An example of this type of reaction is

X
k→ R. The mathematical representation is “−kx”.

Lumping the aforementioned type of reactions we can
write the ODEs as:

dx

dt
= JS +NCJC +NRJR +NEJE (6)

where JS , JC , JR, and JE represent the current vectors for
constant sources, cooperative catalysis, slow/fast couples,
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and sinks, respectively. Matrices NC , NR, and NE are the
appropriate stoichiometric matrices of the aforementioned
type of reactions.

3. RESULTS

Using the theoretical background briefly presented in the
last section, we derive a set of chemical reactions that in-
duces an equivalent system of polynomial ODEs (Poland,
1993). As a first step it is necessary to shift the solutions
of system (1) to the positive orthant. It can be seen from
Fig. 2 that x and z have positive and negative values
whereas y evolve in the positive orthant. Hence, we need
to displace variables x and z only. To that end, we define
the following:

x̄ = x+∆, ȳ = y, z̄ = z +∆ (7)

where ∆ is a positive scalar. Substitution of (7) into (1)
lead to:

d(x̄−∆)

dt
= (ȳ)(z̄ −∆) + a

dx̄

dt
= ȳz̄ −∆ȳ + a (8)

dȳ

dt
= (x̄−∆)2 − ȳ

dȳ

dt
= x̄2 − 2∆x̄+∆2 − ȳ (9)

d(z̄ −∆)

dt
= 1− 4(x̄−∆)

dz̄

dt
= −4x̄+ (1 + 4∆) (10)

3.1 Sources terms

Let us first consider those source terms that appear in
Eqs. (8)-(10) and their chemical representation. Thus,
from Eq. (8), we have “+a”:

S
k1→ X̄, JS1 = k1 (11)

From Eq. (9), we have “+∆2”:

S
k2→ Ȳ , JS2 = k2 (12)

And from Eq. (10), we have “1 + 4∆”:

S
k3→ Z̄, JS3 = k3 (13)

3.2 Cooperative catalysis

To account for the term “ȳz̄” we have the reaction:

A+ Ȳ + Z̄
k4→ X̄ + Ȳ + Z̄, JC1 = k4ȳz̄ (14)

with a net effect of A → X̄. From Eq. (9) we have the term
“x̄2” which can be explained trough the next reaction:

B + 2X̄
k5→ Ȳ + 2X̄, JC2 = k5x̄

2 (15)

The net effect of the above reaction in B → Ȳ .

3.3 Slow/fast couples

Equation (8) has the term “−∆ȳ”, whose contribution can
be explained with reactions:

C + Ȳ
k6→C∗ + Ȳ (slow), JR1 = k6ȳ (16)

C∗ + X̄ →R+ C (fast) (17)

As a consequence of the above slow/fast reaction, we have
the consumption of X̄, that is X̄ → R.

To account for the term “−2∆x̄” in Eq. (9) we have the
following reactions:

D + X̄
k7→D∗ + X̄ (slow), JR2 = k7x̄ (18)

D∗ + Ȳ →D +R (fast) (19)

with a net effect of Ȳ → R.

With respect to Eq. (10) and its associated term “−4x̄”,
we can explain it via:

E + X̄
k8→E∗ + X̄ (slow), JR3 = k8x̄ (20)

E∗ + Z̄ →E +R (fast) (21)

The resulting net effect is Z̄ → R.

3.4 Sinks

We have only one term for degradation of a chemical
species in Eq. (9), that is “−ȳ”, and expressed as a
chemical reaction of the form:

Ȳ
k9→ R, JE1 = k9ȳ (22)

Thus, in accordance with Eq. (6), the current vectors
for the Wang and Chen system derived from the above
reactions are:

JS =

[
JS1

JS2

JS3

]
, JC =

[
JC1

JC2

0

]
, (23)

JR =

[
JR1

JR2

JR3

]
, JE = [JE1] (24)

whereas the corresponding stoichiometric matrices are:

NS =

[
1 0 0
0 1 0
0 0 1

]
, NC =

[
1 0
0 1
0 0

]
, (25)

NR =

[−1 0 0
0 −1 0
0 0 −1

]
, NE =

[
0
−1
0

]
(26)

Resumed below is the chemical reaction network represen-
tation of the Wang-Chen system:
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and sinks, respectively. Matrices NC , NR, and NE are the
appropriate stoichiometric matrices of the aforementioned
type of reactions.

