
This is an original manuscript of an article published by Taylor & Francis 
Group in Molecular Physics on 05 Jun 2017, available online: 
https://doi.org/10.1080/00268976.2017.1340682  

https://doi.org/10.1080/00268976.2017.1340682


 Viscosity and normal stress forces of Lennard Jones chains 

using reverse non-equilibrium Molecular Dynamics 

 Patsy V. Ramírez-González1*, Vladimir Alonso Escobar-Barrios1 

 

1 Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de 

San José 2055, Lomas 4a Sección, San Luis Potosí, San Luis Potosí, C.P. 78216, 

México. 

 

*corresponding author: patsy.ramirez@ipicyt.edu.mx 

 

Keywords: Viscosity, viscoelasticity, normal stress forces, non-equilibrium molecular 

dynamics, Lennard-Jones potential 

 

 

Abstract 

 

Reverse non-equilibrium molecular dynamics was applied for the calculation of the 

viscosity for different chain lengths. Each chain consisted of m tangent spherical sites, 

where m was 1, 2, 4, 8, or 16 respectively. From these results, shear thinning was 

observed at high shear rates. The normal stress forces were also estimated via the 

calculation of the total stress tensor, and they were related to the shear thinning effect 

depending on the length of the chain. Furthermore, a power law equation was used to 

fit the rheological curves of each chain, making possible the calculation of the 

viscoelasticity as a function of the sites involved in the chains.  

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Liquid viscosity is one of the most measured transport properties in chemical and 

petrochemical process designs. Nevertheless, no large experimental data are always 

available for all the fluids. The viscosity can be determined at the macroscopic level by 

the constitutive equation of Newton’s law of viscosity, which relates the shear stress to 

the shear rate.1 Several methods are available for calculating shear viscosities of liquids 

at macroscopic level, for example the friction theory.2-5 At the microscopic level, the 

viscosity is obtained due to the momentum transfer between fluid layers moving at 

different speed. In this sense, viscosity can be calculated with equilibrium methods that 

make use of molecular dynamics (MD) simulation, which are based on pressure or 

momentum fluctuation. The Green-Kubo (GK) expression for the shear viscosity is 

given by integration of the pressure autocorrelation function.6-8There are also 

alternative  methods that are carried out with non-equilibrium molecular dynamics 

(NEMD) simulations.9-10  A nonequilibrium system can be modelled as a perturbed 

ensemble. The perturbed field is added to the statistical mechanical description, which 

works on the system preventing it to relax to equilibrium and measures the resulting 

flux. The work is converted to heat, and the heat must be removed in order to obtain a 

well-defined steady state. Therefore, thermostats will also need to be included in the 

statistical mechanical model.8, 11 NEMD has been successfully applied to study the 

microscopic origin of the nonlinear viscoelastic properties of polymer melts.12 

However, it may require long simulations due to relatively large fluctuations in the 

pressure tensor. 

There is another method used in cases where the flux is difficult to define 

microscopically or is slowly converging. In contrast to equilibrium methods and 

NEMD, the reverse non-equilibrium molecular dynamics (RNEMD) proposed by 

Müller13-15conserves the total energy as well as the total linear momentum, so it can be 

used in a microcanonical ensemble without an additional thermostat. There is viscous 

heating but the excess heat is drained by the momentum exchange itself. It acts as an 

internal thermostat, i.e., a mechanism that removes the heat generated by friction. This 

method imposes the hard-to-measure flux, Jxy, and computes the resulting easy-to-

measure shear field, �̇�.  

Once knowing the flux and the shear field values, the viscosity can be calculated using 

Newton’s law of viscosity1:  

 



𝜼 = −
𝑱𝒙𝒚

�̇�
                                                                        1) 

When a fluid is at rest, it can support only a uniform normal stress, T11 = T22 = T33, 

where Tij is one component of the stress tensor. This normal stress is called the 

hydrostatic pressure p.1 Thus, for a fluid at rest, the stress tensor is: 

 

                                       T = [

−𝒑 𝟎 𝟎
𝟎 −𝒑 𝟎
𝟎 𝟎 −𝒑

] = −𝒑 [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

]                                    2) 

 

where the minus sign is used because compression is usually considered to be negative.  

can also be written as: 

                                                                T = −𝒑I                                                                      3)        

When working with fluids in motion (under shear rate) the total stress tensor is the sum 

of two parts: 