3. RESULTS

Using the theoretical background briefly presented in the
last section, we derive a set of chemical reactions that in-
duces an equivalent system of polynomial ODEs (Poland,
1993). As a first step it is necessary to shift the solutions
of system (1) to the positive orthant. It can be seen from
Fig. 2 that x and z have positive and negative values
whereas y evolve in the positive orthant. Hence, we need
to displace variables x and z only. To that end, we define
the following:

x̄ = x+∆, ȳ = y, z̄ = z +∆ (7)

where ∆ is a positive scalar. Substitution of (7) into (1)
lead to:

d(x̄−∆)

dt
= (ȳ)(z̄ −∆) + a

dx̄

dt
= ȳz̄ −∆ȳ + a (8)

dȳ

dt
= (x̄−∆)2 − ȳ

dȳ

dt
= x̄2 − 2∆x̄+∆2 − ȳ (9)

d(z̄ −∆)

dt
= 1− 4(x̄−∆)

dz̄

dt
= −4x̄+ (1 + 4∆) (10)

3.1 Sources terms

Let us first consider those source terms that appear in
Eqs. (8)-(10) and their chemical representation. Thus,
from Eq. (8), we have “+a”:

S
k1→ X̄, JS1 = k1 (11)

From Eq. (9), we have “+∆2”:

S
k2→ Ȳ , JS2 = k2 (12)

And from Eq. (10), we have “1 + 4∆”:

S
k3→ Z̄, JS3 = k3 (13)

3.2 Cooperative catalysis

To account for the term “ȳz̄” we have the reaction:

A+ Ȳ + Z̄
k4→ X̄ + Ȳ + Z̄, JC1 = k4ȳz̄ (14)

with a net effect of A → X̄. From Eq. (9) we have the term
“x̄2” which can be explained trough the next reaction:

B + 2X̄
k5→ Ȳ + 2X̄, JC2 = k5x̄

2 (15)

The net effect of the above reaction in B → Ȳ .

3.3 Slow/fast couples

Equation (8) has the term “−∆ȳ”, whose contribution can
be explained with reactions:

C + Ȳ
k6→C∗ + Ȳ (slow), JR1 = k6ȳ (16)

C∗ + X̄ →R+ C (fast) (17)

As a consequence of the above slow/fast reaction, we have
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To account for the term “−2∆x̄” in Eq. (9) we have the
following reactions:

D + X̄
k7→D∗ + X̄ (slow), JR2 = k7x̄ (18)

D∗ + Ȳ →D +R (fast) (19)

with a net effect of Ȳ → R.

With respect to Eq. (10) and its associated term “−4x̄”,
we can explain it via:

E + X̄
k8→E∗ + X̄ (slow), JR3 = k8x̄ (20)

E∗ + Z̄ →E +R (fast) (21)

The resulting net effect is Z̄ → R.

3.4 Sinks

We have only one term for degradation of a chemical
species in Eq. (9), that is “−ȳ”, and expressed as a
chemical reaction of the form:

Ȳ
k9→ R, JE1 = k9ȳ (22)

Thus, in accordance with Eq. (6), the current vectors
for the Wang and Chen system derived from the above
reactions are:

JS =

[
JS1

JS2

JS3

]
, JC =

[
JC1

JC2

0

]
, (23)

JR =

[
JR1

JR2

JR3

]
, JE = [JE1] (24)

whereas the corresponding stoichiometric matrices are:

NS =

[
1 0 0
0 1 0
0 0 1

]
, NC =

[
1 0
0 1
0 0

]
, (25)

NR =

[−1 0 0
0 −1 0
0 0 −1

]
, NE =

[
0
−1
0

]
(26)

Resumed below is the chemical reaction network represen-
tation of the Wang-Chen system:
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S
k1→ X̄

S
k2→ Ȳ

S
k3→ Z̄

A+ Ȳ + Z̄
k4→ X̄ + Ȳ + Z̄

B + 2X̄
k5→ Ȳ + 2X̄

C + Ȳ
k6→C∗ + Ȳ (slow) (27)