                                                                         T = −𝒑I+τ                                                   4)     

where  is known as the viscous stress tensor. For a Newtonian incompressible fluid, 

the only normal stress in steady shear is the hydrostatic pressure, then: 

 

                                                T = −𝒑 [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

] + [

𝟎 𝝉𝒙𝒚 𝟎

𝝉𝒚𝒙 𝟎 𝟎

𝟎 𝟎 𝟎

]       5) 

 

The value of xy for a Newtonian fluid must be the same as the value of the flux Jxy in 

Equation 1. When working with non-Newtonian fluids, the normal stress components 

in viscous tensor is no longer zero. In this work, it will be demonstrated that for large 

chains, the fluid becomes non-Newtonian and the normal stress components take major 

importance.  

 

2. Theory 

For the site–site interaction potential a truncated Lennard-Jones (LJ) potential was 

used: 
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where is the energy constant (or well depth),  is the diameter of the atom, and r is 

the site–site separation. If r is larger than the cut-off radio, rcutoff, the potential is equal 

to zero. The cutoff distance was set to 2.5. For epsilon and sigma, the common values 

of argon were used, namely /kB = 119.8 K and  = 0.3405 nm, where kB is the 

Boltzmann constant.  

A chain is defined as a molecule of m atoms joined by a strong harmonic bond modeled 

as a simple spring-type potential:16  

 

𝑼𝒃𝒐𝒏𝒅 = −
𝟏

𝟐
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where k is the spring constant equal to
2/3000  , as proposed by Johnson et al.16 In 

this work, the formed chains consisted of m tangent spherical sites, where m was 1, 2, 

4, 8, or 16. No bond angle deformation or torsion potentials were used, i.e., the chains 

were fully flexible.  

 

Throughout this work, reduced (dimensionless) properties were used:  
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where t is the time, mp the mass of a particle, T the temperature,  the atomic number 

density, P the pressure,  the viscosity,  the shear stress, N the normal stress and �̇� is 

the shear rate. 

 

2.1. Reverse non-equilibrium molecular dynamics 

The RNEMD method calculates the shear viscosity of a fluid by imposing a 

nonphysical exchange of momentum and measuring the resulting shear velocity 

gradient. Based on the algorithm proposed by Müller,13-15, 17 a simulation box was 

divided into two halves and subdivided into Z slabs labeled from 1 to Z, see Figure 1. 



The purpose of this, is to have the first slab and the Zth slab with the most positive x 

component of the momentum, and the slab Z/2 and Z/2+1 with the most negative x 

component of the momentum. With this scheme, no modification has to be done to 

periodic boundary conditions and there is no need to introduce artificial walls into the 

system. The physical and unphysical momentum at the stationary state give rise to a 

biperiodical velocity profile across the fluid, with a slope between halves with same 

magnitude but different direction. The advantages of this method is that the total energy 

and the total linear momentum are conserved and, hence, a thermostat is not needed; 

also the resulting raw data are well-defined, converge rapidly and the gradients obtained 

can be easily analyzed.  

 

Figure 1. Geometry of the experimental non-equilibrium state. 

 

To achieve the velocity profiles, first the slabs 1 and Z/2, which have different velocity 

directions, are chosen. Then, the atom in slab 1 with the lowest momentum in x 

direction, px,1, and the atom in slab Z/2 with the greatest momentum in x direction, px,Z/2 

are localized and then their values are exchanged. The same is done for the atoms in 

slab Z/2+1 and Z. The atoms must have the same mass, so the total linear momentum 

and kinetic energy can be conserved. The momenta swaps are carried out every step, 

so that the total exchanged momentum is: 

𝒑𝒕𝒐𝒕 = ∑(𝒑𝒙,𝟏 − 𝒑𝒙,𝒁/𝟐) + ∑(𝒑𝒙,𝒁/𝟐+𝟏 − 𝒑𝒙,𝒁)       8) 

 



 and the momentum flux Jxy can be calculated as 

 

𝑱𝒙𝒚 =
𝒑𝒕𝒐𝒕

𝟐𝒕𝑨
                  9) 

 

where A=LxLz (lengths of the orthorhombic simulation box in the x and z directions), 

the factor 2 arises because of the periodicity of the system and t is the total time of the 

simulation that can be calculated by multiplying the step time by the number of time 

steps. The flow velocity vx in every slab is calculated as the average of the velocity vx,i 

of all atoms i in that slab. The velocity profile is approximately linear in each section 

of Figure 1 and the slope �̇� =
𝝏𝒗𝒙

𝝏𝒚
 can be obtained by a linear regression.  

 

Figure 2. Movement of a particle in a time interval. Formation of a linear velocity profile. 

In Figure 2, the real movement path of a particle in the simulation box is observed 

during a time interval. The particle finishes its movement at the position marked with 

the point. A formation of a linear velocity profile can be clearly observed. This method 

works also for molecular fluids if molecules are modeled as entirely flexible and no 

constraints are used.  

 

2.2. Total stress tensor 

According to Equation 5, the total stress tensor T is determined as follows:18 
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where T is equal to Equation 4. Every component of the total stress tensor can be 

calculated with the sum of the kinetic and potential energy contribution17,18: 
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where V is the volume of the box,  and can be x, y, or z, pi and pi are the sum of 

the particle momentums in and directions respectively, rij is the site–site distance 

and Fij denotes the forces exerted on atom i by atom j; this force is the result of the 

summation of the LJ forces and the bond forces. This way, the hydrostatic pressure 

named in Equation 2 is: 
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where n is the total number of atoms, kB is the Boltzmann constant and T is the 

temperature. It is very important to remark that the component of the total stress where 

shear is applied, i.e. Txy  is:18,19 

 

𝑻𝒙𝒚 =
𝟏

𝑽
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This equation is similar to Equation 11 but the stream velocity in x direction, ux, must 

be removed from the velocity in x direction, vx. If the fluid presents Newtonian 

behavior, Txy must be equal to the calculated flux Jxy in Equation 9. But if the fluid 

presents non-Newtonian behavior, the normal stresses in Equation 5 will not be zero 

any more. A way to find the value of these normal stresses is to calculate the pressure 

tensor in equilibrium, i.e., when the fluid is at rest and no shear is applied. Then, from 

Equation 4 the viscous stress tensor is calculated as: 

 



                                                                𝝉 = T + 𝒑I                                                          14) 

 

The objective of doing this is to consider the normal stresses which are the cause of the 

non-Newtonian behavior that makes the viscosity decrease.   

 

2.3. Normal stress differences 

Normal stress differences are associated with nonlinear effects and are the result of the 

microstructure no longer anisotropic under flow conditions.20-22 The normal stresses are 

considered responsible for various relevant industrial rheological effects as the 

Weissenberg or 'rod-climbing' effect, the 'die-swell' effect and the post-extrusion effect. 

A large number of complex fluids such as polymers, colloidal suspensions, micelles, 

etc. exhibit normal stresses. The total stress in a fluid can be described by: 

 

Shear stress: xy 

First normal stress difference: 𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦  

Second normal stress difference: 𝑁2 = 𝜏𝑦𝑦 − 𝜏𝑧𝑧 

 

N1 provides the axial pressure and N2 is related to the pressure variation. The second 

normal stress difference N2 is almost always very small in comparison to N1, so in this 

work N2 was negligible.  

 

2.4. Simulation Details 

The simulation program was developed by the author, and it was already validated for 

various thermophysical properties.23 The reduced time step was t*= 0.0023. The 

number of molecules were 1000 for m = 1, 800 (1600 atoms) for m = 2, 400 (1600 

atoms) for m = 4, 300 (2400 atoms) for m = 8, and 200 (3200 atoms) for m = 16. Verlet 

algorithm and periodic boundary conditions were used. In order to save CPU time, a 

Verlet neighbor list was implemented with an outer shell radius of 3.6σ. For all 

properties standard deviations were computed in order to obtain the statistical errors. 

 

3. Results 

The viscosity of a single spherical site was calculated for different temperatures. In 

Figure 3 it can be observed that viscosity is higher for lower temperatures and decreases 



as temperature grows up. It can also be observed that as shear rate increases, the 

viscosity decreases (shear thinning effect). Viscosity curve obtained from Delhommelle 

et al.11 is also shown for a lower temperature and density, and it follows similar 

behavior of viscosity decrease at the same range of shear rate.  

 

 

Figure 3. Viscosity as a function of shear rate for m = 1 ( *= 0.9). Different reduced 

temperatures ●: T*=0.8, ■: T*=1, 󠇡 ♦: T*=1.5. Lines are only for visual guiding. ▲: results from 

Delhommelle et al.11 for T*= 0.722, m = 1, *= 0.84. 

 

The viscosity was also calculated for different densities at T*=2 for m=1 (Figure 4), 

showing an exponential increment as density increases. Results were compared with 

the work of other authors and they are in good agreement.  