C∗ + X̄ →R+ C (fast)

D + X̄
k7→D∗ + X̄ (slow)

D∗ + Ȳ →D +R (fast)

E + X̄
k8→E∗ + X̄ (slow)

E∗ + Z̄ →E +R (fast)

Ȳ
k9→R

Now, we turn our attention to the polynomial ODEs that
such reaction network induces. For chemical species X the
associated ODEs takes the form:

dx̄

dt
= JS1 + JC1 − JR1

dx̄

dt
= k1 + k4ȳz̄ − k6ȳ (28)

Comparing Eq.(28) with Eq.(8),

dx̄

dt
= a+ ȳz̄ −∆ȳ (29)

we have that:

k1 = a, k4 = 1, k6 = ∆ (30)

For the chemical species Y we have that:

dȳ

dt
= JS2 + JC2 − JR2 − JE1 (31)

dȳ

dt
= k2 + k5x̄

2 − k7x̄− k9ȳ (32)

Comparison of Eq. (9) with Eq.(32),

dȳ

dt
= ∆2 + x̄2 − 2∆x̄− ȳ (33)

lead to the following kinetic constants values:

k2 = ∆2, k5 = 1, k7 = 2∆, k9 = 1 (34)

Finally, chemical species Z ODE is:

dz̄

dt
= JS3 − JR3 (35)

dz̄

dt
= k3 − k8x̄ (36)

A direct comparison of Eq.(36) with Eq.(10),

dz̄

dt
= (1 + 4∆)− 4x̄ (37)

gives the kinetic constant values:

k3 = 1 + 4∆, k8 = 4 (38)

Let us consider the ODEs derived from the chemical
representation of Wang and Chen system Wang and Chen
(2012):

dx̄

dt
= k1 + k4ȳz̄ − k6ȳ

dȳ

dt
= k2 + k5x̄

2 − k7x̄− k9ȳ (39)

dz̄

dt
= k3 − k8x̄

with ∆ = 3 and a = 0.006, the kinetic constant values are:

k1 = 0.006, k2 = 9, k3 = 13, k4 = 1, k5 = 1

k6 = 3, k7 = 6, k8 = 4, k9 = 1

System (39) has a unique stable equilibrium point, E∗:

x̄∗ =
k3
k8

= 3.25 (40)

ȳ∗ =
(k2k

2
8 + k23k5 − k3k7k8)

(k28k9)
= 0.0625 (41)

z̄∗ =
((k2k

2
8 + k23k5 − k3k7k8)k6 − k1k

2
8k9)

k4(k2k28 + k23k5 − k3k7k8)
= 2.9 (42)

Numerical integration of system (39) is depicted in Figs. 3
and 4. The eigenvalues associated to the equilibrium point
E∗ are the same as those for E. Numerical computa-
tion (Wolf et al., 1985) of the Lyapunov exponents 1 of
system (1) gives L̄1 = 0.0633, L̄2 = 0, and L̄3 = −1.0612,
indicating the existence of chaotic behaviour (see Fig. 5).

Fig. 3. Three dimensional behaviour of the chemical rep-
resentation of Wang and Chen system with a = 0.006
and ∆ = 3. Black solid dot is the unique and stable
equilibrium point,E∗. Initial conditions: [1, 1, 1]. Bars
over lower case letters were omitted seeking simplicity.

4. DISCUSSION

Loosely speaking we can say that two or more entities are
equivalent if they have a common feature that enables us
1 Lyapunov Exponents Toolbox (LET), a Mat-
lab code written by Steve Siu. Available at: http
://www.mathworks.com/matlabcentral/fileexchange
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Fig. 4. Time series of the chemical representation of Wang
and Chen system with a = 0.006 and ∆ = 3. Initial
conditions: x0 = [1, 1, 1].

Fig. 5. Lyapunov exponents of the Wang-Chen chemical
based dynamical system (1).

to declare them as the same. Within dynamical systems
theory there are several equivalence definitions (Arnold,
1992). A particularly easy one to verify is the Topological
Equivalence (TE) concept (Arnold, 1992).