 



 

Figure 4. Viscosity for different values of density at T*=2. ■: this work, ●: results from G. 

Galliero et al.24, ▲: results from Llovell et al.25 

 

In Figure 5 the viscosity as a function of shear rate for chains of m = 1, 2, 4, 8 and 16 

spherical sites is displayed. Figure 5 shows that as long as m increases, the shear 

thinning effect is more evident (see m=16, filled diamonds), alsowhen m increases, 

shear thinning appears at lower shear rates.12, 26 For all values of m viscosity reaches a 

first Newtonian regime at low shear rates.  

 

 

Figure 5. Viscosity as a function of shear rate at T*=1 and *= 0.9. ●: m=1, ■: m=2, 󠇡♦: m=4, ▲: 

m=8, ▼: m=16. Lines are only for visual guiding.  



The shear thinning effect appears when normal stress forces increase and Equation 5 is 

no longer zero in the diagonal of the viscous part. To prove this, the total stress tensor 

was calculated with Equation 11, the hydrostatic pressure of the fluid at rest was 

calculated with Equation 12 and the viscous stress tensor, , was determined with 

Equation 14 for all the chains at different shear rates. In Equations 15 and 16 an example 

of the resultant tensor for m=2 at low and high shears rates respectively, is displayed. 

𝝉(�̇� = 𝟎. 𝟏, 𝒎 = 𝟐) = [
𝟎. 𝟏 −𝟎. 𝟑 𝟎

−𝟎. 𝟑 𝟎. 𝟐 𝟎
𝟎 𝟎 𝟎. 𝟐

]                                        15) 

𝝉(�̇� = 𝟎. 𝟑, 𝒎 = 𝟐) = [
𝟎. 𝟑 −𝟏 𝟎
−𝟏 𝟎. 𝟔 𝟎
𝟎 𝟎 𝟎. 𝟖

]                                               16) 

It can be observed that for a higher shear rate, the normal components in the diagonal 

become more relevant in the calculation of the viscous stress tensor. In Figures 6, 7 and 

8 the graphical results of the viscosity , the shear stress xy* and the normal stress N1* 

for m=1, m=2 and m=16 respectively, are shown.  

 

 

Figure 6. Rheological results for m=1 at T*=1 and *= 0.9 as a function of shear rate. ●: viscosity 

*, ■: shear stress xy*, ♦: normal stress N1*. 

 



 

Figure 7. Rheological results for m=2 at T*=1 and *= 0.9 as a function of shear rate. ●: viscosity 

*, ■: shear stress xy*, ♦: 󠇡normal 󠇡stress 󠇡N1*. 

 

 

 

Figure 8. Rheological results for m=16 at T*=1 and *= 0.9 as a function of shear rate. ●: 

viscosity *, ■: shear stress xy*, ♦: 󠇡normal 󠇡stress 󠇡N1*. 

 

In these graphics, it can be observed that the normal stress grows up as long as chain 

increases. When m=1, N1 is almost zero and shear stress controls the movement. In 



Figure 7 corresponding to m=2, the normal stress is more significant but shear stress 

still predominate. In the case of m=16, the normal stress is higher than shear stress, 

which means that this fluid is highly viscoelastic. 

 

From a physical point of view, the generation of an unequal normal stress arises from 

the fact that when applying shear rate, the liquid becomes anisotropic. Namely, the 

chain molecules, which at rest goes everywhere behave in alignement after shearing. In 

Figure 9 the simulation box conformed by chains constituted with 16 spherical sites at 

rest (left) and after shear deformation (right) is shown. The arrow represents the m=16 

chain from beginning to end (peak of the arrow).  It can be observed that molecules at 

rest goes everywhere, but after deformation they mostly aligne in x direction, the 

direction from the shear application. 

 

 

Figure 9. Chains before (left) and during shear deformation (right). 

 

To corroborate the alignment of chains, the radial distribution function was 

determined. It defines the probability of finding a particle at a determined distance 

with respect to other reference particle, giving us important structural information. 

When shear rate is increased, the atoms of the liquid ensemble form structurally 

arrested states with crystal-like symmetries. 27-28 Shear is able to produce anisotropy, 

that can be revealed by radial distribution function. In Figure 10.Figure 10, particle’s 

positions are shown for a) non-shear-induced system and b) shear-induced system. It 

can be observed the difference between them, in the first figure there is an isotropic 



system meanwhile in second figure a crystal-like symmetry is formed. 

 

Figure 10. Radial distribution function for a) non-shear-induced system and b) shear-induced 

system.  

 

The structure of the fluid as well as the normal stress appearance give rise to the shear 

thinning effect. All the fluids that behave this way are called pseudoplastic or 

viscoelastic, and many equations or models are available for the description of the 

fluid’s behavior.  

 

Regarding the results of this work, the best equation to fit the rheological behavior of 

the chains was the Power Law model,29 which follows the next equation: 

 

𝝉𝒙𝒚 = 𝑲�̇�𝒂                                                              17) 

where K is the flow consistency index and a the flow behavior index. The inverse of a 

is the so-called pseudoplasticity index, and it indicates how viscoelastic is a fluid. If 1/a 

is equal to 1 it means that the fluid is Newtonian. For the calculation of a, the following 

equation was used: 

    ln(𝝉𝒙𝒚) = ln(𝑲) + 𝒂 ln(�̇�)                                             18) 

The value of a and 1/a was calculated for all the chains. In Figure 11 a plot of the 

pseudoplasticity index as a function of the number of atoms in chain is displayed.  

 

 



 

Figure 11. Viscoelasticity of chains as a function of spherical sites 

 

It can be observed that the larger the chains, the more viscoelastic behavior they have 

and for the first sixteen monomers it follows a linear regression.      

In the work of Soto-Castruita et al.,30 they realized oscillatory experiments with 

different molecular weight oils (i.e. different chain length oils). They measured the loss 

and storage moduli at different shear rates and calculated a parameter that quantifies 

the viscoelasticity of the materials. With that results they proved that viscoelasticity of 

oils increased as molecular weight increased. In this context, the results obtained in this 

work, from the molecular point of view, can be used to understand the macroscopic 

behavior of a fluid.  

 

4. Conclusions 

The viscosity and the normal forces for different chains (composed by 1, 2, 4, 8 and 16 

spherical sites) were calculated using the reverse non-equilibrium molecular dynamics 

method. It was presented the role of the normal forces in the shear thinning viscosity at 

high shear rates and which force dominates the flow behavior depending on the number 

of sites on the chain. It was proved that the shear flow affects the orientation of 

molecules and induces an alignment of chains. A relationship between the viscoelastic 

behavior and the number of sites in the chain was also presented. In conclusion it was 

found that the normal forces are the responsible of the shear thinning and that they grow 

up as chains increase in length.      



Acknowledgements 

Support for this work has been provided by the “Fondo Sectorial SENER-CONACYT-

HIDROCARBUROS”, grant no. 186291. Author acknowledges the support of Dr. 

Sergio E. Quiñones Cisneros and Dr. Ulrich K. Deiters in the realization of this work.  

 

 



References 

1. Macosko, C. W., Rheology: principles, measurements, and applications. 

VCH: 1994. 

2. Quiñones-Cisneros, S. E.; Deiters, U. K., Generalization of the Friction 

Theory for Viscosity Modeling. The Journal of Physical Chemistry B 2006, 110 (25), 

12820-12834. 

3. Quiñones-Cisneros, S. E.; Zéberg-Mikkelsen, C. K.; Stenby, E. H., The 

friction theory (f-theory) for viscosity modeling. Fluid Phase Equilibria 2000, 169 

(2), 249-276. 

4. Pedersen, K. S.; Rønningsen, H. P., Effect of Precipitated Wax on ViscosityA 

Model for Predicting Non-Newtonian Viscosity of Crude Oils. Energy & Fuels 2000, 

14 (1), 43-51. 

5. Ramírez-González, P.; Aguayo, J.; Quiñones-Cisneros, S.; Deiters, U., Non-

Newtonian Viscosity Modeling of Crude Oils—Comparison Among Models. 

International Journal of Thermophysics 2009, 30 (4), 1089-1105. 

6. Allen, P.; Tildesley, D. J., Computer Simulation of Liquids. Clarendon Press: 

1989. 

7. Toda, M.; Kubo, R.; Saitō, N.; Hashitsume, N., Statistical Physics II: 

Nonequilibrium Statistical Mechanics. Springer Berlin Heidelberg: 1992. 

8. Morriss, G. P.; Evans, D. J., Statistical Mechanics of Nonequilbrium Liquids. 

ANU Press: 2013. 

9. Hanley, H. J. M.; Evans, D. J., A thermodynamics for a system under shear. 

The Journal of Chemical Physics 1982, 76 (6), 3225-3232. 