Let us consider two linear systems:

ẋ(t) = Ax(t) and ẋ(t) = Bx(t), x ∈ Rs (43)

where (A,B) : Rs×s → Rs, x ∈ Rs, with all their
eigenvalues having a nonzero real part and denote the
number of negative real eigenvalues by m− whereas the
number of positive real eigenvalues with m+, so that m−+
m+ = n. Then, it can be said that two linear systems are
TE if the following theorem’s conditions hold:

Theorem 1. A necessary and sufficient condition for topo-
logical equivalence of two linear systems having no eigen-
values with zero real part is that the number of eigenvalues

with negative (or positive) real part be the same for both
systems: m−(A) = m−(B), m+(A) = m+(B).

Theorem 1 implies that all stable equilibrium points (un-
stable, respectively), classified as nodes and foci, are TE to
each other but not equivalent to a saddle type equilibrium
point. Additionally, theorem 1 holds locally for nonlinear
polynomial ODEs, that is, in the vicinity of an equilib-
rium point the set of polynomial ODEs is topologically
equivalent to its linear approximation (Arnold, 1992).

As shown in the previous section, the theorem’s condition
holds for the eigenvalues of system (39); moreover, these
eigenvalues are the same as in system (1). Hence the
new chemical based dynamical system, (39), is topological
equivalent to the Wang and Chen (2012) system, (1), in
the vicinity of the unique and stable equilibrium point.

Other invariance properties, such as Lyapunov exponents
and Lyapunov dimension (DL), have been used as an
equivalence criteria between dynamical systems (Eichhorn
et al., 2001). For a three dimensional dynamical system
with L2 = 0, the Lyapunov dimension can be computed
using the following equation (Chlouverakis and Sprott,
2005):

DL =
3

2
+

1

2

√
1− 8L1

L3
(44)

where L1 is the largest positive Lyapunov exponent and
L3 stands for the negative one. Using equation (44), the
chemical based dynamical system (39) has a Lyapunov
dimension DL̄ = 2.1077, whereas Wang and Chen (2012)
originally reported a Lyapunov dimension of DL = 2.048
given L1 = 0.0510, L2 = 0, L3 = −1.0510 for parameter
value a = 0.006. Comparing these invariance properties we
can say that both dynamical systems are indeed equivalent
and that the chemical representation obtained is coherent
with the original dynamical system developed by Wang
and Chen (2012). In this sense, if a real chemical reaction
can be explained by reaction network (27), then we might
find a far dull behaviour to that expected by the existence
of a unique and stable equilibrium point.

However, let us point out that the set of polynomial ODEs
induced by the chemical representation of the Wang-
Chen system does not belong to the mass action kinetics
polynomial ODEs and hence equations in (39) are not
positively invariant (Chellaboina et al., 2009). In other
words, solutions starting inside the positive orthant does
not remain within the positive orthant, a clear violation of
a fundamental property of polynomial mass action kinetics
ODEs (Chellaboina et al., 2009). This violation is shown
in Fig. 6.

Therefore, further investigation is needed in order to
characterise the basin of attraction of the chaotic regime
that is lurking in the vicinity of the unique and stable
equilibrium point as well as the implementation of other
approaches to derive a mass action kinetic polynomial
ODEs with the same dynamical properties of the Wang-
Chen system. A second approach to be pursued is the
so-called “X-factorable” transformation, which allows to
rewrite a polynomial set of ODEs into a chemical kinetic
set of ODEs (Guo Xu and Shu Li, 2003). The finding or
design of a real chemical reaction that can be explained by
the same reactions (or some of them) derived here remains
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Fig. 4. Time series of the chemical representation of Wang
and Chen system with a = 0.006 and ∆ = 3. Initial
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Fig. 5. Lyapunov exponents of the Wang-Chen chemical
based dynamical system (1).

to declare them as the same. Within dynamical systems
theory there are several equivalence definitions (Arnold,
1992). A particularly easy one to verify is the Topological
Equivalence (TE) concept (Arnold, 1992).

Let us consider two linear systems:

ẋ(t) = Ax(t) and ẋ(t) = Bx(t), x ∈ Rs (43)

where (A,B) : Rs×s → Rs, x ∈ Rs, with all their
eigenvalues having a nonzero real part and denote the
number of negative real eigenvalues by m− whereas the
number of positive real eigenvalues with m+, so that m−+
m+ = n. Then, it can be said that two linear systems are
TE if the following theorem’s conditions hold:

Theorem 1. A necessary and sufficient condition for topo-
logical equivalence of two linear systems having no eigen-
values with zero real part is that the number of eigenvalues

with negative (or positive) real part be the same for both
systems: m−(A) = m−(B), m+(A) = m+(B).