10. Ashurst, W. T.; Hoover, W. G., Argon Shear Viscosity via a Lennard-Jones 

Potential with Equilibrium and Nonequilibrium Molecular Dynamics. Physical 

Review Letters 1973, 31 (4), 206-208. 

11. Delhommelle, J.; Petravic, J.; Evans, D. J., Non-Newtonian behavior in simple 

fluids. The Journal of Chemical Physics 2004, 120 (13), 6117-6123. 

12. Kröger, M., Simple models for complex nonequilibrium fluids. Physics 

Reports 2004, 390 (6), 453-551. 

13. Müller-Plathe, F., Reversing the perturbation in nonequilibrium molecular 

dynamics: An easy way to calculate the shear viscosity of fluids. Physical Review E 

1999, 59 (5), 4894-4898. 

14. Bordat, P.; Müller-Plathe, F., The shear viscosity of molecular fluids: A 

calculation by reverse nonequilibrium molecular dynamics. The Journal of Chemical 

Physics 2002, 116 (8), 3362-3369. 

15. Müller-Plathe, F.; Bordat, P., Reverse Non-equilibrium Molecular Dynamics. 

In Novel Methods in Soft Matter Simulations, Karttunen, M.; Lukkarinen, A.; 

Vattulainen, I., Eds. Springer Berlin Heidelberg: 2004; Vol. 640, pp 310-326. 

16. Johnson, J. K.; Müller, E. A.; Gubbins, K. E., Equation of state for Lennard-

Jones chains. Journal of Physical Chemistry 1994, 98 (25), 6413-5419. 

17. Galliero, G.; Boned, C., Shear viscosity of the Lennard-Jones chain fluid in its 

gaseous, supercritical, and liquid states. Physical Review E 2009, 79 (2), 021201. 

18. Todd, B. D.; Evans, D. J.; Daivis, P. J., Pressure tensor for inhomogeneous 

fluids. Physical Review E 1995, 52 (2), 1627-1638. 

19. Hoang, H.; Galliero, G., Shear viscosity of inhomogeneous fluids. The Journal 

of Chemical Physics 2012, 136 (12), -. 

20. SCHRAMM, G. A.; Haake, G., A Practical Approach to Rheology and 

Rheometry. Haake: 1994. 



21. Barnes, H. A.; Hutton, J. F.; Walters, K., An Introduction to Rheology. 

Elsevier: 1989. 

22. Barnes, H. A., A handbook of elementary rheology. University of Wales, 

Institute of Non-Newtonian Fluid Mechanics: 2000. 

23. Ramírez-González, P. V.; Quiñones-Cisneros, S. E.; Deiters, U. K., Chemical 

potentials and phase equilibria of Lennard-Jones chain fluids. Molecular Physics 

2015, 113 (1), 28-35. 

24. Galliéro, G.; Boned, C.; Baylaucq, A., Molecular Dynamics Study of the 

Lennard−Jones Fluid Viscosity:  Application to Real Fluids. Industrial & Engineering 

Chemistry Research 2005, 44 (17), 6963-6972. 

25. Llovell, F.; Marcos, R. M.; Vega, L. F., Free-Volume Theory Coupled with 

Soft-SAFT for Viscosity Calculations: Comparison with Molecular Simulation and 

Experimental Data. The Journal of Physical Chemistry B 2013, 117 (27), 8159-8171. 

26. Kröger, M.; Hess, S., Rheological Evidence for a Dynamical Crossover in 

Polymer Melts via Nonequilibrium Molecular Dynamics. Physical Review Letters 

2000, 85 (5), 1128-1131. 

27. Evans, M. W.; Heyes, D. M., Correlation functions in non-Newtonian couette 

flow. A group theory and molecular dynamics approach. Journal of the Chemical 

Society, Faraday Transactions 1990, 86 (7), 1041-1049. 

28. Hess, S., Structure and Nonlinear Flow Behavior of Simple and Complex 

Fluids. International Journal of Thermophysics 2002, 23 (4), 905-920. 

29. Rudolph, N.; Osswald, T. A., Polymer rheology: fundamentals and 

applications. Carl Hanser Verlag GmbH Co KG: 2014. 

30. E. Soto, P. V. R.-G., Sergio E. Quiñones-Cisneros, Effect of the Temperature 

onto the non-Newtonian Behavior of Heavy Oils. Energy and Fuels 2014. 

 