Theorem 1 implies that all stable equilibrium points (un-
stable, respectively), classified as nodes and foci, are TE to
each other but not equivalent to a saddle type equilibrium
point. Additionally, theorem 1 holds locally for nonlinear
polynomial ODEs, that is, in the vicinity of an equilib-
rium point the set of polynomial ODEs is topologically
equivalent to its linear approximation (Arnold, 1992).

As shown in the previous section, the theorem’s condition
holds for the eigenvalues of system (39); moreover, these
eigenvalues are the same as in system (1). Hence the
new chemical based dynamical system, (39), is topological
equivalent to the Wang and Chen (2012) system, (1), in
the vicinity of the unique and stable equilibrium point.

Other invariance properties, such as Lyapunov exponents
and Lyapunov dimension (DL), have been used as an
equivalence criteria between dynamical systems (Eichhorn
et al., 2001). For a three dimensional dynamical system
with L2 = 0, the Lyapunov dimension can be computed
using the following equation (Chlouverakis and Sprott,
2005):

DL =
3

2
+

1

2

√
1− 8L1

L3
(44)

where L1 is the largest positive Lyapunov exponent and
L3 stands for the negative one. Using equation (44), the
chemical based dynamical system (39) has a Lyapunov
dimension DL̄ = 2.1077, whereas Wang and Chen (2012)
originally reported a Lyapunov dimension of DL = 2.048
given L1 = 0.0510, L2 = 0, L3 = −1.0510 for parameter
value a = 0.006. Comparing these invariance properties we
can say that both dynamical systems are indeed equivalent
and that the chemical representation obtained is coherent
with the original dynamical system developed by Wang
and Chen (2012). In this sense, if a real chemical reaction
can be explained by reaction network (27), then we might
find a far dull behaviour to that expected by the existence
of a unique and stable equilibrium point.

However, let us point out that the set of polynomial ODEs
induced by the chemical representation of the Wang-
Chen system does not belong to the mass action kinetics
polynomial ODEs and hence equations in (39) are not
positively invariant (Chellaboina et al., 2009). In other
words, solutions starting inside the positive orthant does
not remain within the positive orthant, a clear violation of
a fundamental property of polynomial mass action kinetics
ODEs (Chellaboina et al., 2009). This violation is shown
in Fig. 6.

Therefore, further investigation is needed in order to
characterise the basin of attraction of the chaotic regime
that is lurking in the vicinity of the unique and stable
equilibrium point as well as the implementation of other
approaches to derive a mass action kinetic polynomial
ODEs with the same dynamical properties of the Wang-
Chen system. A second approach to be pursued is the
so-called “X-factorable” transformation, which allows to
rewrite a polynomial set of ODEs into a chemical kinetic
set of ODEs (Guo Xu and Shu Li, 2003). The finding or
design of a real chemical reaction that can be explained by
the same reactions (or some of them) derived here remains
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Fig. 6. Time series of the chemical representation of Wang-
Chen system with a = 0.006 and ∆ = 3. Note the
crossing to the negative orthant during the transient
behaviour of x̄ and z̄. Initial conditions: [10, 1, 1].

an interesting challenge. Recently, the rise of Artifical
Intelligence (AI) and deep learning algorithms within the
pharmaceutical industry has led to major improvements
in the discovery of drug molecules and their reaction
pathways (Segler et al., 2018). A similar procedure might
be exploited to explore and synthesize chemical reaction
networks with the dynamical characteristics explained in
this paper.

5. CONCLUSION

A chemical representation of the chaotic dynamical system
reported by Wang and Chen (2012) was obtained using
cooperative catalysis and slow-fast reactions. The chemical
based dynamical system preserved the same eigenvalues
as well as the Lyapunov exponents and the associated
Lyapunov dimension of the original chaotic Wang-Chen
dynamical system. However, the derived chemical repre-
sentation does not induce polynomial mass action kinetic
ODEs, which are guarantee to be positively invariant.
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